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AUTOCORRELATION, AUTOREGRESSION AND AUTOREGRESSIVE
APPROXIMATION

By AN Hong-ZHI, CHEN ZHA0-GUO AND E. J. HANNAN!

The Australian National University

Theorems are proved relating to the rate of almost sure convergence of
autocovariances, and hence autocorrelations, to their true values. These rates
are uniform in the lag up to some order P(T'), increasing with 7. The key
assumption is that the process is stationary and the best linear predictor
is the best predictor. In particular for an ARMA process and P(T') =
O{(In T)"}, a < o, the rate is O{(In In T/T)"/?}. These results are used to
discuss autoregressions and the use of autoregressions to approximate the
structure of a more general process by increasing the order of the autoregres-
sion with T. .

1. Introduction. Consider observations, x(¢), t = 1, --., T, on a stationary ergodic
process with zero mean and finite variance. We mention here that mean correction of the
data will have no effect on the results presented below. It is always assumed that

1 x(t) =35 k(Net—j), X |e(N] <o, k(0 =1,
where the ¢(¢) are the linear innovations, so that, (Hannan, 1970, page 142),
(2) k(z) = X5 k(j)z’ #0, |z| <1

It is also assumed that, for some r = 4,

(3) E{e(t) | #im1} =0, E{e(t)?| Fimi) = 0%, E{|et) |} < oo

Here % is the o-algebra generated by &(s), s < t, and o? is the prediction variance. More
specifically we may require that

) k(z) =g(27'h(z), g2 =3ba())z), A2 =3 B(U)Z,

where g(z) and A(z) are relatively prime. Then x(¢) is generated by an ARMA process. In
case g = 0, x(¢) is an autoregressive process. We note that one of these might be used as a
model for a statistical procedure even when the model is not valid. A zero subscript will be
used to distinguish true values from hypothetical values when the distinction is needed,
for example a,(j), Bo(J), Po, go. Since we are, in part, concerned with autoregressive
approximation we shall sometimes strengthen (2) so that

2) k(z) %0, |z|=1,

and consequently | k(exp iw) | is bounded away from zero uniformly in w.
The theorems presented below are based on results relating to the sample autocovari-

ances,

1
5 Ttx(s)x(s+t), O0=t=T-1,

0, T=t

c(t) =
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AUTOCORRELATION AND APPROXIMATION 927

Let y(t) = &{x(s)x(s + t)}. In Hannan (1974) it is shown, under very general conditions,
that

Hm7oSUPo=i<w | €(t) — y(£) | =0, a.s.
We prove stronger results below. In the following, for a sequence yp, T =1, 2, --., of
random variables and a sequence nr of constants we shall write yr = O(nr) to mean that

lim supz.. | yr|/nr <, as.

If “< ” is replaced by “= 0” we shall write yr = o(nr). It will also be convenient to put Q@r
= (Inln T/T)"2

THEOREM 1. Let x(t) satisfy (1), and (3), for r = 4. Then for any § > 0 and P(T') <
T a=r/{2(r—2)},

maxo<<pr) | ¢(t) — y(t) | = o[ T™2{P(T)In T}*(In In T)**+¥/"],

Of course this theorem is vacuous for r = 4 unless P(T) = o[T/{In T(In In T)"*¥/%}]
It is to be expected that, under reasonable conditions, the quantities c(¢) — y(¢) will,
individually, follow the law of the iterated logarithm (see Hall and Heyde, 1980, pages 141
and 194). Thus one expects to be able to improve on the order given in Theorem 1, as in
the following result for ARMA processes.

THEOREM 2. Let x(t) satisfy (1), (3), (4) fbr r =4, Then if P(T) = O{(In T)?}, for
some a < .

maxo==p(m) | ¢(t) — v(t) | = O(Qr).

Finally we wish to give a strengthening of the result in Hannan (1974), mentioned
above.

THEOREM 3. Let x(t) satisfy (1), and (3) for r = 4. If
(5) limr T2 3% |k(j)| =0

then
SUPo=i<x | €(t) — y(¢) | = O{(In T/T)"?}

2. Approximation by autoregressions. Consider the estimation of an autoregres-
sion when the true order, po, is not known. As in Akaike (1974) and Rissanen (1978), we
can estimate p, as the p which minimizes

(6)
Inég2+phnT/T, 0=<p=<PT).

Here 62 is the estimate of o obtained from fitting an autoregression of order p (see

Akaike, 1977, Hannan, 1970, Chapter VI). We can apply the results in Section 1 and have
the following theorem.

THEOREM 4. If x(t) is generated by an autoregression and (3) holds for r = 4 then,
for P(T) 1 « and P(T) = O(In T') in (6), p — po a.s.

This theorem also holds true if P(T') = O(ln In T') and In T in (6) is replaced by
¢ In In T for sufficiently large constant ¢ > 0.

Having fitted an autoregression of order p, whether or not the true process is an
autoregression, the spectrum f(w) = o*| Y k(j)exp {jw|?/(27) may be estimated by

~2
2 [Y A \ Uw | —
fo(w) =ﬁ|26’ &y(j)e’ |2,
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where the &,(j) and 67 are obtained from the Yule-Walker procedure (Hannan, 1970). If
p depends on 7, i.e. p = p(T'), we shall write 6%, ar(j) fT(w), for brevity. In Berk (1974) it
is shown that fr(w) converges in probability to f(w) when p(T) = o(T'?), the &(t) are
independent with zero mean and variance ¢ and (1), (2'), (5) hold. In the following theorem
we establish almost sure convergence.

THEOREM 5. If x(t) satisfies (1), (2), (3) for r = 4 and (5) then for p(T) 1 o, p(T) =
o{(T/In T)"?}

o sup, | fr(w) — f(w) | = o(1).

If p(T) = O[T"?/{In T(In In T)"**}], for some 8 > 0, and (1), (2'), (3) for r = 4, then again
(7) holds.

Let the expression
J f@) |38 a(j)e”™|* do,  a(0) =1

be minimized at a(j) = ar(j), ar(0) = 1, and let 67 be the minimum value. We finally state
a theorem about the uniform convergence of the ar(J).

THEOREM 6. If x(t) satisfies (1), (2), (3) for r = 4, and (4) and let p(T') = O{(In T)*},
1<a<worp(T)=[dln T] for d sufficiently large, then

(8) Supi=j=pmy | ar(j) — ar(j) | = O(Qr).

3. Some further observations. In this section we consider only Theorems 4 and 6
and thus maintain (1), (2’), (3) and (4). Then

{(ZF k(e =35 a(e™,  ¥5jla(j)| <.

It is shown in Baxter (1962) that, under the conditions of Theorems 6, 6% — o decreases
to zero at a geometric rate and, in general,

9) YD | oFar(j) — o*a(j)| = ¢ Yo+l al))|,

so that max | ar(j) — a(j) | also converges geometrically to zero. (The rate of geometric
convergence is determined by the zero of A(z) nearest to the unit circle.) As a consequence,
if p(T') = d In T for d sufficiently large, ar(j) may be replaced by a(J) in (8). Of course this
is also true if p(T') = c¢(ln T')% 1 < a < ». These considerations are of some importance in
connection with the recursive methods for the estimation of (4), including po, qo in the
estimation, discussed in Hannan and Rissanen (1982).

As observed in Hannan and Heyde (1972, page 2059) the first part of (3) is equivalent
to the assertion that the best linear predictor is the best predictor, in the least squares
sense. This is a natural condition on x(¢), since the final purpose of estimation is often
linear prediction. On the other hand, it is difficult to find reasonable conditions on x(t)
that would make the second part of (3) hold, other than the requirement that x(¢) be
Gaussian. For that reason it is of interest to see how far that part of (3) can be modified.
The condition is fairly essential for Theorems 1, 2, 3 since the c¢(¢) — y(t) involve

% ST (e(t)? — o).

The Yule-Walker equations of estimation for the ar(j) are

Zg(T) &T(])C(] - k) = Oy k= ]-y M ')p(T)y &T(O) =1
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Also
YoM a(j)e(j — k) = T7H{YE a(j) YT x(t)x(t + k — J)
+ 300 a()) XT7* x()x(t + j — k)
= T7YS a(){TF x(t — j)x(t — k) + ST x(t — j)x(t — &)}
+350 @) (ks x(t — j)a(t — k) + TFE (¢ — j)x(t — k)
= Yk x(t — J)x(t — k)}]
= T7'[X6 a() {Th x(t — j)x(t — k) + jo(T"?)}
+ 200 a(7){SFe 2t — j)x(t — k) + ko(T?) + jO(p(T)"2)}].

These follow from the fact that x(¢)/¢'/? converges a.s. to zero because x(¢) has a finite
fourth moment. Thus

TET alfeli = k) = T~ 58T a(j) S 2t = )x(t — k) + o(T2).
Also for Theorem 4 a(j) = 0, j > po, while under the conditions of Theorem 6
10) ¥ a(NxE = ) =pP T Y5 d(j) |2t — j)|, d(j)>0, 0<p<]1,

where the d(j) also converge to zero at a geometric rate, as explained at the beginning of
this section, so that for p(T') = d In T and d sufficiently large (10) is o(T/?). Thus, then,
uniformlyink =1, ..., p(T),

6T a(f)e(j — k) = T Y e(®)x(t — k) + o(T %)
and hence
an - T {ar()) —a(Ne(j = k) = =T Yo e®)xt — k) + o(T2), k=1, - -, p(T).

Thus, in Theorems 4 and 6 we are reduced to the consideration of (11). In the first term
on the right side of (11), £(£)*> does not occur and for this reason we may show, under the
conditions of those two theorems, but without the middle part of (3), that

supi<k<pcry | T™' Y1 e()x(t — k) | = O(Qr).

The proof is virtually the same as that given for Theorem 2, in the next section.
Let us, in Theorems 4 and 6, replace the middle part of (3) by

1 5 g
(12) 72? {e()? — 6%} = o{ p(T)2}.
We shall discuss this later. Then as in the proof of Theorem 2 we may show that

(13) maxi=pr) | ¢(t) — y(t) | = of{ p(T)7?}.

Let "7 be the matrix with c(j — k) in the (j, k)th place, j, k=1, ..., p(T), and let I'7 be
similarly composed of the y(j — #). If x is a vector of unit length with p(T') components
and (2’) holds then

x'Trx = ]f(w)lz xe%|? do = inf f(w) >0

so that the smallest eigenvalue of I'r is bounded away from zero. The sum of the moduli
of the elements in any row of I'7' is bounded uniformly in the row index. If ur is the vector
composed of the quantities of the right side of (11) then I'z'ur has elements that are,
uniformly, O(Q7r). It follows that

»(T)

XY {c(G— k) —y(J — B} = O{p(T)’p(T)™*} = o(1).

Jik=1
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Since this is the trace of (ff — I'7)? the largest eigenvalue of (I'y = T'7) = 0(1) and hence
the smallest eigenvalue of I'r = I'r + (I'r — I'r) is also, a.s., bounded away from zero. It
follows that the elements of I'7' are a.s., uniformly bounded. Now

Iur = (Ir + 17 (1 = I'7)} T'ur

where It is the p(T')-rowed unit matrix. The sum of the moduli of the elements along any
row of I'F/(I'r — I'p) is O{p(T)?o(p(T) %)} = o(1), because of (13) and the uniform
boundedness of the elements of I'7'. Thus Theorems 4 and 6 hold with the middle part of
(3) replaced by (12), if in Theorem 6 p(T') = d In T, for suitably large d. For example we
might take p(T") = (In T')“, a > 1. The condition (12) seems mild. For example if x(¢) is
regular (Ibragimov and Linnik, 1971, page 301) then {e(t)* — ¢®} has an absolutely
continuous spectrum. If the spectral density is bounded then Menchoff’s inequality holds
(see Hannan, 1978) and by the methods of Moricz (1976) it may be shown that the left side
of (12) is O{(In T)*/T*?}, a > %. Thus Theorems 4 and 6 hold under rather general
conditions. There will be analogous relaxations in relation to Theorem 5 but the consid-
erations are more complex since (10) does not hold.

4. Proofs of theorems. Throughout this section we take o* = 1 for simplicity.

PRrROOF oF THEOREM 1.

e(t) = y(t) = T X5 k()(k) ST {e(s — f)els + ¢ — k) — 840
(14) 0

;o
-7 ZOZ k() (k) k.

The last term is ¢ty(t)/T and is thus o(P(T)/T). Since P(T) < T% a = r/{2(r — 2)} then
P(T)/T < P(T)*"/T"* and this last term may be neglected. Thus we need consider only
the first term in the right side. Put

S:(J, R t) =Yi-1 {e(s — Jle(s +t — k) — 85—t ).

This is a square integrable martingale relative to the ¢-algebras %.,,, m = max(—j, t — k).
Since the martingale differences have moments of order /2 then first by Doob’s inequality
(Hall and Heyde, 1980, page 15) and then Burkholder’s inequality, (op cit., page 23) we
have

(15) & {max.<r|S(j, &, t) |"*} = T
Here and below we use c¢ for a finite, positive constant, not always the same one. Put
m(t, 7) = |3, Y ()x(R)S,—(J, &, t) |.
Then from (15)
& (max,<r|m(t, 1) |7*) < cT7*
so that
(16) P {max,«rmax,<<p(r) | m(t, ) | = Y(T)} < cP(T)T"*WT)"~
Thus if W(T) = TY2{P(T)In T}*"(In In T)*'"*9/" then the right side of (16) is
¢/{In T(In In T)'**}. Now by precisely the same argument as in Moricz (1976, page 309,
below (4.8)), for example, we may show that

1
maxo==P(T) T |m(t, T)| = o{T™'WT)}

which proves the theorem.
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Proor oF THEOREM 2. The proof is long and complex but we can find no simpler
proof. The neglected term in (14) is again negligible. We may truncate the sum in the first
term on the right side in (14) at j, 2 < d In T for some sufficiently large d. For example

P{max,| T™" Yt Yoo k(/)k(B)Sr_i(J, b, t) | = eQr)}
=Y Q) E{| T Yot Yi-o k(/)x(R)Sr—i(j, k, t) |*)
= cT7'P(T)(eQr) > (Tanr| k() 2 {Z5 [k(®) |} = O(T™), a>1,

since | k(j) | decreases to zero at a geometric rate. The required result now follows from the
Borel-Cantelli lemma. Thus it is sufficient to consider, for a suitable d < o,

ct) = T YT e(s)e(s + t), 1<t=dInT

We have omitted c.(0) — 1. The &(¢)® — 1 are martingale differences and the law of the
iterated logarithm holds for this; see Stout (1974a). The praof now follows the proof of the
law of the iterated logarithm as given in Stout (1974b, pages 299-302). However first we
must truncate the e(t) sequence and we have found it easiest to use the method of
truncation in Hartman and Wintner (1941), rather than that in Stout (1974a). We choose
A(t) as the function, given as A(r), on page 172 of Hartman and Wintner (1941). In the
definition of A(r) the first two absolute moments of a distribution function, 7(x), occur and
in our application these are to be the first two moments of the distribution of &(¢)%. The
function A(¢) is of the form :

At = Q:r'(t),  A) >t

where 7(¢) decreases monotonically to zero but A(¢) increases monotonically to . It is not
difficult to see that, for s, t = 3,

(17) As + 2= A(s)2 + M)A

This follows from the same result for @;" since 7(¢) decreases monotonically. Now put, for
t=3,

£(t) = {e B, e <A,

0 otherwise.

It is shown in Hartman and Wintner (1941, page 174) that, putting ¢(t) = (¢ In In ¢)'/?,
e(t) = e(t) — g(t),

(18) Y5 &{e(®)’}/o(t) < co.
Now we show that T'c.(t) can be replaced by the martingale,
Y [g(s)g(s + 1) — E{g(s)g(s + 1) | Foict}].
The effect of truncation is essentially dominated in modulus by
o(T) ' YT |e(s)g(s + t) + g(s)e(s + t) + e(s)s(s + ) |.
The contribution from the last term under the modulus sign is dominated in modulus by
S(T)™ 57 e(s)®

which converges a.s. to zero by (18), using Kronecker’s lemma. The contribution from the
first term is dominated in modulus by

o(T)'max, Y3 | e(s) |A(s + t)/* = ¢(T) 'max, 37 | e(s) | (A(s)/2 + A(2)"3}.
Now ¢(T)™' ¥ | e(s) | A(s)"/* will converge to zero, by Kronecker’s lemma, if

| e(s) [ A(s)"?
(19) 2 ¢(s)

<o, as.
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This holds true, because of (18), since &|e(s) | > A(s)"/% On the other hand,
max$(T)"'A@)'* ¥ | e(s) | = MT)’(T)" T | e(s) |,
again converges to zero a.s. by Kronecker’s lemma because of (19). Finally
o(T) 'max, YT | e(s + t)g(s) | = ¢(T) 'max, 3T | e(s + ) | \(s + )%,

which again converges to zero by the same argument. Then the effect of truncation is
negligible. Moreover, since & {e(s)e(s + t) | Fore-1} =0, >0,

—(T)" Y3 £{g(s)g(s + t) | Firir}
=o(T) ' 3T &{e(s)g(s + t) + g(s)e(s + t) + e(s)e(s + t) | Fove),

and this converges to zero, uniformly in ¢, by the same arguments. Therefore the effect of
mean correction is negligible. Before proving the desired result, we need the evaluation
that, uniformly in ¢, and almost surely, *

sHT) = Y3~ var(g(s)g(s + t) | Fve-1)

(20) =31 6{g(s)8(s + )| Forir} — X3 [6{8(5)g(s + )| Fori-t} T
=T{1 + o(1)}.
However ,
[6{g(s)g(s + 8)| Fori1}T = £(s)’[E{e(s + )| Fori1) T
=ANs+ t)[&{els + )| Fre1}F = Q18 {e(s + )| Fove},
so that the second term in (20) is o(T'), again using (18). Also since e(s)g(s) =0
E{8%(s)g%(s + t) | Fare-1} = {e(s)® — e(5)*} [1 — &{e(s + 8)?| Fri-1}]
and thus
Yi 6{g(s)°8(s + )| Fivir} = T{1 + 0(1)},

by the same kind of argument as before, and (20) is established. Now we prove the desired
result. Put

(21) S(T) = 23=t+1 Y. (v)
where Y, () = gu)g(u —t) — &{gw)g(u — t) | Fi-1}. Then it suffices to show that
(22) P {max,S,(T) > bo(T) infinitely often} =0, for some b < oo.

Let T be the smallest integer 7' such that max,s?(T + 1) = p*, and S{* be S/(T') for T' <
Ty and S,(T:) for T > T. Then p*~' < T), < p**! a.s. for large enough 7, as is seen from
(20). Therefore it suffices to show that

Sk P {supr=smax,S{(T) > bp(Tr)}.
Put (p**') = p(k). The above is implied by
e YEP P{suprepm S (T) > bp(Th)} <
and, as shown in Stout (1974b, pages 301-305), the left hand side is dominated by
Y p(k)exp(¥b?® In In p**),
which converges for b sufficiently large. Replacing S.(T') by —S:(T') and repeating the

proof establishes the result.

ProoF oF THEOREM 3. The proof is basically of the same form as for Theorem 2 and
can be given in outline except for the proof that we may truncate the sum over j, & in (14).
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Since ¢'*y(¢) — 0 because of (5), ty(t)T~' = o(T"?), t < T and y(t) = o(T"?), t = T. Thus
we need consider only ¢(t) — y(¢), ¢ < T and may neglect the last term in (14). Put

Sjre(T) = 317 {e(s — j)e(s + t — k) — 84—s}.
Now we shall show that, uniformly in ¢,

TInT

22 k()e(R)S, e (T) — X3 k() (R)Sn,e(T)
0 0
is o{(In T/T)"?}. This is made up of three terms, of which one is

a(T) = YFinre1 Yi-o k())k(R)Sjr,(T),

another is the same with lower limits of summation for j, 2 reversed and a third has both
lower limits of summation at (7' In T + 1). The proof is essentially the same for all three.
Uniformly in ¢ we have

E[{(Xtmre1 Y& 6 (7)e(R)Sj2,(T))?*] = {Ttmrer | () [} (X5 | k() [ }O(T)
which is o{(In T')™'}. Since T values of ¢ are involved
P{max;|a/(T)|=e&(Tn T)"?*} = o{(In T)%}.

Put T, = 2"and T(¢) = T,1n T,. Then max; | a,(T,) |/ T(¢)"? is, a.s., eventually less than &
and thus max,| a,(T/) |/ T(¢)"? converges a.s. to zero.
For T)< T =< T,.1, putting S;+.(T/) =0, t = T,, we have

|ai(T) — alT)) | < | T 38 k() (R)Sine(Ty) |
+ | Zmre1 X8 k()e(B) (S re(T) — Sjne(Te)} |.

(23)

Now, uniformly in ¢,
Elmaxri<rsrrar | S0 35 k() (R) (Sjae(T)) 3]
= (SHGRR() [} 2 {25 k())}?O(T2) = o{(ln T/) ).
On the other hand, uniformly in ¢,

& {maxrecr=rees | Yimre1 2o k(B {Sjk(T) — Sjn(Tr)} %}
= [XFer+116()) | 26 | k(R)(E[maxy, <r<r41 (Sjrs(T) — Sjn(Tr)}2])V2]?
= (X k() N2{EC |k (R) [}O(T /1 — T/) = o{(In T,)™"}
by Doob’s inequality applied to the martingales
Yrhic{e(s — Ne(s+t— k) — e}, t<Ty
YTt {e(s — je(s + t — k) — 8y}, Ty<t< Tpi.
Thus from (23), putting a.(7,) = 0, ¢t = T, we obtain, uniformly in ¢,
& {maxr,<r<r,y, | alT) — a,(T;)|*} = O{(ln T,)™")
so that
maxy,<r=r,, max | {a.(T) — a:(T,)}/T(£)"*| - 0, a.s.

Thus we need to consider only

TInT

5.‘62 k(e(R)Sjr(T), t<T.
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Now we truncate the £(s) at A(s)/% where A(s) = (s/In s)/?5(s). All of the properties of A(s)
used in the proof of Theorem 2 are retained by a suitable choice of 5(s) and the proofs are
not different. Again effects of truncation are negligible. Thus we introduce g(uv)g(v — a;x,.)
where a;: = |t + j— k| and
Yirew) = gwgw — ajre) — E{8WE[WU — ajre) | Fu-1}
and consider
(24) Yr P{max;s, Y Yjru) > c(T In T)"?}.
Now put
sz,k,t(T) =¥ é”{Yj,k,[(u)2| Fu-1}

which is easily seen to be less than or equal to T'{1 + o(1)}. Then (24) is dominated by

Y7 Ykt Plexp{(In T/T)? Y, Y;n(w) — %(n T/T)(1 + 0(T))S}4(T)} > exp ¢1 In T].

Here ¢; = ¢ — {1 + 9(T)}s%..(T)/(2T). There are O{(T In T)?} values of j, &, ¢ since a;,
depends only on j and ¢ — k. Thus from Lemma 5.4.1 and Corollary (5.4.1) of Stout (1974b),
we bound (24) by

C2 ZT (T In T)ze_c'lnT

which is certainly finite for ¢;, and hence c, large enough. Again replacing Y;..(x) by
—Y; ».(u) the result follows.

ProoF oF THEOREM 4. As was shown in Hannan and Quinn (1979), (7) is not
minimised at p < po, symptotically. Thus we need to show that, for all 7 sufficiently large,

min,{ln 6; —In 63 + (p — po)In T/T} >0

where po < p =clIn T, ¢ > 0. Now we introduce a matrix f‘,, ={c(j—k),j,k=1,.--, p}
and the vector y, = {¢(j), j =1, ---, p}. Then the vector &, = {@&,(j),j=1, ---, p} of
autoregressive coefficient estimates, is a solution of the equation I',&, = —7, and as is well-
known (see Hannan, 1970)

6}’/61270 = Hf=P0+1 {1 - &fz(j)}
It is evidently sufficient to show that
maxy,<j<cnt| &;(j) | = o{(In T/T)"*}.

Let T, and v, be the matrix and vector made by replacing the c(j) in 1, and 7, by (). Let
T'pa, = —v,. The smallest eigenvalue of I', is bounded away from zero uniformly by p since
(2’) necessarily holds when A(z) = 1. (See Section 3 below (13)). Also the largest eigenvalue
in modulus of (f,, — I',) is bounded, uniformly in p, by

» ) . vz In T(In In T)2
maxp[j§_21 {cj—R) —v(j— k)}z] = 0<“_—T—1/T—'"> ,

from Theorem 2. Thus the smallest eigenvalue of I, = T, + (I, — I',) is bounded away
from zero uniformly in p < ¢ In T (Again see Section 3 below (13)). Now

(Go — @) = =T {(Fp — vp) + (T = Tp)(@ — @) + (T — T)ay},
(25)
{Ip + F;l(fp - Fp)}(&p - ap) = _F;l {(?p - Yp) + (Fp - Fp)“p}~

I';’, being the inverse of the covariance matrix of an autoregressive process, has all
elements null outside of the first p, diagonals above and below the main diagonal (Hannan,
1970, page 351). Let u,(i, j) be the typical element of I',*. It is evidently bounded, uniformly
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in p. Now

Maxp,<p=p(T)MaX1sjsp | Zk; 1o(Js ) {e(k = &) — y(k — O)}{&p(¢) — ap(0)} |

=< max,max; | &(j) — ap(J) | {3k | pp(J, &) | Y, max,| c(k — ) —y(k — )|}
= max,max;| d,(j) — ap(j) | O{QrP(T))

since |u,(/, k)| is uniformly bounded and null save for 2p, values of %, at most,
max,|c(k — ¢) — y(k — £) | = O(Qr), by Theorem 2, and there are P(T) values of ¢ to sum
over. Thus

(I + T, = Tp)) (& — &) = {1+ (D} (& — o).
Moreover
max,max;| Y5 (7, k) {c(k) — y(#)}
= Xh Y21 wp(J, R) {c(k — £) — y(k — £)}ap(¢) | = O(Qr)

by the same kind of argument, since a,(¢) is null except for p, values and using Theorem
2. Thus from (25), since a,(p) = 0, p > po,

MaXy,<p<p(r) | Ap(P) | = Maxy<p<p(r) | do(p) — ap(p) | = O(Qr),

which established Theorem 4.

ProoF oF THEOREM 5. We recall the definitions above Theorem 6 and at the beginning
of Section 3. As before we write I'r, I'r, yr, yr, ar, ér instead of T, etc. at p = p(T). By
(9) and the fact that 6% — o = 1 it follows that | ar(j) — a(j) | converges uniformly to zero
for 0 = j = p(T). Hence

|28 ar(f)e”|* — | X alj)e™|*— 0
and since (2') holds
lim7_..sup, | o7| Y87 ar(j)e™| ™ — 2nf(w)| = 0.
Also
8 ar(j)| = ¢ < .
Putting
fr(@) = (0%/2m) | Z8T ar(j)e|

it is thus only necessary to show that sup | fr(w) — fT(w)| = 0(1). Thus from (25) we
consider

Tr{ér — ar) = —(0r — T'r)ér — ar) — (3r — yr) — (Pr — T'r)ar.
For the first part of Theorem 5 we have, using Theorem 3
I (©r = Tr)(ar — ar) |* = 5D [ZED (e = B) = v(j = B} {ar()) — ar()}TP?
=38 (el =B = Y = B B8 (@) = ar())*

= 0(1) Y2 {ar(j) — ar(j)}*
Similarly
I 97 = vrl2 = 25" {e(j) — y())}* = of{(n T/T)"*},
I (Fr = Tr)ar|* = o{(n T/T)"*).
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Hence {1 + o(1)} || ér — ar||* = o{(In T/T)"?} and
sup, | ¥ {ar(j) — a(j)}e?| = of P(T)(In T/T)"*} = o(1).
Finally

A

|67 — o%| = |¢(0) — y(0) — &7yr + afyr| = o(1)

so that the first part of the theorem is established. The second part of Theorem 5 is proved
in the same way using Theorem 1.

ProoOF OF THEOREM 6. This theorem is proved in almost the same way as were
Theorems 4 and 5. Thus we use (24) for p = p(T) = O(In T). I'7 again has its smallest
eigenvalue bounded away from zero because of (2} and (Yyr — yr) is O(@r). The elements
of ar decrease at a geometric rate so that (' = T'r)ar = O(Qr). Since, using I'r for T',,
p =p(T), we also have {Ir + r#@r - I'7)} = Ir{1 + 0(1)} then (&7 — ar) = O(Qr).
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