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ANALYSIS OF TIME SERIES FROM MIXED DISTRIBUTIONS

By P. M. RoBINSON!

University of Surrey

Some stationary and non-stationary time series arise from mixed distri-
butions, the probabilities attached to the occurrence of certain values being
positive, while a continuum of possible values is also involved. Such series are
modeled in terms of a stationary Gaussian process X;, which is censored when
it crosses certain thresholds. Procedures are proposed for estimating the
autocorrelation function of X,. Their strong consistency and asymptotic nor-
mality are established. We suggest tests of the hypothesis that X, is white
noise.

1. Introduction. Most of the methodology of time series analysis is best suited to
data that are a realization of continuous random variables. A great deal is also known
about certain stochastic processes for which the distributions are discrete. Some time
series appear to arise from mixed distributions. For example, a rainfall series may contain
a substantial proportion of zero values. External factors can censor an underlying contin-
uous variable; examples that came to mind of data that may be so affected are riverflow
data, sales data, and certain chemical processes. In econometrics and biostatistics, interest
has sometimes focused on such models as the “Tobit” (Amemiya, 1973; Poirier, 1978;
Robinson, 1982) where we observe

(1.1) Y, =Bz, + oX,, if Pz +cX,>0,
=0, otherwise,

in which o > 0, 8 is a row vector, and z, is a column vector of explanatory variables. In all
the literature except Robinson (1982), the unobservable stochastic process X; has been
assumed to be white noise.

The application of standard procedures to a time series from a mixed distribution could
produce misleading results. For example, suppose that in (1.1) 8 and z, are scalar, and z,
= 1, all ¢. If X, is stationary, so is Y,, but one expects that the usual time series models
fitted to Y, would produce forecasts above the zero threshold in higher proportion than in
the available data.

Let U, be a real-valued process, observed at ¢t = 1, ..., T. We model U, in terms of the
stationary Gaussian process X;, for which

(1.2) EX,=0, EXi=1
Denote the autocorrelation function of X, by
ou=EXX,, u=12,....
For each ¢ we observe
(1.3) U=X ifX>b,
=0, ifX,<b,
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916 P. M. ROBINSON

where b, is known. A situation of upper rather than lower thresholds is transformed to
(1.3) by a change of sign. An example of (1.3) is (1.1), with U, = (Y, — Bz) /o, for Y, > 0,
and b, = — Bz /0. In practice B and o are unknown, so U, is unobservable and b, is unknown.
However maximum likelihood estimators ,3 and 6 of B and o when the Y, are independent
are studied in Amemiya (1973) and in Robinson (1982) ﬁ and ¢ are shown to be strongly
consistent and asymptotically normal (SCAN) even without independence for a wide class
of correlated Gaussian processes X;. One might form the U= (Y- ﬁz,) /6, for Y, >0, and

=— Bz,/ 6, and then apply the methods below for estimating the p, with U,, b, replaced
by 0, b. It is possible to extend our proofs to show that these estimators of p, are also
SCAN; the arguments are fairly standard but lengthy and are omitted. Our estimators
unfortunately are generally not robust to departures from Gaussianity but a possible
extension relaxes the Gaussianity assumption by modeling Y, as a nonlinear function of
known form of X, and possibly unknown parameters; in Poirier (1978) the model (1.1) is
combined with Box-Cox transformations. The notion of an underlying continuous variable
that can take negative values is of course entirely artificial in such cases as the rainfall
example referred to above.

Our nonparametric estimates of p, can be inserted in the usual formulas for weighted-
covariance spectral estimates. They can also be used to identify and estimate a suitable
finite-parameter model for X, (for example an autoregressive moving average model) and
as starting values in maximum likelihood estimation, although as shown in Robinson
(1980) the likelihood may involve multidimensional integrals and therefore present com-
putational difficulties. Our estimates of p, can also be inserted in the expression given in
Robinson (1982) to provide a consistent estimate of the limiting covariance matrix of ,3 G
in the case of serial dependence. A further application of our estimates, one which we
discuss in Section 5, is tests for serial independence of X;,.

We mention some other work in which a discrete-valued process arises from an
underlying Gaussian X;: only the sign of X; is observed (Brillinger, 1968; Hinich, 1967); X,
is digitalized (McNeil, 1967); one observes an odd, bounded, nondecreasing function of X,
(Rodemich, 1966).

2. Nonlinear regression estimators. The regression of X, on X;_, is linear,
E(X;| Xi—u = x) = pux.
When b, = — o, all ¢, the ordinary least squares estimator of p, is
2.1) Pu=QClun1 XD Thuwn1 Xe X

If X, is ergodic, p, is consistent for p,.
The regression of X; on X;_,, conditional on X, > b,, is

(2.2) E(X[I.X[ > b;, Xg_u = x) = puX + M(bl = PuX; Pu)
for x > b,_,, where
w(b; p) = 76,(8)/{1 = @.(b)} T=1-p7%

and ¢, and ®, are the N(0, 7) probability density function and distribution function,
respectively. The function u(b; p) is the “hazard rate” for the N (0, 7) (Johnson and Kotz,
1970, page 278). In the least squares sense, (2.2) is the best predictor of X;, conditional on
knowledge that X;_, = x and that X, > b,. Define

q,(b; p)={X:— pXi—u — pn(b — pXi—u; P)}zlt(b),
where b = (b, ¢) and I;(b) = 1 if X; > b, and X,_, > c¢; = 0, otherwise. Put
Q.(p) =T 'YL q(bs;p), be= (b, be-u),

and consider as an estimator of p, a random variable p,4 for which
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minperu(P) = Qu(ﬁuA)

where # = [¢ — 1, 1 — ¢], for some positive ¢ close to 0.

The censoring of X, produces a regression function px + (b — px; p) that is nonlinear
in x. It is monotone, having an asymptote px as sgn(p)x — oo, but approaching b as sgn(p)x
— — if b > —o. The nonlinearity in p of the regression necessitates use of numerical
methods for the minimization of @,(p). However ®,, which is closely related to the error
function, can be quickly computed by means of library functions on many computers, or
alternatively by means of various approximations and expansions (Johnson and Kotz,
1970, pages 278-283).

The proposed nonlinear least squares (NLLS) method could also be used in the related
problem of estimating the correlation coefficient from independent truncated or censored
bivariate normal observations. For that problem, our method would be less efficient,
asymptotically, than maximum likelihood. The latter approach can be adapted to our
problem (although it would not be “maximum likelihood”),-the objective function to be
maximized being

br-u
L.(p) =} log ¢ (X, Xi—u; p) + ¥ logJ’ ¢(X:, x;0) dx
o b, b
+3 logj o, Xeu; p) dx + Y jf o (x, y;p0) dx dy,

where ¢ (-, ; p) is the standard bivariate normal density with correlation p and the four
sums are respectively over {X, > b, X;—u > bi-u}, {X: > by, X < biu}, {Xi < b, Xoou >
be—u}, {X: = b, Xi— = b_.}. Because they require computation of bivariate normal
probabilities, these estimates are somewhat less easy to compute than those of this paper,
but they will be more efficient, particularly when a large proportion of observations is
censored.

3. Moment estimators. Because EX;X,_, = p,EX?, we can regard (2.1) as a moment
estimator of p, in the case b, = —x, all £. The Gaussianity assumption in fact leads to a
whole family of consistent moment estimators, but because the statistics YL X Xou,
u=0, ..., T—1are jointly sufficient for pi, - - -, pr_;, estimators based on second moment
statistics seem the only ones worth considering.

Turning to the censored case, define

mjr(b) = E{(X; — b)/(X;—, — ¢)*I,(b)}, Jj, k=0.
It can be verified by integration by parts that
(3.1) (1 =01k = Mjurk — PuMjprr + (b — pu)mjn, j=1,k=0,
(3.2) (1 = pD)kmjr—1 = Mjps1 — puysip + (¢ — pudYmjp, j=0,k=1,

where reference to b is suppressed. Any number of consistent estimators can be formed
from (3.1) and (3.2). In Rosenbaum (1961) moment estimators are proposed for the related
problem of independent truncated bivariate normal variables (with unknown means and
variances, and unknown truncation points that are constant over the observations). The
relations (3.1) and (3.2) are derived by Rosenbaum for J=LE=0and;j=0,%=1,
respectively and a certain linear combination formed. A quadratic equation results,
producing two possible estimates of p,. It may be shown, analytically and by simulations,
that generally both are between —1 and 1. This difficulty is not mentioned by Rosenbaum.
It can be surmounted by eliminating the quadratic term. In deciding which two equations
from the class (3.1), (3.2) to select, care must be exercised to avoid near-indeterminacy
corresponding to very inefficient estimators. One possibility which involves moments no
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higher than order 3 is to choose j = 1, £ = 0, and j = 2 = 1 in (3.1), which leads to
(33) ﬁuB = (Cuhu - dueu)/(fuhu - dugu),

where

1 1 1
Cy = 5‘,2, Xt(Xt - bt)(Xt—u - bt—u), d, = "1‘;2' (Xt—u - bt—u), €y =TZ, Xt(Xt - bt)y

1 1 1
fu = TZ, (Xt - bt)Xl—u(Xt—u - bt—u), 8u= ‘7-,2' (Xt - bt)Xt—u, h,= TZ' 1,

the primed sums excluding terms for which I,(b;) = 0.

4. Asymptotic properties. We establish that the estimators A and B are SCAN
under mild weak-dependence conditions on X,. We also show that @.(p) has, almost surely
(a.s.), a unique relative minimum for sufficiently large 7' The latter property, which of
course is known to hold in the uncensored case, b, = —, is useful because it diminishes
the need for a search of the parameter space prior to hill-climbing optimisation techniques.

For consistency of estimators, we make the following three assumptions.

AssUMPTION Al. X, is a stationary Gaussian process that satisfies (1.2) and has a
spectral density function S(A) that is representable by

@.1) SO\ = -23; Yo pue= = | Pe™) R(\),

where P(-) is a polynomial and R (-) is a strictly positive function that satisfies a Holder
condition of order n > 0.

Condition A1 includes, for example, the case of an X, generated by an autoregressive
moving average process, where the moving average polynomial P(z) can have roots on the
unit circle.

AssumpPTION A2. For all ¢, b, = B < «. For given u, the joint empirical distribution
function, Gz, of by, ---, br converges completely to a joint distribution function, G, as
T — oo,

When b, = —fz./0, A2 implies a stability in the explanatory variables z,. In respect of
pus only, we introduce also the following.

AssumMPTION A3. The matrix

(4.2) f E{ [‘X' ‘lb)X'-“] [X‘—"l‘ c] I,(b)} dG(b)

is.non-singular, the prime denoting transposition.

The matrix expectation in the integrand of (4.2) becomes singular only as b, ¢ — , so
because b, is bounded from above under Assumption A2, Assumption A3 seems reasonable.

THEOREM 1. Under Assumptions Al and A2, for every fixed u such that p, € X,
(1) limr_wpua = pu, a.s.
(ii) For T sufficiently large, p.a is a.s. the unique relative minimum of @.(p).
(ili) limr_wpus = pu, a.8., if Assumption A3 also holds.

The proof of this, and of Theorem 2 below, is contained in the Appendix. The central
limit theorem is proved under the following three conditions.
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AssumPTION Bl. X, satisfies Assumption Al, but R (M) is also differentiable, its deriv-
ative satisfying a Holder condition of order n > 0.

AssumMPTION B2. The b, satisfy Assumption A2, for u =1, - - -, ¢, and also, for all «, v,
w=1,2, ..., the joint empirical distribution function of (b1, b1—u, b1—s, b1-), *  + (b1, b0,
b7-y, br—y,) converges completely to a joint distribution function as 7'— o,

For the moment estimator, an additional condition is needed. Define ¢, = (c., du, e, fu,
&u, hy)’ and v, = limr_.Ec,.

AssumpTioN B3. limr_..T"*(Ec, — v.) = 0.

A condition of this type, of rapid convergence of Gr to G, is not required for p.a, but it
is satisfied if, for example, the explanatory variables z; in (1.1), and thence b,, are periodic
functions of ¢.

THEOREM 2. Under Assumptions Bl and B2, for any £ > 0 such that p, is an interior
pointof B, u=1, ..., ¢,
T (p1a — p1, -+, Pra — p/) is asymptotically N(0, A* T A™),
where A is diagonal with uth diagonal element.
Au = lim7..(8°/3p%) Qu(pu), as.,
and Y, has uvth element

(4.3) 0w = limrTE (3/9p) Qu(p.) (3/3p) Qu(po).

Under Assumptions A3, B1, B2, B3, for any £ >0
T'*(pig — p1, ++ -, prB — p/) is asymptotically N (0, ¥)

where ¥ has uvth element Y, = a,I'y, a,, with T, = lim7,.TE {(c, — Ec,)(c, — Ec,)’}
and a, = p limr_,.a,, a, being the column vector of derivatives of p,s with respect to c.,
namely

a = (ﬁ‘hu - dugu)_l(hu, huju, - du, - huﬁuB, duﬁuB - duju),»
where j, = (cugu — eufu)/(fuhu — dugu).

5. Tests for white noise. Expressions can be obtained for the asymptotic covariance
matrices in Theorem 2 but generally these are rather complicated and difficult to estimate,
compared to those for uncensored series (Robinson, 1977). The matrix  may be repre-
sented as an infinite series, after expansion of (b — pX;—,; p) in Hermite polynomials. For
the T, it is necessary to evaluate moments of the truncated quadrivariate normal
distribution, for which the form for the characteristic function in Tallis (1961) may be
useful. In any case A™' £ A~ and ¥ are not generally the correct formulas when the b,
depend on estimated parameters.

Simplications result under certain hypotheses, notably white noise,

(5.1) p.=0, all u>0.

Write p, = u(d; 0), F; = 1 — ®y(ds), ¢ = $1(by); then under (5.1) we have the following
consistent estimators of 6., Ax and Yu,:

auu = 4T—1 2 {1 - ,‘M(IM - bt)}sFt{(l + bt—ul‘rt—u)Ft—usuu + ¢t—u¢t—v(1 - 6uv)}>
=271 T {1 = pepe — 8)Y* (1 + be—upte-) FoF s,
Yuw =T’ 3 {2 = buX, = B)}([{1 = br-slXemu = b1-u)}8u
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+ (Xl—u - bt—u)(Xt—v - bt—u)(l - 8uv)]huhv - (Xt—u - bt—u)hu dv
- (Xt—v - bt—v)hv du + du dv),/{(fuhu - dugu)(ﬂhv - dvgu)})

where §,, is the Kronecker delta. The elementary proofs are omitted. Some rough
comparisons of efficiency are possible under (5.1), particularly when b, = b. For all «,

Pup/limr_,Var TV?p,a = {2 — b(p — b))} (1 + bp)(p — b))%

This function always exceeds 1, and increases monotonically to o« as b — o.

Many tests of (5.1) can be constructed. Statistics such as T Y Y., puc“p, are
asymptotically x% under (5.1), where p, is either p,4 or p,5 and k*’ is a consistent estimator
of the (u, v)th element of AX ~'A or ¥ . A simpler statistic, which does not require actual
estimation of the p,, and which has the same asymptotic distribution under (5.1), is

limz_,.Var T3

,
TYY (8/0p)Qu(0)6(8/p) Q.(0)

where (see (A.4), (A.5) in the Appendix)
(6/6p)Qu(0) =27 2 X, - Itt)Xt—u{l - ,U«t(,U«t - bt)}It(bt)o

(When b, = b, X and ¥ are patterned matrices which are immediately invertible.) Tests
that are 11ke1y to have more power arise from the function L,(p) of Section 2: another
asymptotic x> statistics is

T! 2u=1 {(3/3P)Lu(0)}2/{1 — pelpe — b)) + l"%/q)t},
where ®;, = 1 — F; and
(0/3p)L.(0) =Y XoXs o — 3 Xebt—u/ Pt — 3, Xi—utpe/Pi + Y, 01t—u/ P Psu,

the sums in the last expression corresponding to those in the formula for L,(p).
Modified formulas that are appropriate when the b, depend on estimated parameters,
asin the case of model (1.1), are readily obtainable from a standard Taylor series argument.

6. Simulations. In order to evaluate and compare the practical performance of the
estimators, a small simulation study was carried out. Three sequences of 1000 b, were
generated, such that b, = ¢ + 0.25 cos(27t/52), with ¢ taken to be —.5, 0 and .5, respectively.
In terms of model (1.1), 8 = (—¢, —0.25), z; = (1, cos(27t/52))’, 0 = 1, and we have about
twenty years of weekly data, containing a strong seasonal component. The conditions
imposed on the b,in our theorems are clearly satisfied. For each b, sequence, 50 independent
sequences of 200 and 1000 X, were generated, with p, = (0.9)%, u = 1. The estimates pua,
pus were computed for # = 1(1)16; we report below only results for z = 1(5)16, but these
are representative. In Table 1 the columns from left to right contain: u; true p.; average
(over 50 replications) estimated p,; standard error; mean squared error; average value of
Y. L(b,) = effective degrees of freedom. In the 3rd through 5th columns, the left hand
entries in each box refer to the NLLS estimator p.4 while the right hand ones refer to the
moment estimator p,g. In the 3rd through 6th columns, the upper entries in the boxes are
based on T = 200, the lower on T = 1000.

The performance of the estimators is generally very poor when 7' = 200, and in such
samples, consideration should be given to more efficient estimators, such as those based
on L,(p). For both sample sizes, a very strong tendency to underestimate is exhibited.
When T = 1000 and ¢ = —.5 or 0, both estimators perform quite well, with p.4 generally to
be preferred. There is noticeable deterioration as « increases, which may largely be due to
the. associated decrease in ¥, I;(b,). For T'= 1000 and ¢ = .5, p.a still performs creditably
but p,p is very biased and unstable when u is large. The above results are based on putting
pus = —1 whenever (3.3) < —1; it never happened that (3.3) > 1. When T = 1000 we
recorded (3.3) — < 1 on none of the 15 X 50 = 750 estimates computed for ¢ = —.5; for
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TABLE 1
c=-.5
u Pu AVE SE MSE EDF
. 900 894 857 028 082 001 .008 126.60
. 898 .892 015 024 000 .001 619.02
. a1 084 071 308 .313 212 157 99.56
: 209 268 161 .158 026 027 501.64
u 100 —.108 —.059 411 362 216 .159 87.36
: 107 .089 206 .203 042 042 464.84
6 038 138 —.112 478 456 260 .230 79.58
: —014 —.043 216 251 049 069 450.16
c=0
u Pu AVE SE MSE EDF
. 900 844 846 245 094 063 012 94.26
: 899 887 018 .038 000 .002 427.30
6 14 089 —.157 369 .526 187 498 65.88
: 168 209 290 258 105 .078 293.60
" 109 019 —.184 316 .648 165 506 55.98
: —005 —.023 235 328 068 .125 253.98
6 038 —050 —.253 431 545 194 381 50.50
: —025 —.076 236 .349 060 135 240.20
c=.5
u P AVE SE MSE EDF
) 90 528 769 575 287 470 099 48.02
: 902 889 019 037 000 .002 247.06
6 a14 —030 —0.82 496 583 364 497 25.56
: 151 .061 299 499 116 .313 137.60
" 109 055 119 597 745 359 555 18.80
: 021 —.305 329 599 116 531 106.38
6 038 —058 —.159 557 732 319 574 15.42
: 053 —.190 384 644 148 467 97.38

¢ = 0 this event occurred twice for ¢ = .5 124 times, with nearly a third of the 50 replicates
producing threshold values for high values of u. To compute p,4 we iterated from starting
value 0, the (j + 1)th iterate being

pUT = 5 — (a/ap)Q"(‘;'(‘()) .
¢ ¢ 23X + p'(b — 0 X, s ﬁ:‘f’)}z
where the denominator is close to (8%/0p%)Q.(p’) for large T. The iterations were halted

as soon as |p¢*" — p’| =.001 and the number of iterative steps N was recorded for each
estimate computed. When 7' = 100 and ¢ = —.5 the average N increased from 3.38 for u
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=1 to 4.40 for u = 16; for ¢ = 0 and ¢ = .5 it was somewhat higher but never exceeded 7.
The same task was carried out for the case of independent uniformly distributed b,’s
(when condition B3 is violated) and the overall message of the results was similar.
The computations were carried out partly on the University of British Columbia’s
Amdahl 470 V/6 and partly on the University of Surrey’s PRIME network.
APPENDIX

Denote by #%, t < u, the o-field of events generated by X;, ---, X,, and the strong
mixing coefficient

a, = supces'.,pex., | Pr(C N D) — Pr(C)Pr(D)|,
for r > 0.

AssumpTION C1. Lex x; be a measurable function of X;, - - -, X,—, for fixed finite ¢ =
0, such that Ex; =0, E | x;|° < K < o, some & > 2.

The following result will be useful in proving Theorem 1.

THEOREM A. Let St = x1 + --- + xr and let Assumptions Al and C1 hold. Then
limT_,mT_IST = 0, a.s.

ProoFf. Defining Syr = xg+1 + +++ + Xg+7,
J+T
(A.1) ES%r =YY Ex.x:< KT (1 + Y%, al™%),

J+1

by Ibragimov and Linnik (1971, Theorem 17.2.2). We can now apply Serfling (1970
page 1236), choosing for the functional g(H,r) described there the right side of (A.1)
because the conditions g(H,r) + g(Hy+rv) < gHyr+v), 1 =T =T+ U and g(Hyr) =
O(T?(n T) %(In1n T')7?) are satisfied, the latter because & = O(r "), under A1 (Ibragimov,
1970, Theorem 5). 0

ProorF oF THEOREM 1. We first give the proofs for the NLLS estimator p.4. Abbreviate
Q.(p) to Q(p). Initially we shall show that

(A.2) lim7—..Q(p) = @(p), a.s., uniformlyinp € %

where
Q(p) =Jq(b;p) dG(b),  q(b;p) = Eq(b;p).

For any p* € #
| Q(p) — Q(p)| =1 Q(p) — Q(p*)| + | Q(p*) — EQ(p*)]
+ | EQ(p*) — Q(p*)| + | Q(p*) — Q(p)|.
We put Q(p*) — EQ(p*) = T™' Y, G, q. = q:(b; p*) — q(b; p*), so that EG, = 0 and
Eqi = Eq}(b; p*) = 2E[X} + X5, + p(b — p*Xi—u; p)®].
From Johnson and Kotz (1970, page 279),
A3) o) <aVB+2m) + 7w —1)b, b>0; p(b;p) 0, as b— o,

so by Gaussianity and b, < B < o, it follows that EG; < K. Because g, is measurable with
respect to .#}_, we can apply Theorem A with x, = ., establishing @(p*) — EQ(p*) — 0,
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a.s. Next
|Q(p) — Q(p*) | =|p — p* I T~ i1 (3/8p)qu(B; ),
for |[p —p| =<|p* —p|, where

i) ou(b — pXi—u;
(A8 3 abip) = ~2UX = pXiu = b~ pXons p)}{X,_u +M—£)—’—M}It(b),

(A.5) ol > pxip) _ plb = oxi p) [(pb ) {n(d — px; p) — (b — px)} — p]-
(Y T T

It follows as before that E {(3/0p)q.b;p)}* = K, whence, by Theorem A,
T71Y (3/9p)q:(b; p) — a.s. to a finite limit. Thus @(p) is equicontinuous. Because q(b; p)
is continuous and bounded in b, EQ(p*) — @(p*) — 0 from Jennrich (1969, Theorem 1).
The continuity in p of g(b; p) implies that of @(p), and this, and the compactness of %,
completes the proof of (A.2). *

The convergence of p,4 follows from (A.2) by a standard type of argument (Jennrich,
1969, Theorem 6) once we prove

(A.6) Qp) >Q(p.), all pER, p#pu
Write
q(b; p) = (¥* — 2yz + 29IUb), ¥ =X, — puXi-u — (b — puXi—u; Pu),
z2=(p — pu)Xecu + (b — pXi—u; p) — (b — puXs-u; 0u)-
Now E (y| X, > b, X,_,) = 0 implies E {yzI.(b)} = 0. Thus
Equ(b, p) = q(b; p) = q(b; p.) + E{2°I(b)}.

Now for all x > 0 (x < 0), px + u(b — px; p) is strictly monotone increasing (decreasing) in
p. Thus, for all b = B < o, ¢ = B < », we have E{z%I(b)} > 0, p 5 py, that is g(b; p) >
q(b; p..), p # p.. Thus (A.6) is proved.

Part (ii) of the Theorem follows from the monotonicity of px + u(b — px; p) mentioned
above, which implies that the global minimum at p, is the only relative minimum of z?, for
all X,_,. Thus q(b; p), and thence §(p), have a single relative minimum, at p,,. By uniform
convergence, Q(p) must therefore have a.s. a unique relative minimum for large enough T,
and this must be pya.

Part (iii) of the Theorem is a straightforward application of Theorem A and Jennrich
(1969, Theorem 1), and indeed other members of the class of moment estimators discussed
in Section 3 could be handled similarly. For 4, i, j, 2 =0,

T bbi_ (X, — b)) (Xim — bi=d)”
converges a.s. by Gaussianity and boundedness of b, to
f b"c'm;r(b) dG(Db).
The denominator of .z thus converges a.s. to the determinant of (4.2), which is non-zero
under Assumption A3. On averaging the relations (3.1) over b, it is seen that asymptotically
they are satisfied by p.z. 0

The proof of Theorem 2 uses the following.

THEOREM B. Let x; satisfy Assumption C1 and let

(A7) Y51 aj P < oo,
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Let the limits
Q. = limzeeT ! 35 xeXi—u

exist foru=0,1, ... . Then as T — », T'/’Sr is asymptotically normal with zero mean
and variance

Qo+ 2 Yo-1 Qu.

This extends Theorem 18.5.3 of Ibragimov and Linnik (1971) in two directions. First,
our x; is a function of X, - - -, X,_, instead of simply X;; because ¢ is finite, this causes no
problem. Second, whereas Ibragimov and Linnik’s Theorem 18.5.3 is a central limit
theorem for stationary processes, our x: are not assumed stationary, in order to deal with
possible nonstationarity caused by unequal b,. Inspection of the proof of the referenced
Theorem 18.5.3 reveals that the uniform bound on E | x.|’, and existence of the limits .,
can replace stationarity. We omit the full proof. .

ProoOF oF THEOREM 2. For the NLLS estimator, we have

for | pu— pu| =< |Pua — pul, u=1, - -+, £ Let d be the ¢ X 1 vector with element (3/3p)Q.(p.);
then we show that

(A.8) T2d — N(O, %), T — .

Writing x; = Y2-160.(3/9p)q:(b; p.) we see that (A.8) is implied if for all sets of constants
8., - -+, 8,, T~/2Sy is asymptotically normal. We have displayed (8/3p)q:(b; p) in (A.4) and
readily deduce that Ex, = 0 and

E | Xt |8 = Kfa_l 21/4-1 | au |6 {E | Xt—u + (6/310)#((7: - PuXt—u; pu)|26
X E | X[ - puX[—u bl [.L(bt - puXt—u; pu)|28}~

From Gaussianity, (A.3), (A.5), | p.| <1 and b, < B < x it follows that E | x;|* < K for any
8 > 1. By choosing § > 2 + 2/n we will satisfy (A.7) because a; = Kj ~'~" under Assumption
B1 (Ibragimov, 1970, Theorem 5). The limits (4.3) are seen to exist under B1 and B2, by
applying the results obtained so far and Jennrich (1969, Theorem 1). The proof will be
complete if 1im(92/8p?) Q.(p.) exists and is a.s. non-zero, u = 1, - - -, £ Since pus — p, a.s.
from Theorem 1, it is sufficient for (8%/9p2%)Q.(p) to converge uniformly in p within a
neighbourhood of p,, and for the limit to be positive at p,. Now

(*/9p%)Qulp) = —2T'T[(8°/80)1(br — pXi—u; P){Xe — 0Xs1-u — p(be — pXi-i3 p)}
—{Xi—u + (8/3p)u(br — pXi—i p)}*1(by),
(0*/3p®)(b — px; p) = 7720 (b — px; ) ({r7'(b — px)[1(b — px; p) — (b — px)] — 1}
+ @ = pb)’[r (b — px; p)
— (b= px)}{2p(b — px; p) — (b — px)} — 1]).

Uniform convergence, and the fact the limit is positive at p, (by virtue of the strict
monotonicity in p of px + (b — px; p)), follow by arguments like those used in the proof
of Theorem 1.

The proof for the moment estimators commences from

(Ag) Z=I 0uT1/2([$uB - pu) = 14=1 0uT1/2(cu - Ecu),éu + 2i=1 0uT1/2(Ecu - Yu),éu

where a, is a, evaluated at €,, such that || €. — vu| =< || €« — v« |- Because p.s — p., it follows
that a, — a.s. to a finite limit, as in the proof of Theorem 1, and under Assumption B3, the
second term on the right of (A.9) — 0. It remains to show that T'%*(c, — Eec,) is
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asymptotically normal with finite covariance matrix and this follows by the same sort of
application of Theorem B as that used previously. [
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