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ON THE ESTIMATION OF A PROBABILITY DENSITY FUNCTION
BY THE MAXIMUM PENALIZED LIKELIHOOD METHOD"

By B. W. SILVERMAN
University of Bath

A class of probability density estimates can be obtained by penalizing the
likelihood by a functional which depends on the roughness of the logarithm of
the density. The limiting case of the estimates as the amount of smoothing
increases has a natural form which makes the method attractive for data -
analysis and which provides a rationale for a particular choice of roughness
penalty. The estimates are shown to be the solution of an unconstrained
convex optimization problem, and mild natural conditions are given for them
to exist. Rates of consistency in various norms and conditions for asymptotic
normality and approximation by a Gaussian process are given, thus breaking
new ground in the theory of maximum penalized likelihood density estimation.

1. Introduction. Good and Gaskins (1971) introduced the idea of roughness penalty
density estimation. Their idea was to use as an estimate that density which maximized a
penalized version of the likelihood. Given observations Xj, ..., X,, the penalized log
likelihood is defined as :

w(f) = ¥ log f(Xi) — aR(f)

where R(f) is a “flamboyancy functional” such as [(f”)* and the parameter « controls the
amount by which the data are smoothed to give the estimate. Without the roughness
penalty term the likelihood is unbounded above; intuitively the maximum likelihood
estimator is a sum of delta function spikes at the observations. The Good-Gaskins
formulation can be given a Bayesian justification; see their paper for details. An excellent
exposition of penalized likelihood estimates is given by Tapia and Thompson (1978).

In this paper a variation of the Good-Gaskins estimator is discussed. For compelling
reasons given in Section 2 below, the logarithm of the density—rather than the density
itself—will be penalized for roughness. In Section 3 it will be seen that the resulting
constrained minimization can be replaced by an unconstrained convex optimization.
Section 4 is concerned with conditions for existence of the estimator; these turn out to be
mild and elegant.

In the remaining sections, the asymptotic properties of the estimator are discussed.
Very little is known about the asymptotics of any roughness penalty methods of density
estimation beyond the consistency (in a very strong norm, under quite restrictive condi-
tions) proved by de Montricher (1979), and also the results for a related estimator proved
by Reiss (1981). Some rates of convergence have been obtained by Klonias (1982); though
his results are for different estimators than ours, they appear to be weaker insofar as a
comparison is possible. For the estimators of this paper, far more can be deduced. Sections
5 to 8 below lead to proofs of consistency, with rates, in a variety of different norms. In
Section 6 a linear approximation is developed which is of considerable conceptual, as well
as mathematical, value. The main consistency results are given in Section 8. The question
of asymptotic normality is discussed in Section 9, where a uniform approximation of the
estimator by a Gaussian process is given.
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2. Definition and motivation. Practically all density estimation methods have the
property that the limiting estimate as the amount of smoothing decreases is a sum of
spikes at the observations, but what happens as the amount of smoothing increases
depends on exactly what method is being used. It turns out that roughness penalty
estimates with a suitable penalty functional have a very attractive property, best illustrated
by considering a special case. Suppose that the penalty

Rn(f) = {(d/dx)®log f(x)}’dx

—o0

is used. Then, in the sense made clear in Theorem 2.1 below, the limiting estimate as the
parameter « tends to infinity will be the normal density with the same mean and variance
as the data. Thus, as « varies, the method will give a range of estimates from the “infinitely
rough” sum of delta functions to the “infinitely smooth” maximum likelihood normal fit to
the data. .

Computational and mathematical difficulties aside, this observation presents a very
strong case for the use for density estimation of the roughness penalty method with penalty
Ryx. Since one of the objects of non-parametric methods is to investigate the effect of
relaxing parametric assumptions, it seems sensible that the limiting case of a non-para-
metric density estimate should be a natural parametric estimate. These remarks also give
a satisfying rationale for the choice of roughness functional. Previously this choice has
been made either in an ad hoc way or for reasons of mathematical or computational
convenience.

Another advantage of this formulation is that the functional w depends only on the
logarithm of the density and so any density estimates obtained will automatically be
positive. This remark is further elucidated below in Section 3 which deals with conditions
under which the functional w has a maximum. It should also be noted that the log density
is itself a very natural quantity to estimate, particularly if the estimates are used to
estimate likelihood functions, or for non-parametric discriminant analysis. Leonard (1978)
has used a Bayesian approach to density estimation in which a stochastic process structure
is placed on the log density; this differs from our approach both in its motivation and in
some of its detail, but is nevertheless another example of penalizing for roughness in the
logarithm of the density.

It is possible to define other roughness penalties according to other perceptions of
“infinitely smooth” exponential families of densities. The essential property, easily checked
for the case discussed above, is that R(f) should be zero if and only if fis in the required
family. For example, for data on the half line, R(f) = [5 {(log f)”}* will give rise
to exponential densities being the limiting case, while on the circle R(f) = [{(log )" +
(log f)}? will have as the infinitely smooth family the von Mises densities defined by

fra(0)o< exp{x cos(d — &)},

and discussed in detail by Mardia (1972).

We conclude this section with some definitions and the theorem which gives the form
of the limiting estimates. Suppose that the domain of definition of the estimates and the
set in which the observations lie is a connected set © in R A space such as the circle is
considered to be an interval in R! with periodic boundary conditions placed on all the
functions considered; the imposition of these boundary conditions will not affect any of the
results of this paper.

Suppose that D is a linear differential operator of the form

D(g)=Zc(a1,---,ad)<i) (i) (&)

ax1 0Xa
where the sum is over all vectors a of non-negative integers satisfying

1=sYau=m
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for some fixed integer m. Assume that at least one of the coefficients c(a) for ¥ a; = m is
non-zero. The results of Sections 2 and 3 will also hold where the coefficients c(a) depend
on x, but for the subsequent work it is assumed that there is no dependence of this kind.
Note that there is no constant term in the definition of D; D( g) depends only on derivatives
of g. Define the non-negative definite bilinear form [ , ] by

[g1, g2] = f D(g1)D(g);

here, and subsequently, unqualified integrals are taken to be over € with respect to
Lebesgue measure.

Let S be the set of real functions g on Q for which
(i) The (m — 1)th derivative(s) of g exist everywhere and are piecewise differentiable,
(i) [&, g] <,
(iii) [ e® < oo, .
Then given independent identically distributed observations X, - - - , X, on &, our estimate
& of the log density underlying the observations will be the solution, if it exists, of the
constrained optimization problem

max{n~' Y g(X) — %Al g, £}

subject to g in S and [ e® = 1. The substitution A = 2a/n has been made to simplify some
of the mathematical expressions below. Our estimate f of the density itself is given by f
= exp(4).

The null family of the quadratic form [ , ] will be defined to the collection of densities
fon & for which [log £, log f]is zero. It is easily shown that the null family is an exponential
family, with at most (m — 1) parameters.

The following theorem gives a sense in which the “infinitely smooth” estimator has the
required form.

THEOREM 2.1. Provided f is a density with log f in S, define
w\(f) = n7! Yy log f(X) — %A[log f, log f1.

Let f.. be the maximum likelihood estimator within the null family based on X1, - - - , Xy;
suppose the data are such that f. exists. Then, given any density f # f. with log fin S, for
all sufficiently large A

r(fe) > wn(f).

Proor. If fis not in the null family then w\(f) — — as A — o while w\(f.) remains
fixed. If fis in the null family then

wr(fo) — n(f) =n7' Y {log fu(X:) —log f(X )} >0

by the definition of f. as a maximum likelihood estimate. In either case the conclusion of
the theorem holds, completing the proof.

Let £\ denote the density (if it exists) which maximizes w,; then it would be of interest
to investigate further in what senses f — f. as A — «. We shall not consider this question
further in this paper.

3. The estimate as an unconstrained optimum. One of the reasons that roughness
penalty density estimates present computational and mathematical difficulties is their
implicit definition as a solution to a constrained optimization problem. The results of this
section show that our estimates can be found as the unconstrained minimum of a strictly
convex functional without any unknown Lagrange multipliers. This observation has both
mathematical and computational value, and is the foundation of the theoretical work given
below. Computational aspects will not be considered here, but the result makes it possible
to use standard methods for unconstrained convex problems to find the estimator; these
will be explored in subsequent work.
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For g in S and fixed A > 0, write

1
(3.1) Ao(g) =5\ g 8] - n7'y g(X;)
and
(3.2) A(g) = % Alg gl + I e —n7'Y gX).

We show that the unconstrained minimum of A(g) is identical with the constrained
minimum of Ay(g).

THEOREM 3.1. The function g in S minimizes Ao(g) over g in S subject to [ e =1 if
and only if § minimizes A(g) over S.

REMARKS. Note first that the theorem says nothing about the existence of g; this
question is considered in Section 4 below. Our reason for proving this result first is that we
shall only deal with the existence question under conditions on Q which are not needed for
the present argument.

It is easily shown that A is a strictly convex functional on S, as defined on page 154 of
Tapia and Thompson (1978) and hence, by their Theorem 2 on page 160, it is an immediate
corollary of the present theorem that g is unique if it exists at all.

Proor oF THE THEOREM. Given g in S, define g* = g — log [ €%, so that [ exp(g*) =
1. Since [, ] only involves derivatives, [ g*, g*] =[ g, g]. Therefore it follows by elementary
manipulations that

A(g*)=A(g)+1—feg+logfeg

and so A(g*) = A(g) with equality only if [ e = 1, since ¢ — log ¢ = 1 for all ¢ > 0, with
equality only if ¢ = 1. Therefore, § minimizes A( g) if and only if § minimizes A(g) subject
to ef = 1; but subject to [ e =1, A(g) and Ao(g) + 1 are identical, and so the proof of the
theorem is complete.

Note that the proof of the theorem depends crucially on the fact that the penalizing
functional involves only derivatives.

4. Existence of the estimators. A discussion of the existence properties of the
Good-Gaskins estimators is given in Chapter 4 of Tapia and Thompson (1978), drawing on
material from de Montricher, Tapia and Thompson (1975). It is clear from that work both
that the estimators defined in this paper cannot be shown to exist by existing work, and
also that the question of existence can be a little delicate.

The theorem ‘of this section gives a natural and elegant condition for the existence of
the estimates. For convenience the theorem is stated for the special case of univariate
bounded &, but remarks about generalizations are made below.

THEOREM 4.1. Suppose Q is a bounded interval in R', possibly subject to periodic
boundary conditions. Given observations Xi, - -+ , X, in Q, the functional A as defined in
(3.2) above will have a minimizer in S if there is a maximum likelihood estimator based
on Xy, -+, X, in the null family.

REMARKS. The condition of the existence of a maximum likelihood estimate in the
null class is, of course, a very mild one. In the case where £ is the circle and the null class
is the von Mises family, for example, all that is required is at least two distinct data points.
It is interesting to compare the existence condition to the condition given in a different
context for the existence of the estimator considered by Silverman (1978b); it is presumably
possible to extend the technique of this proof to deal with penalized likelihood estimators
of quantities other than probability density functions.
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Proor. The proof depends on properties of reproducing kernel Hilbert spaces; see, for
example, Oden and Reddy (1976) for an account of these. Given g; and g in S, define

(4.1) (81, &2)o=1[81, &] + jgng

and

lgllo = (&1, £1)o"™.

Since @ is bounded, the norm || - |l will make S a reproducing kernel Hilbert space
equivalent to the Sobolev space H™(2). Define subspaces S; and S; of S by

S1={ginS:[g,8]=0 and fg=0}
S;={gin§S: fg=0 and (g g)o=0 forall g inS:).
If p is the largest eigenvalue less than one of the reproducing kernel in S, then, given g; in

S,,
leali = o j g

and hence

[g2 &]=—(1 - p )| &k

Since € is bounded, by the conditions imposed on m and €, the Sobolev embedding
theorem implies that the sup norm is continuous with respect to || - |lo and hence there is a
constant C such that, for g, in S,,

(4.2) sup] gzl =C[ g gz]l/z.
Define spaces So, S* and St by

So ={ginS:fg=O},
S*={ginS:Jeg=l},

St ={gin8: J ef=1 and [g g]=0}.
Define a functional A * by, given g in S, defining Ao as in (3.1),

A*(g) =Ao(g) +10gfeg.

It is easily shown that A *(g) = A*(g + c) for all constants ¢ and hence that the mappings
g— g —log [ ¢f and g > g — [ g set up an A* preserving (1-1) correspondence between
S, and S*. Since Ao and A* coincide on S*, it follows that A, will have a minimum in S*
if and only if A* has a minimum in Sp.' A minimum of Ao on S* is, of course, precisely the
estimate we are seeking; therefore it will suffice to show that there is a minimum of A* on
So.

Given any g in S,, write g = g1 + g2 with g1 in S; and g in S.. Then

A*(g) ="%MNg gl + logj e“+1-n"Y gX)
(4.3)

=%Agng:]—n'Y &X)+ log{exp(infgz) j e’""} +1-n"Y gi(x)
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using the fact that [ g, g] = [ &2, g2]- From (4.3) it follows that
(4.4) A*(g) = %M &, &] — n"'Y g (X)) +inf g2 + A*(g) + 1.

The 1-1 correspondence defined above between S, and S* gives an A* preserving corre-
spondence between S; and S¥. On S}, A* is precisely —n~'Y, g(X1), and so the log density
£ of the maximum likelihood estimator within the null class will be a minimizer of A* in
S#; it follows that § — [£ will be a minimizer of A* in S;. By Cauchy-Schwarz it is easily
shown that A * is strictly convex on S;, and hence, since S is a finite dimensional normed
space on which A * has a minimum, it can be shown by elementary functional analysis that
there exist constants C; > 0 and C; such that, for g; in Sy,

(4.5) 1+A*(g)=Cigio+ Co
Next we consider the terms of (4.4) involving g.. Using inequality (4.2) it follows that,
for fixed A > 0, there exist positive constants C; and C, such that
1 .
(4.6) %A g g] — 3 g(X) + inf g = %A £, g2] — 2 sup |&2| = Csl| g2 |If — Cill &2 [o-

Substituting (4.5) and (4.6) into (4.4) gives, for g in S,
A*(g) =z Cillgillo + C: + Csll &5 — Cullgzllo
= Cs(llgllo + ll g2llo) + Co

for suitable constants Cs > 0 and Cs, by elementary algebra. From (4.7), using the triangle
inequality,

(4.8) A*(g) = Ci gl + Ce.

By Theorem 5, page 162 of Tapia and Thompson (1978), it follows that A * has a minimizer
on Sy, completing the proof of the theorem.

The extension of the theorem to the case where £ is a bounded multivariate domain is
straightforward provided that the supremum operator is continuous with respect to the
norm || - [lo on S. This will entail conditions on £ and on D; for details, see a text on Sobolev
spaces. An extension to unbounded Q will require a different technique of proof since it
will no longer necessarily be the case that [ g < o for g in S.

4.7

5. Asymptotic properties—preliminaries. In the remaining sections, the consis-
tency and other asymptotic properties of the estimators are studied. There has been very
little work on the consistency properties of maximum penalized likelihood density esti-
mates; the main contribution is the paper of de Montricher (1979), whose results do not
seem to be directly applicable to our estimates and who does not consider questions of
rates of consistency or of asymptotic distributions. See also Klonias (1982). Consistency of
a related class of estimators has also been considered by Reiss (1981). The techniques used
in this paper are more akin to those used in several papers of Wahba (e.g. Wahba, 1977)
though some care is needed because the functional A, though unconstrained, is not
quadratic.

For the remainder of the paper, attention will be restricted to the case where Q is a
bounded univariate domain, possibly with periodic end conditions. The extension to any
particular multivariate case will depend on the solution to the eigenvalue problem of the
differential operator D in the domain &; once that is solved, the arguments of this paper
will go through easily.

It will be assumed that the observations Xj, ..., X, are independent and identically
distributed with density fo on ©. In order to make what is quite an involved argument a
little more transparent, rather stringent smoothness conditions will be placed on fo, but it
should be stressed that appropriate versions of the theorems remain true under much
milder assumptions, and can be obtained by very similar techniques. These extensions are
left to the reader to investigate.
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Let go = log fo. Assume throughout that, in the terminology of Wahba (1977), g is very
smooth; in other words, assume that g, and its periodic extension have 2m derivatives on
Q2 and [ (g&™)” is finite. In particular, assume that g, is bounded above and below. It will
be convenient to prove results about the convergence of the estimates of the log density
rather than the density itself, but only elementary calculus is needed to transform these
back to results about the density.

The minimizer of the functional A of (3.2) will be denoted by . The explicit dependence
of & and related quantities on the sample size, the values of the observations, and the
smoothing parameter will usually be suppressed, as will the dependence of the smoothing
parameter on the sample size. The basic strategem of the consistency proof is first to study
the properties of a function g (defined in Section 6 below) which is a linear approximation
to £, and then to show that g and g, are sufficiently close to allow results for £ to be
obtained. It should be kept in mind throughout that although g, has desirable properties
which help one understand the behavior of 2, the definition of g; depends on the unknown
density fo; therefore g; is only a mathematical device and; in contrast to &, cannot be
.calculated in practice.

The remainder of this section consists of definitions and lemmas which set up the
technical machinery needed in the subsequent sections. A first reader may find it easier to
skip to Section 6 and then to refer back as necessary. A more casual reader could skip
straight to Section 8, where the main results are given.

Three different norms will be used in the study of consistency; these will be defined for
£in S as follows: '

(5.1 lelt = [ &% Il = sua gl gtk =158 + [ e
Inner products ( ). and ( )s are defined by
(g1, g&2)2 = fgxngo, (81, &2)s =g &] + J'g1g2fo.

Since fp is bounded above and below away from zero, the norm || ||s is equivalent to the
Sobolev norm on S = H™(). Suppose {¢,:» = 0} is a sequence of orthonormal eigenfunc-
tions with respect to the density f, of the reproducing kernel of ( , )g; i.e., for a sequence
of eigenvalues {A,}

(¢, d)s =Ai'8; and (¢, ¢j)2 = 8,

where 9§, is the Kronecker delta. By standard arguments (see, for example, Riesz and Nagy,
1955), ¢y is identically equal to 1 and the eigenvalues satisfy

=== =-...
Define the sequence p, by
p=N'-1
then it is immediate that
[bi, di] = p:idi.

When expanding elements of S in terms of the eigenfunctions, we shall use an additional
subscript (enclosed in brackets if any confusion between subscripted functions and coeffi-
cients may arise) to denote a coefficient. Thus, for example, we shall write

8o =Y ovby = Boodo + Lorp1 + -
g=1Y 8 = Zoybo + Euyp1 + -+

Unqualified sums over » will be taken to be over the range v = 0 to «. The asymptotic
behavior of the eigenvalues can be deduced using the following lemma, which says that
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replacing fo by the constant function does not affect the rate of convergence of the
eigenvalues to zero.

LEMMA 5.1. Suppose that the sequences A\, and ¢, are defined as above, and suppose
that \¥ are the eigenvalues of the L* orthonormal eigenfunctions ¢* of the inner product
{, Yo as defined in (4.1) above. Then, for all v = 0, putting p, =\, — 1 and p} =
A -,

(5.2) pvinf fo < pJf = p, sup fo.

Proor. The eigenvalue p, will satisfy

(53) pv=inf{[g7g]:fg¢jﬁ)=07j=0’"'yV_]-’ and fgzﬁzl}

= inf{[ g, g]: J’gw% =0 and ng = (inf o)™}

since the infimum is over a smaller set. By an argument analogous to that of Riesz and
Nagy (1955, page 238), it follows from (5.3) that, taking the supremum over elements o,
‘o hu—l Of Sy

p.» = sup infi{[g, g]:[gh; =0, j=0,---,»—1 and fgz = (inf )7} = (inf fo)'o’".
The other inequality of (5.2) is proved similarly, completing the proof.

CoROLLARY. There exist positive constants o and B such that, for all v = 0,
Aocer™ a=<c, =8

Proor. By standard properties of Sobolev spaces, it is easily shown that the LZ
orthonormal eigenfunctions of the inner product (, )o have eigenvalues A} which decay
exactly at rate » ", To see this, note that the eigenfunction expansion is precisely a
Fourier series expansion and that the eigenvalues are reciprocals of polynomials in » of
degree 2m. Now apply Lemma 5.1 to obtain the rate of decay of A,.

Given any g in L*(Q), it is now possible to give expressions for the norms of (5.2) in
terms of the coefficients of the eigenfunction expansion of g.

LeEMMA 5.2. Suppose g is in L*(Q) and g, = [g.fo. Then

(5.4) lgli =X &,
(5.5) lels =3\ "gr,
and, given ¢ > 0, there exists C. > 0 such that

(5.6) gl = CY v'*gr.

Furthermore, if g is very smooth, then

(5.7) SN %gl< o,

Proor. Equations (5.4) and (5.5) are immediate from the definition of the eigenfunc-
tions and eigenvalues. The equations (5.6) and (5.7) follow by considering Hilbert scales of
spaces as considered, for example, by Oden and Reddy (1976, Chapter 4). From there (page
133) and the corollary above it follows that ¥ »'**g2 will be equivalent to the norm of the
fractional Sobolev space of index %(1 + ¢), and hence, by the Sobolev embedding theorem
(see the remarks on page 109 of Oden and Reddy) the inequality (5.6) follows at once.
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Similarly the norm ¥ A;?g? is equivalent to the H*"($) Sobolev norm, proving the last
part of the lemma.

The next lemma gives the asymptotic behaviour of certain functions of the eigenvalues
which will occur in Section 6 below. The notation fi(A) ~ fz2(A) as A — 0 is taken to mean
that i(\)/f2(A) and fz(A)/fi(A) are bounded as A — 0. The lemma is a generalization of the
estimates obtained by Wahba (1977) for her A(\) and G(}).

LEMMA 53. Givena<4m —1,asA— 0,
T (1 + Ap,) E ~ AT@rDEm

and, provided g, is very smooth, as A — 0, given b < 2m,

o |- 2g2, if b=0
=0 VbP%g(Zw(l + }\Pv) 2 {= (E}\p—lggm) if 5>0.

Proor. The first part is proved using the corollary to Lemma 5.1 by approximating
the sum by an integral in the manner of Wahba (1977) page 660; values for the implied
constants can be obtained by more careful analysis. The second part is obtained by an
application of the dominated convergence theorem. Note that making milder smoothness
assumptions on g, will affect the rates in the second part of the lemma. Some care is
necessary if § is not a periodic domain though; see Rice and Rosenblatt (1981).

The final part of this section concerns the sample coefficients of the empirical distri-
bution. Define a random sequence 8, by

Bo=0, B, = n”! Z?=1 ¢.(X;) for v>0.

The B, depend on n, but this dependence will not be expressed explicitly. Some properties
of the B, are given in the following lemma, the proof of which follows immediately from
the facts that ¢o = 1 and that the ¢, are orthonormal with respect to f,.

LEMMA 54. Given n, the sequence B, satisfies EB, = 0 for all r; and EB,8s = n™ "6,
forrands=1.

It is now immediate, by the classical central limit theorem, that for each » > 0, n'/28, will
have, asymptotically, a standard normal distribution. Indeed it is possible to provide a
simultaneous strong approximation of the sequence B, by a sequence of normal random
variables; this is done in the following lemma, which is the last result of this section.

LEMMA 55. On a suitable probability space, defining the sequence B, as above, there
exists for each n a sequence B, of independent N(0, 1) random variables such that, with
probability 1,

lim sup,_.»n"*(log n) 'sup,=1»"*|n?8, — B.| = C(fs)

where C(f,) is a constant depending only on f,.

ProoF. Write 8, = [ ¢,(t) dF.(t) where F, is the empirical distribution function of the
observations and then proceed as in the proof of Propositions 1 and 2 of Silverman (1978a),
approximating n'/*(F, — F)(t) by a transformed Brownian bridge W3{ F(¢)} using Theorem
3 of Komlos, Major and Tusnady (1975). The B, are the coefficients of the expansion of
Wo{F(t)} in terms of the eigenfunctions and are easily shown to have the required
structure. Defining Z,(t) as in Silverman (1978a) it follows as on page 179 of that paper
that, using the fact that [ ¢, fo is zero for v = 1,

(5.8) n(log n)~' |n'?8, — B,| < j | &% | sup | Za(2)|.
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For fixed fo, by page 134 of Oden and Reddy (1976) there are constants Ci, Ca( fy) such that

f l#:1= C‘{ f <¢:>2}‘” = Gl 1 "2 [ 2

= Co(fA;*" = O()

(5.9)

by the corollary to Lemma 5.1. To complete the proof, substitute (5.9) and equation (2) of
Silverman (1978a) into (5.8).

6. The linear approximation. In this section, the linear approximation g; to g will
be defined and studied; the question of the closeness of the approximation will be
considered in Section 7 below. The approximation is linear in the sense that it is a linear
function of the transformed observations ¢,(X;) and that it is the solution of a certain
linear system in a Hilbert space. It is this linearity which leads to the tractability of the
approximation.

Define a quadratic form A, for g in S by

1
(6.1) Ai(g) = % Alg, g] + j {1 + (g — &) + 3 (g-— go)z}fo —n' YR g(Xo).

The motivation behind the definition of A; is that it is the quadratic form which has
second order contact with the functional A" at g,. Furthermore, by Proposition 17 and
Theorem 6 of Appendix I of Tapia and Thompson (1978), the functional A; is uniformly
convex on S and hence has a unique minimizer g; in S.

Though the function g; is, like g, defined implicitly, it is straightforward to write its
eigenfunction expansion explicitly. Up to a constant, we have, for g in S,

1 A 1, . )
Ag) = AT 080 + 80 + 5 80— L &8o — Tito Limi n”'8,9(X)
(6.2)

1 ;
= 5 Z(Apv + l)gﬁ - Z(g()u + Bl')gu

where we have used the fact that n™' ¥ ¢o(X;) = 1. It follows from (6.2) that the coefficients
of g satisfy
(6.3) g1 = (8o, + B.)/(1 + Ao,).

Studying these coefficients gives several asymptotic results for g, — g1. Notice that the
form (6.3) can immediately be decomposed into its systematic and random components, so
that

(6.4) : E(g1, — &) = Ap,&o(1 + Ap,)~"
and
(6.5) 8gu— Egu = B.(1+ Np,)".

Consideration of (6.4) and (6.5) as A — 0 shows that there is, as in most smoothing
problems, a trade off between bias and random error.

It is very straightforward to apply the results of Section 5 to give asymptotic properties
of g1, and this is done in the following theorem. Both the uniform and the L? rates of
convergence will be required in Section 7, while the Sobolev rate is included for its own
interest.

THEOREM 6.1. Defining g, as above, and using the definitions of Section 5 for the
various norms, as A — 0 and n — o,

E|g — gllf ~n~ A7V 4+ N
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E| g — &l = O(n~']A"@*1/2m) 4 5(A)
and, given § > 0,
E|g — &% = oA (n~IATYm 4 \Um—D/2myy

Proor. From Lemma 5.2 and (6.3) it follows that
g — gl =Y (&u — £0)* = ¥ (=No.&0 + B,)*(1 + Ap,) ™"
and hence, by Lemma 5.4
E|lg — &ll3 = X0 N7 gd(1 + Ap,) 2 + n7' Tii (1 + Ap,) ™2

Substituting the bounds given by Lemma 5.3 completes the proof of the first part of
Theorem 6.1. The second and third parts are proved in exactly the same way, by first
applying Lemma 5.2 to give a bound for the appropriate norm of g — go in terms of the
coefficients g1, — go,, and then applying Lemmas 5.4 and 5.3.

It is easy to deduce conditions under which g; will converge to g in various norms. In
addition, optimal rates of convergence can be obtained; these will be discussed further
after it has been shown that, under suitable conditions, || & — g1 || can be neglected relative

to || g1 — &oll.

7. Closeness of the linear approximation to the true minimizer. In this section
the closeness of g; to g will be considered. The arguments are a little involved, mainly
because the functional A, while being strictly convex, is not uniformly convex. The major
part of the section is taken up with the proof of the following lemma; at the end of the
section a corresponding result for the Sobolev norm is discussed. The notation O, denotes
an order of magnitude in probability.

LeEmMMA 7.1. Suppose the definitions and conventions of Sections 5 and 6 are used,
and that A — 0 and n™ °\ — o« for some 8 > 0 as n — «. Then, for all sufficiently small
€>0,asn— o,

"g‘ — gl "w — Op(A—x{n—l}\—l/m + }\(4m.—1)/2m.}).

Proor. The proof of the lemma proceeds in several stages. First a new approximation
8y to g is defined, for which it is the case that the uniform convergence of gi to g will
imply that & and gy are eventually identical. The function gy is the minimizer of a
functional Axs; the derivative of Ay at g, can be bounded in such a way as to enable rates
of stochastic convergence to zero of sup | £x — g1 | to be obtained, and these rates are easily
shown to apply to sup | £ — g1| also. Choose a number M such that

sup |g&|+2=M
and define the function expy by
{1+ (x + M) + %(x + M)*}e™ for x<-—M,

expu(x) = {e otherwise.

Define a functional Ay on S by

1
Au(g) =§>\[g, gl+ f expu(g) — n~' Y1 g(X),

and let gy denote the minimizer of Ajs; this functional is easily shown to be uniformly
convex as defined by Tapia and Thompson (1978), and hence & exists and is unique.

In the remainder of the argument, derivatives of functionals will be used; these are
Gateaux derivatives as discussed by Tapia and Thompson (1978). Note first that A, and
A and hence their first and second derivatives agree if sup | g | = M; it is easy to show that
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these derivatives exist everywhere. By the strict convexity of A and A, their respective
minima correspond exactly to zeros of A’ and A} and hence & and g will be equal if
sup | gm| < M.

Defining A, as in (6.1), since g; minimizes A, it will be the case that A1(g) is zero; in
other words, for all u in S,

(7.1) Mg, u] + j u{l+(gi—g)}fo—n'YulX)=0.
Now, substituting (7.1), we will have

A'(g) () = AN &, u] + f uexp(g) —n' ¥ u(Xi)
(7.2)

= f ulexp(g1) — {1 + (81 — &o)}exp(&o)].

N

By elementary analysis, there exists a constant C such that, provided sup | g1 — 8| < 1,
(7.3) |A"(g) ()| = Cf |u|(g — &) exp(g) = Csup|u| |& — &3

by standard functional analysis, using the operator norms corresponding to those defined
in (5.1) above,

(7.4) I A3(&) - < Cllgr — &3

Since, under the assumption, sup | g1 — g0 | < 1, it follows a fortiori that sup | g:| < M and
hence Au(g1) = A'(g1).
Now consider the operator A j(g). Given any « in S,

A8, u) = Nu, u] + j u’expi(g) = Nu, u] + e_ZMf u’fo

= ZV Ap, + e_zM)uf =Yy, V_I_E(}\p,, + e_ZM)VH‘uf
for any ¢ > 0. By elementary analysis it follows that
@) Alr(@)(, u) = CR X" v ul = Cor A" (sup | u])*

for suitable positive constants C%,. and Cas,, by Lemma 5.2.
Now set ux = g1 — &u. Apply Taylor’s theorem to the function (of £) Ah( &a + tunr) (un)
to obtain, for some §,0 <6< 1,

(7.6) Au(g) (un) = Alr( 8y + Ounr) (un, un).
Combining (7.4), (7.5) and (7.6) it follows that
Car N2 (sup | um |)? < C sup | unm| || g1 — &3

so that, for a suitable constant C;, provided sup | g: — go| <1,

(7.7) ~ sup|um| = CINE g — g5
Under the conditions stated in Theorem 7.1, it follows from Theorem 6.1 that
(7.8) sup| g1 — &0 | — 0 in probability
and hence
(7.9) P(sup|g1 — &|<1) —>1 as n— o

Again from Theorem 6.1 we have
(7.10) llg: — gll3 = Op(n™A72™ + A%).
Combining (7.7), (7.9) and (7.10) gives, for all € > 0,
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(711) sup Igl _ gAMI — OP(}\_‘{n_I}\_l/'" + }\(4m—1)/2m.}).

In particular it follows that sup|g; — &x| — 0 in probability; combined with (7.8) this
implies that sup | §» — g0 | — 0 in probability, from which it is immediate that

P(sup|gu|<M)—>1 as n— x;
by the remarks made near the beginning of the proof this implies that
(7.12) P(gu#8)—0

and hence the proof of the lemma follows from (7.11).

No attempt will be made to obtain a finer bound for || § — g ||z since the bound obtained
from Lemma 7.1 will suffice. A bound for the difference between £ and g; in the Sobolev
norm is given in the following lemma.

LEMMA 7.2 Under the same conditions as Lemma 7.1, -
18 — &ills = Op(n™" A~ +0/27 4 A)

as n tends to infinity.

Proor. The argument is very similar to the proof of Lemma 7.1. Since the sup
operator is continuous in the Sobolev norm it follows from (7.4) that, for a suitable constant
Cs, provided sup| g — go| < 1, '

A3 &) lls = Csll &1 — &oll.

By an argument similar to that used to demonstrate (7.5), using Lemma 5.2, for all g and
u in S we have, for a suitable constant C3;,

Al &) (u, u) = CFA| ulf.
It can now be deduced that, provided sup|g: — go| <1
lunlls = ON) &1 — &oll3;
the remainder of the proof, making use of (7.12), exactly parallels that of Lemma 7.2.
8. The main consistency results. It is now possible to state and prove conditions
under which £ is in various senses a consistent estimator of g, and to give rates for this
consistency. These are given in the following theorem. It should be stressed again that the

conditions, particularly those placed on the smoothness of g;, can be weakened considerably
by extending the arguments used in Sections 5, 6 and 7 above.

THEOREM 8.1. Suppose Q is a bounded univariate domain, possibly with periodic
end conditions. Suppose the true density fo on Q is bounded above and below away from
zero; let go = log fo. Suppose the roughness penalty [ g, g] is defined, using a differential
operator of order m, as in Section 2 above, and that the log density estimate g is defined
as in Section 3 above, based on independent identically distributed observations Xi,
-+, X,, from fy. Suppose that [o (g&™)* < » and that g™ " is continuous on the periodic
extension of Q.

Suppose throughout that the smoothing parameter \ satisfies, for some § > 0,

A>O0andn™ A > o as n— «,
Then g is uniformly consistent as an estimator of g, and in addition, for all ¢ > 0,
Sllpszlé _ gOIz = Op{}\—e(n—l}\—l/m + }\(4m—1)/2m)}.

If, in addition, n¥™°\ - « as n — « for some 8 > 0, then, as n — o,

J' (8 — 8)°fo = Op(n™ N7/ + X))
Q
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and this rate is exactly attained. Defining the Sobolev norm ||g||% = (g, g] + [ &%fo,
provided A\ — 0 and nA\®"*V/*™ _5 o qs n — o, the estimator & is consistent for go in
Sobolev norm, and, as n — o,

1€ — &olls = Op(n™A=™D727) + gp(N).

The proofs of all the parts of the theorem are obtained by combining the relevant part
of Theorem 6.1 with either Lemma 7.1 (for the L? and uniform consistency and rates) or
Lemma 7.2 (for the Sobolev consistency and rates). In all cases it is the || g1 — go| part
which dominates, the term || & — g1| being negligible. The details are straightforward and
are therefore omitted.

It is possible to investigate optimal rates of consistency and the corresponding rate of
convergence of A to zero. For mean square convergence, corresponding to convergence of
the estimated density to the true density in the Kullback-Leibler information distance, the
(exact) optimal rate of consistency is easily shown to be O(n™*™/“m*y attained when A ~
n~2m/@m+) Thig rate of convergence near to O(n ") is of course a consequence of the strong
smoothness conditions placed on go. The corresponding results for the other norms are left
to the reader to investigate. It is interesting to note that the optimal rate for A for good
estimation in, for example, the Sobolev norm will not be the same as the optimal rate for
mean square consistency. Thus one will not necessarily obtain good estimates of the
derivatives of f, by seeking good estimates of f itself, a point relevant to Silverman (1980)
and the subsequent rejoinder of Good and Gaskins (1980).

The question of strong consistency, as considered for slightly different estimators by de
Montricher (1979), is not considered in this paper, though it seems intuitively clear that
results analogous to Theorem 8.1, possibly with slightly slower rates, should be provable
by suitable techniques. The question of the asymptotic normality of the estimates is
considered in Section 9 below.

9. Approximation by a Gaussian process. To the author’s knowledge, roughness
penalty density estimators are the only density estimators that have not been shown under
suitable conditions to be asymptotically normal. It turns out to be possible not only to
show that the estimators discussed in this paper are pointwise asymptotically normal but
also to give a rate of approximation to the estimators, suitably normalized, by a Gaussian
process. An approximation of this kind is more in keeping with the modern theory of
density estimators and opens the way to proving results such as those of Bickel and
Rosenblatt (1973) and Silverman (1976) on the asymptotic behavior of certain functionals
of the estimates. It shows that the joint distribution of the value of the estimator at several
points is asymptotically multivariate normal and also gives a rate of convergence to this
normal limit.

Before considering the approximation itself, it is convenient to consider some prelimi-
naries. The notation and conventions of this section will be, except where otherwise stated,
the same as in Sections 5 to 8 above. In particular, all the conditions stated near the
beginning of Section 5 will be assumed to hold. Defining the eigenfunctions ¢, as in Section
5, define the function R\ on £ X { by

Ri(s, t) =3 (1 +A0) 'du(s)9u(2).

The function R, is the reproducing kernel with respect to the density fo corresponding to

the inner product A[ g1, g2] + | g182/o on S and is also the Green’s function of a certain

differential operator; for the connections, see a modern text on differential equations.
Define a function m,(¢) to be Egi(t), so that the coefficients of m, satisfy

ma = gol1 + Ap,) 7L
It follows that
9.1) ma(s) =J Ri(s, t)gol(t) fo(t) dt
Q
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so that m, can be seen to be, in a certain sense, a smoothed version of go. Define the
function r) by

n(s, £) = T2 (1+A0,)0,(s) (2).

It can be shown easily that

n(s, t) = f Ry(s, u)R\(t, ) fo(w)du — 1,
Q

and again 1 + r, is the Green’s function of a certain differential operator. In addition, by
methods similar to those used in the proof of Theorem 6.1, we have, for all s,

9.2) (s, 8) ~A7V2™ asA— 0.

It is now possible to state and prove the main result of this section.

N

THEOREM 9.1. Suppose that the conditions of Theorem 8.1 hold. For each n, on a
suitable probability space there exists a Gaussian process y\(s) with mean zero and
covariance function ri(s, t) such that

-1/2

£(s) = my(s) + n7%y\(s) + erraa(s),

where the functions my and ry are as defined above and, given § > 0, the approximation
error err,, is '

Op{}\—s(n—l}\—l/mlog n+ }\—(4m—l)/2m)}

uniformly over sin Q as A - 0 and n — .

Proor. The result is a consequence of Lemma 5.5 on the approximation of the 8, by
normal random variables. Note that the distribution of y, does not depend on n, and so, as
in Silverman (1976) and (1978a), theorems about its behavior as A — 0 can be combined
with Theorem 9.1 to provide results for & under transparent conditions connecting A and

n.
Define the 8, as in Lemma 5.5 and define y\ by

a(s) = X1 (1 + Ap,) "'Buu(s).

It is easily verified that y, is a well defined random element of S and is a Gaussian process
with Ey,\(s) = 0 and cov{yx(s), yA(t)} = (s, t). Using (6.3) it follows that the error process
will satisfy

(9.3) errna(s) = £(s) — g1(s) + Tzt (1 + M) 7' (B, — n7/B)pu(s).
Using Lemma 5.2, the supremum over s of the sum in (9.3) is, given ¢ > 0, dominated by
a constant multiple of
(9.4) (3 (B, — n728,)%(1 + Ao,) 2} V2
Now substitute the bound of Lemma 5.5 on |8, — n™?8,| to show that (9.4) is, with
probability 1,

(T /(1 + Ao,) 2} 20(n""log n) = O\~ “**"n"Mog n)

by Lemma 5.3. Substituting this bound and (7.11) into (9.3) completes the proof of

Theorem 9.1.
It is easy to use (9.2) and Theorem 9.1 to construct conditions under which
n(t, t)"2{g(t) — ma(t)) is asymptotically standard normal and this is left to the reader to

investigate.

10. Discussion. There are of course numerous questions still unanswered about
roughness penalty density estimates. Apart from those technical questions raised in the
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body of this paper there are several important points of a practical nature which have not
been discussed. Some heuristic calculations done by the author and not included here
suggest that the estimates of this paper may provide a solution to the problem of finding
estimates which are automatically adaptive to the tails of the distribution; most existing
methods either undersmooth or oversmooth the tails relative to the main part of the data.
Another important problem is the design of efficient and well understood data-based
methods for choosing the smoothing parameter, though it should be the case that
techniques from other density estimation methods can be adapted for use here. Finally it
is of course important to have good computer algorithms for finding the estimates!
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