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L- AND R-ESTIMATION AND THE MINIMAX PROPERTY

By JEROME SACKs' AND DONALD YLVISAKER?

Northwestern University and University of California, Los Angeles

Let {X;} be a sample from F(x — 8) where F is in a class & of symmetric
distributions on the line and @ is the location parameter to be estimated.
Huber has shown that maximum likelihood estimation has a minimax property
over a convex . Here a simple convex Z is given for which neither L- nor R-
estimation has the minimax property. In particular, this example shows that
a recent assertion concerning L-estimation is not true.

0. Introduction. Let % be a collection of symmetric distributions on the line and
consider the location parameter problem based on a sample from F(x — 8), where F € &
and @ denotes the location parameter to be estimated. This set-up is basic in the
development of a theory of robustness by Huber (1964), and it is known that when & is
convex there is a maximum likelihood estimate of § which minimizes the maximum (over
&) asymptotic variance. There are natural competitors to M-estimates in these settings,
namely L-estimates (linear functions of order statistics) and R -estimates (estimates based
on ranks). In the case that & is the class of e-contaminated normals, i.e. F = (1 — ¢)® +
eH with H symmetric, Jaeckel (1971) showed that appropriate L- and R-estimates also
enjoy the minimax property mentioned above. On the other hand, there are &’s given in
Sacks and Ylvisaker (1972), in particular the e-normal family # = {F|sup.|F(x) — ®(x)|
< ¢, F symmetric} for e large enough, for which no L-estimate has the minimax property.
In this note, we give a simple convex class & for which there is neither an L- nor an R-
estimate that is asymptotically minimax. While it is not surprising that there should be
such an & —see the discussion of this property in Huber (1981) page 97, for instance—we
are not aware that any has been constructed for R-estimation, let alone for L- and R-
estimation simultaneously.

It has been claimed in Gribkova and Egorov (1978) that L-estimation has the minimax
property for a convex & provided each density f = F” in the class satisfies limjj_,..f (x) = 0.
Our example shows this assertion to be false. Moreover, it will be clear that even
monotonicity of each f(| x |) is not sufficient to bring about the property. There remains
the interesting question of finding general conditions on & which would guarantee asymp-
totically minimax L- or R -estimates.

1. The Example. Begin with the density f; on R' defined by

3 e

——— =In2,
5 (1 + ex)z | x |
folx) = )
2 —(1/3)(x-In2) >1n 2
5 e R |x|>1n2,

and take Fj = fo. From Huber (1964) one can identify F, as the least informative
distribution in the contaminated logistic model % = {F|F = (3)L + (%)H, H symmetric},
where L(x) = e*/(1 + e%), x € R'. (The contamination constant ¢ = %, leading to the
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breakpoints at +1In 2 in Huber’s analysis, has been chosen for computational simplicity.) In
any event, we rely only on the fact that f; is a valid density.

For the location estimation problem under Fy, there are three efficient estimates to
mention: an M-estimate with a skew-symmetric ¢ function given by
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an R-estimate determined through the skew-symmetric weight function
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on [0, 1], and an L-estimate with a symmetric weight function on [0, 1] given by
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Here I(Fo) = [ f&*/fo = ¥ss is the information number of F,. If sampling is done from a
suitably smooth and symmetric F, the asymptotic variances associated with the three
estimates above are denoted by V% (F), V%(F) and V{(F). In particular,

1 5 F-1(3/5) 2
(1.1) VR(F) = f J3() dt/{—f 2f%(x) dx}
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and one finds that [} J3(¢) dt = I(Fo) = {V%(Fo)} ™.
Let A > I"'(F,) be given. We will produce a symmetric G satisfying

(1.2) I(F)) =IMNG + (1—)\) Fy), 0=A=1,

so that F) is least informative in #= {F|F =AG + (1 — A)Fy, 0 < X\ < 1}. Moreover it will
be the case that maxsV% (F) > I"!(F,) and max» V(F) > A. This is the desired conclusion.
By way of contrast, one has maxsV% (F) = V/(Fo) = I"\(F,).

To put (1.2) in a more useful way, set
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It is noted in Huber (1981) page 82 that (1.2) is equivalent to J uog =0, or to
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Clearly (1.3) involves only the central portion of g. Let us take
2e* 2
g(x)—C{m—g}, |x|sln2,

in order to have equality in (1.3). Some calculation will give ¢ = 21/{10(1 + 4 In 2)}, and
then
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To complete the construction of & we make an appropriate extension of g outside [—In
2, In 2]. This is to be done so that

(i) G“(;) > A, A’ suitably large,
(1.5)
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a task which is possible because of (1.4). From (1.1) and (1.5) it follows that max, V% (F)
= V%(G) > I5'(F,). Furthermore, it is easy to argue, from the form of V%(G) for instance
(Jaeckel, 1971), that a sufficiently large value of G™'(3) results in V%(G) > A, since wy
assigns positive weight to [%, 3%].

Finally, observe that g is still defined only on [G™'(%), G™'(%)] and we have already
obtained the desired properties of asymptotic variance over & Thus g can be taken to be
a symmetric density, positive and monotone on x = 0 for example. Any f € & would then
share these properties, being a convex combination of f; and g. Moreover, by construction,
I(F) is finite on & and is uniquely minimized at F.
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