L- AND R-ESTIMATION AND THE MINIMAX PROPERTY

By Jerome Sacks¹ and Donald Ylvisaker²

Northwestern University and University of California, Los Angeles

Let $\{X_i\}$ be a sample from $F(x-\theta)$ where F is in a class \mathscr{F} of symmetric distributions on the line and θ is the location parameter to be estimated. Huber has shown that maximum likelihood estimation has a minimax property over a convex \mathscr{F} . Here a simple convex \mathscr{F} is given for which neither L- nor R-estimation has the minimax property. In particular, this example shows that a recent assertion concerning L-estimation is not true.

0. Introduction. Let \mathscr{F} be a collection of symmetric distributions on the line and consider the location parameter problem based on a sample from $F(x-\theta)$, where $F \in \mathscr{F}$ and θ denotes the location parameter to be estimated. This set-up is basic in the development of a theory of robustness by Huber (1964), and it is known that when \mathcal{F} is convex there is a maximum likelihood estimate of θ which minimizes the maximum (over \mathcal{F}) asymptotic variance. There are natural competitors to M-estimates in these settings, namely L-estimates (linear functions of order statistics) and R-estimates (estimates based on ranks). In the case that \mathscr{F} is the class of ε -contaminated normals, i.e. $F = (1 - \varepsilon)\Phi +$ εH with H symmetric, Jaeckel (1971) showed that appropriate L- and R-estimates also enjoy the minimax property mentioned above. On the other hand, there are F's given in Sacks and Ylvisaker (1972), in particular the ε -normal family $\mathscr{F} = \{F | \sup_x | F(x) - \Phi(x) |$ $\leq \varepsilon$, F symmetric for ε large enough, for which no L-estimate has the minimax property. In this note, we give a simple convex class \mathcal{F} for which there is neither an L- nor an Restimate that is asymptotically minimax. While it is not surprising that there should be such an F—see the discussion of this property in Huber (1981) page 97, for instance—we are not aware that any has been constructed for R-estimation, let alone for L- and Restimation simultaneously.

It has been claimed in Gribkova and Egorov (1978) that L-estimation has the minimax property for a convex $\mathscr F$ provided each density f=F' in the class satisfies $\lim_{|x|\to\infty} f(x)=0$. Our example shows this assertion to be false. Moreover, it will be clear that even monotonicity of each f(|x|) is not sufficient to bring about the property. There remains the interesting question of finding general conditions on $\mathscr F$ which would guarantee asymptotically minimax L- or R-estimates.

1. The Example. Begin with the density f_0 on R^1 defined by

$$f_0(x) = \begin{cases} \frac{3}{5} \frac{e^x}{(1+e^x)^2}, & |x| \le \ln 2, \\ \\ \frac{2}{15} e^{-(1/3)(|x|-\ln 2)}, & |x| > \ln 2, \end{cases}$$

and take $F_0' = f_0$. From Huber (1964) one can identify F_0 as the least informative distribution in the contaminated logistic model $\mathcal{F}_0 = \{F | F = (\%)L + (\%)H, H \text{ symmetric}\}$, where $L(x) = e^x/(1 + e^x)$, $x \in \mathbb{R}^1$. (The contamination constant $\varepsilon = \%$, leading to the

Key words and phrases. Location parameter estimation, robust estimation, minimax property.

Received October 1981; revised December 1981.

¹ This author's work was supported in part by NSF Grant MCS-80-01789.

 $^{^{2}}$ This author's work was supported in part by NSF Grant MCS-80-02732.

AMS 1980 subject classification. Primary 62G35; secondary 62G20.

breakpoints at $\pm \ln 2$ in Huber's analysis, has been chosen for computational simplicity.) In any event, we rely only on the fact that f_0 is a valid density.

For the location estimation problem under F_0 , there are three efficient estimates to mention: an M-estimate with a skew-symmetric ψ function given by

$$\psi_0(x) = -\frac{f_0'(x)}{f_0(x)} = \begin{cases} \frac{e^x - 1}{e^x + 1}, & 0 \le x \le \ln 2\\ \frac{1}{3}, & \ln 2 \le x < \infty, \end{cases}$$

an R-estimate determined through the skew-symmetric weight function

$$J_0(t) = -\frac{f_0'(F_0^{-1}(t))}{f_0(F_0^{-1}(t))} = \begin{cases} \frac{5}{3}(2t-1), & \frac{1}{2} \le t \le \frac{3}{5}, \\ \\ \frac{1}{3}, & \frac{3}{5} \le t \le 1, \end{cases}$$

on [0, 1], and an L-estimate with a symmetric weight function on [0, 1] given by

$$w_0(t) = -\frac{(\ln f_0)''(F_0^{-1}(t))}{I(F_0)} = \begin{cases} \frac{30}{13}(5t - 1)(4 - 5t), & \frac{1}{2} \le t \le \frac{3}{5}, \\ 0, & \frac{3}{5} \le t \le 1. \end{cases}$$

Here $I(F_0) = \int f_0^{\prime 2}/f_0 = {}^{13}\!\!/_{135}$ is the information number of F_0 . If sampling is done from a suitably smooth and symmetric F, the asymptotic variances associated with the three estimates above are denoted by $V_M^0(F)$, $V_R^0(F)$ and $V_L^0(F)$. In particular,

(1.1)
$$V_R^0(F) = \int_0^1 J_0^2(t) \ dt / \left\{ \frac{5}{3} \int_{F^{-1}(2/5)}^{F^{-1}(3/5)} 2f^2(x) \ dx \right\}^2$$

and one finds that $\int_0^1 J_0^2(t) dt = I(F_0) = \{V_R^0(F_0)\}^{-1}$.

Let $\Delta > I^{-1}(F_0)$ be given. We will produce a symmetric G satisfying

$$(1.2) I(F_0) \le I(\lambda G + (1 - \lambda) F_0), 0 \le \lambda \le 1.$$

so that F_0 is least informative in $\mathscr{F}=\{F\,|\,F=\lambda\,G+(1-\lambda)F_0,\,0\leq\lambda\leq1\}$. Moreover it will be the case that $\max_{\mathscr{F}}\!V_R^0(F)>I^{-1}(F_0)$ and $\max_{\mathscr{F}}\!V_L^0(F)>\Delta$. This is the desired conclusion. By way of contrast, one has $\max_{\mathscr{F}}\!V_M^0(F)=V_M^0(F_0)=I^{-1}(F_0)$.

To put (1.2) in a more useful way, set

$$u_0(x) = I(f_0) + 4 \frac{(f_0^{1/2})''}{f_0^{1/2}} = \begin{cases} \frac{148}{135} - \frac{8e^x}{(1+e^x)^2}, & |x| \le \ln 2, \\ \\ \frac{28}{135}, & |x| > \ln 2. \end{cases}$$

It is noted in Huber (1981) page 82 that (1.2) is equivalent to $\int u_0 g \leq 0$, or to

(1.3)
$$\int_{-\ln 2}^{\ln 2} \left\{ \frac{2e^x}{(1+e^x)^2} - \frac{2}{9} \right\} g(x) \ dx \ge \frac{7}{135} .$$

Clearly (1.3) involves only the central portion of g. Let us take

$$g(x) = c \left\{ \frac{2e^x}{(1+e^x)^2} - \frac{2}{9} \right\}, \quad |x| \le \ln 2,$$

in order to have equality in (1.3). Some calculation will give $c = 21/\{10(1 + 4 \ln 2)\}$, and then

(1.4)
$$(i) \int_{-\ln 2}^{\ln 2} g(x) \ dx = \frac{7(3 - 2 \ln 2)}{15(1 + 4 \ln 2)} < .2 = \int_{-\ln 2}^{\ln 2} f_0(x) \ dx,$$

$$(ii) \frac{5}{3} \int_{-\ln 2}^{\ln 2} 2g^2(x) \ dx = \frac{49}{135(1 + 4 \ln 2)} \le \frac{13}{135} = \frac{5}{3} \int_{-\ln 2}^{\ln 2} 2f_0^2(x) \ dx.$$

To complete the construction of \mathscr{F} we make an appropriate extension of g outside [-ln 2, ln 2]. This is to be done so that

(1.5)
$$(i) \ G^{-1}\left(\frac{3}{5}\right) > \Delta', \qquad \Delta' \quad \text{suitably large,}$$

$$(ii) \ \frac{5}{3} \int_{G^{-1}(2/5)}^{G^{-1}(3/5)} 2g^2(x) \ dx < \frac{13}{135} \,,$$

a task which is possible because of (1.4). From (1.1) and (1.5) it follows that $\max_{\mathscr{F}} V_R^0(F) \ge V_R^2(G) > I_0^{-1}(F_0)$. Furthermore, it is easy to argue, from the form of $V_L^0(G)$ for instance (Jaeckel, 1971), that a sufficiently large value of $G^{-1}(\%)$ results in $V_L^0(G) > \Delta$, since w_0 assigns positive weight to [%, %].

Finally, observe that g is still defined only on $[G^{-1}(\%), G^{-1}(\%)]$ and we have already obtained the desired properties of asymptotic variance over \mathscr{F} . Thus g can be taken to be a symmetric density, positive and monotone on $x \ge 0$ for example. Any $f \in \mathscr{F}$ would then share these properties, being a convex combination of f_0 and g. Moreover, by construction, I(F) is finite on \mathscr{F} and is uniquely minimized at F_0 .

REFERENCES

GRIBKOVA, N. V. and Egorov, V. A. (1978). Robust estimations of the location parameter which are linear combinations of order statistics. *Vestnik Leningrad Univ. Mat. Meh. Astronom* vyp. 3 24-27.

Huber, Peter J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101. Huber, Peter J. (1981). Robust Statistics. Wiley, New York.

JAECKEL, LOUIS A. (1971). Robust estimations of location: symmetry and asymmetric contamination. Ann. Math. Statist. 42 1020-1034.

Sacks, Jerome and Ylvisaker, Donald (1972). A note on Huber's robust estimation of a location parameter. *Ann. Math. Statist.* **43** 1068-1075.

DEPARTMENT OF MATHEMATICS NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS 60201 DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA, LOS ANGELES LOS ANGELES, CALIFORNIA 90024