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CHERNOFF EFFICIENCY AND DEFICIENCY

By WiLBERT C. M. KALLENBERG

Free University, Amsterdam

In 1952 Chernoff introduced a measure of asymptotic efficiency for tests.
Comparison in the sense of Chernoff is concerned with fixed alternatives. In
contrast to Bahadur’s approach, where the probabilities of first and second
kind are treated in an unbalanced way, in Chernoff’s approach both probabil-
ities go to zero. For the calculation of Chernoff efficiencies one has to develop
large deviation theorems both under the null hypothesis and under the
alternative hypothesis.

In this paper some basic properties are mentioned and the concept of
Chernoff deficiency is introduced in a manner analogous to the Pitman and
Bahadur case. It is shown that in typical testing problems in multivariate
exponential families, the likelihood ratio test is Chernoff deficient of order
0 (log n). Many of the results agree with corresponding results in the Bahadur
case.

1. Introduction. The relaiive performance of two statistical tests of a hypothesis for
large sample sizes is often investigated by means of asymptotic relative efficiencies in the
sense of Pitman or Bahadur. Comparison in the sense of Bahadur is rather unbalanced
since probabilities of errors of the second kind are kept fixed and the probability of an
error of the first kind is sent to zero. When dealing with Pitman efficiency, one avoids this
lack of balance. However, in that case one only compares the power of the two tests at
alternatives near the hypothesis. In the efficiency concept introduced by Chernoff (1952)
both the significance level and the probability of an error of the second kind at a fixed
alternative go to zero. Using Chernoff efficiency for comparison of tests, the lack of balance
of Bahadur’s approach is avoided and, in contrast with Pitman’s approach, all alternatives
are under consideration.

In Section 2 some basic properties of Chernoff efficiency are mentioned. Much of them
are analogous to well-known results in the Bahadur case. Without explicitly referring to it,
Brown (1971) proves that under regularity conditions a likelihood ratio (LR) test is efficient
in the sense of Chernoff. However, Brown’s test is not the LR test of the original testing
problem, but of a somewhat larger testing problem. In this paper it is shown by a simple
proof that in exponential families the LR test of a simple hypothesis is Chernoff efficient.
Section 2 is concluded by an example indicating that with Chernoff’s test criterion the LR
test has to be preferred to Wald’s (1943) and Rao’s (1947) approximation of the LR test.
This is a partial answer to the final remark of Section 6e.2 in Rao (1973).

For many testing problems, several different tests may be Chernoff efficient. As in the
Pitman and Bahadur case, the introduction of deficiency provides further information
about the performance of such tests. Since LR tests are Chernoff efficient under some
regularity conditions, it is of special interest to investigate the Chernoff deficiency of LR
tests. After an introduction of Chernoff deficiency in a general context, we assume in
Section 3 that the observations are distributed according to an exponential family. Under
this assumption, LR tests have a particular form which enables us to obtain the order of
magnitude of their Chernoff deficiency. It turns out that in typical cases the deficiency is
of order O (log n), i.e. the additional number of observations necessary to obtain the same
performance as the optimal test is of order ¢ (log ). For some special testing problems the
Chernoff deficiency is of order ¢(1). This holds, e.g., for the two-sided ¢-test. Note that
these results agree with corresponding results in the Bahadur case, cf. Kallenberg (1981).
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584 WILBERT C. M. KALLENBERG

2. Chernoff efficiency. Let % be a set of points x and % a o-field of subsets of Z. ©
is an index set of points # and, for each § € O, P, is a probability measure on 4. It is
assumed that P, # Py, if § # 6'. Let X;, Xs, --- be a sequence of i.i.d. random variables
(r.v.’s), each defined on % and distributed according to P,, § € 6. The probability
distribution of S = (Xi, X, - --) is denoted by P,. Suppose the hypothesis H,: 8 € 6, has
to be tested against H,:0 € ©; = © — 6, on the basis of the observations X, ---, X, n
€ N, where 6, C O. Let {pn.; n € N, 0 < a = 1} be a family of (randomized) tests based
on X, ---, X,; i.e. foreach n € N, a € [0, 1] @, is a measurable function of Xi, .-, X,
with values in [0, 1] such that

(2.1) Supgoco , Eoepra(S) = a.

In many cases the test @,;, will have exactly size a. For a € [0, 1] and 6 € O, define
(2.2) pi(a, 0) = max{a, 1 — Eopn.a(S)},

23) pR(O) = infcon pPe, B).

For many families of tests the limit

(2.4) p%(0) = —lim,_... n""log p%(6)

exists for all 8 € O,; p%(0) is called the Chernoff index of the family. For the likelihood
ratio (LR) and the most powerful (MP) test we use the notations pL%(a, 8), p®(8), etc.

In Chernoff (1952) the definition of the index is somewhat different. If for fixed 0 < A
< oo, we define pX%a, 0) = a + A {1 — E¢@n;a(S)} and p®(0) = inf{p}*®(a, 0); a €
[0, 11}, the index p *®(#) satisfies p **(f) = —lim,_.. n"'log p*(f). It is easy to check that
both definitions coincide.

If {¢n.o} is another family of tests, the Chernoff efficiency of {@...} with respect to
{@n;a} is defined by

(2.5) . eg7(0) = p?(6)/p%(0).

If e 5(8) = 1 for all families {,.,}, then the family {¢n..} is called efficient in the sense of
Chernoff or simply Chernoff efficient at 6.
For a given family {g,,,} we define

(2.6) N%(a, 0) = min{n; 1 — Eypn,(S)<a forall m=n},

i.e. the minimal required sample size of a level-a test with probability of error of the second
kind at most a at . An immediate consequence of (2.3) and (2.6) is

(2.7) 0Ro(e,0)(0) = o

Moreover, if the family of tests satisfies

(2.8) a<a' = Eypna(S) =< Eg@n,a(S), n=12 ...,
then

(2.9) a = pRega,0-1(0).

There is an intimate relationship between the Chernoff index and the limiting behaviour
of N%(a, 0) as a — 0.

THEOREM 2.1. Assume that the family of tests {p...} satisfies (2.8), and suppose that
(2.10) —lim,_...n "'log p%(8) = p*(#) > 0,
then
(2.11) N¥%a 0) ~ —(log a)/p®(@) as a— 0.
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If {Gn.«} is another family of tests satisfying (2.8) with Chernoff index p%(0) > 0, then
(2.12) eC +(0) = lim,_oN%(a, 8)/N*(a, 6).

The corresponding result for Bahadur efficiency can be found in Chandra and Ghosh
(1978, Lemma 3.2.2), or in Kallenberg (1981, Theorem 1.2). Note that N%(a, §) is not
stochastic, while N (g, s) in Bahadur (1971) is a random sample size. So Theorem 7.1 in
Bahadur (1971) is not entirely analogous to the above result; see also the discussion in
Chandra and Ghosh (1978, Secticn 3), and Kallenberg (1981, Remark 1.2.) Because of the
above mentioned correspondence, the proof of Theorem 2.1 is omitted.

Many families of tests are defined in terms of a test statistic, say T» = T.(S):

1 Ty > Cnias
(Pn;a(s) = 1 Ynia T, = Cnias
0 T <cnia -

where
Cnia = inf{c; supgeo,Po(T: > ¢) < a}, Ynia = sup{y € [0, 1]; supgecoFapni. (S) = al.
In this case the Chernoff index of the family may be derived by way of the next theorem.
Compare this with the corresponding result for Bahadur efficiency, e.g. Serfling (1980,
Theorem 10.4.2). .

THEOREM 2.2. If for some ¢c* € R and § € 6,

—lim,_..n "'log supgeo,Pa(Tr > ¢*) = —lim,_.n""log Ps(T, < c*) = a(c*),

say, then p®(f) = a(c*).

Proor. Fora €]0,1]and n € N let ¢,,, and y»;. be defined as above. If ¢,.» < c* then
Poo(Tr > ¢*) < Poo(Tr > Cnia) = a
for all 6, € Oy and thus
sup{Pos,(Tr > c*); 0o € B0} < a =< p%(a, 9).
If ¢p.o > c* then
Po(T, < c*) = Py(T, < Crja) =1 — Egn;a(S) = pf(a, 0).
This implies that
02(8) = min[sup {Pa,(T. > c*); o € B0}, Po(T,, = c*)]

and thus
limsup,_.. —n""log p%(6) < a(c*).

Since 1 — Esgn.«(8S) is non-increasing, there exists one and only one a* € [0, 1] such that
a < a* implies pZ(a, 8) = 1 — Eppn;a(S) and a > a* implies pf(a, ) = a. Moreover,
p%(8) = a*. Suppose there exists a < a* satisfying ¢* = ¢y... Then

P0(Tn = C*) = Pﬂ(Tn = cn;a) = ]- - E0(pn;a(S) = Pﬁ(ﬂl, 0) = Pg(a)

Otherwise, for all « < a* we have ¢* < c,., and hence supy o, Po,(T» > ¢*) > «, implying
supg,co, Po,(Tn > c*) = a* = p%(#). Therefore

02(8) < max(supgeeo,Po(Tn > c*), Po(T, = c*))
and

liminf, . —n'log p2(8) = a(c*).
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This completes the proof of the theorem. 0

Next we return to general families of tests. To obtain an upper bound for the Chernoff
index, we first consider the case of a simple null hypothesis Hy:0 = 6, and a simple
alternative 6 = 6,. Define

1 .
n=g Po+ Po), f(x;6)=dPy/dp(i=0,1),

A = {x; f(x; 6 f (x; 6o) > 0},
B = {x; f(x; 1) >0=f(x; 60)},
dQ:/du = gi(x) = xa(x)f(x; 0;)/Ps,(A)(i =0, 1),
where
xax) =1 if x€EA,0 if xZA,
Y(t) =log J {f (x5 61)/Po,(A)}{f (x; 66) / Po,(A)}'* dip,

A
Y (x) = xa(x)log{gi(x)/g(x)},
mo(c) = sup{tc — ¢ (¢); £ = 0} — log Py,(A),
my(c) = sup{(t —1)c — Y (t); t =< 1} — log Py, (A)
and M(6., 8) = sup.min{mo(c), mi(c)}.

Note that M (6, 6o) = M (6,, 6,). Now it will be shown that p*(6,) = M (6., 6o). If u(A) =0
then p*(8;) = o = M (6, 6,). Consider the more interesting case u(A4) > 0. The function ¢
is the log moment generating function of Y (X) under . So ¢ is strictly convex on [0, 1].
Moreover, ¢(0) = ¢/(1) = 0, implying m;(0) € (0, »), i = 0, 1. By monotonicity of m, and m;,
it follows that M (6:, 6,) € (0, ).

Define the following test function, where we temporarily write R, = [[7=1 {g1(x:)/go(x2)},

1 some x;EB orall x;,€A and R,> cp.
Oria(8) = {Yna all :;EA and R, = cpua
0 some x;€A andall x;&€B orall x,EA and R,<c..
where c¢,., = inf{c € [0, ©]; Py (R, >c, all X; € A) < a} and
Yria = SUP{Y € [0’ 1]; Eeo(Pn;a(S) = 0[}.

The test i, is a MP test for testing H, against § = 6; at level a. We note that for all
cER

%min[{Pou(A)}"Qo{Zfll Y(X) = ne}, {Py,(A)}"@i{Ti=1 Y (X)) = ne}]

= pn (61) = max[{Py(4)}"Q{Yi-1 Y (X)) = nc}, {Ps(A)}"@:1{Ti-1 Y(X) < nc}];

contrast the two cases (i) ¢ > n7'1og ¢x;, or ¢ = n710g Cn;o and y,,« = %, and (ii) ¢ < n"'log
Cnia OF ¢ = n7'l0g Cp.o and y,.a < %. Furthermore,

lim, ... — n790g[{Ps,(A)}"@: {3 =1 Y(X) < nc}] = limo — n log[{Ps(A)}"
@i{X1 — Y(X) = —nc}] = sup{tec — (1 — ¢); ¢ = 0} — log Py (A) = m(c),
and
lim, ... — n7'log[ {P,(4)} "Qu{Ti=1 Y (X) = ne}] = molc).
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Following the same line of argument as in the proof of Theorem 2 in Chernoff (1952), the
desired result p *(6;) = M (6,, ;) is obtained. (Note that it is not necessarily true that mo(c)
= mu(c) for some c; for instance, if Pg(0) =1 and Py (0) = % = Py (1), then mo(c) = 0 if
¢ =0, mo(c) = if c>0and mi(c) = o if c <0, mi(c) =log 2 if ¢ = 0.)

Again consider the testing problem Hy: § € ©, against H,: 0 € 6, = O — O,. For a family
of tests {¢n..} We obtain

(2.13) limsup,. .. — n"'log p%(8) =< M(6, ©,) forall 4 € O,

where M(6, ©,) = inf (M (6, 6,); 6, € ©,}.
If P, and P, have the same support then M (6, 6,) can be expressed in terms of
Kullback-Leibler information numbers. Define probability measures P}, 0 < ¢t < 1, by
dP} = f(x; 61)f (x; 60)' exp(—y/(¢)) dp

and the Kullback-Leibler information number of P% with respect to P}, by K(t, t') =
E.(log dP}/dP}). The function

Y(t) =log f exp[t log{f(x; 61)/f (x; 6o)}] dPg,(x)

is a convex function on R' and strictly convex on [0, 1]. Moreover, Y(0) = ¢(1) = 0,
implying that there exists a unique point ¢* € [0, 1] satisfying ¥(¢*) = min{ Y(t); t €
R}. Hence mo(0) = m,(0) = —y(¢*). By monotonicity of the functions mo and my, it follows
that M (6, 6o) = —y(¢*). The first derivative of ¥ equals A (¢) = Elog{f (x; 00 /f (x; 60)} and
hence A (¢*) = 0. Since

K(t,0) =tA(@®) —¢(6), K1) =(—DAE) —¢(2)

and since A is strictly increasing on [0, 1], ¢* is the only point in [0, 1] satisfying K (¢*, 0)
= K(t* 1) and

(2.14) M (6, 6o) = K(t*, 0).

In the rest of this section we assume that the observations are distributed according to
a k-parameter exponential family. Hence the distribution of X; is given by
(2.15) dPy(x) = exp{0’'x — ¢ (0)} du(x), 0 € 6 C R*, x € R,

where p is a o-finite non-degenerate measure, © denotes the natural parameter space, i.e.
O = {0 € R* [ exp(8'x) du(x) < ©}, and

¥(0) = log J exp(d'x) du(x), 0 e 6.

Here 6’x denotes the inner product of § and x. It is well known that © is a convex set in R*
and we assume that it has a non-empty interior. Without loss of generality assume that p
is not supported on a flat and that 0 € ©. Let 6* = {§ € 6; E,| X;|| < »}. Note that
int © C 6* C O. For § € ©* define

A(0) = EoX..

The mapping A is 1 — 1 on 6*, Defining A = A(0*) = {A(0); § € ©*}, the inverse mapping
A! exists on A. Note that A(d) = grad Y(f) if § € int ©. Moreover, for § € int O, the
convariance matrix 3 of X; is the Hessian of ¢.

The Kullback-Leibler information number of P, with respect to P,, is defined by

1(8, 60) = Eolog dPy/dPs,(Xi) = y(8o) — ¢(6) + (6 — 66)'A(6),

where § € ©* and 6, € ©. There is an intimate relationship between the functions M and
I
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LEMMA 2.3. For all 6,, 6, € ©
M(Hl, 00) = mingee‘max{I(g, 00)7 I(gy 01)}

ProOF. Define § = 6+ £ (61 — 60), 0 < £ < 1, by I(, 60) = I(4, 61). In view of (2.14) we
have M (8, 6o) = 1(0, 6o) =1 (67, #1) and hence it suffices to prove M (6o, 6,) =< max{I(§ 6o),
I(& 6y)) for all £ € 6%, Let £ € ©* and without loss of generality let I(£, 6o) = I(4, 61).
Define £* = 6o + t*(£ — o), 0 < t* < 1, by I(£*, 6o) = I(¢*, 61). Since I(£¥, 0o) < I(¢, 6p) it
suffices to prove 1(8, 65) = I(¢*, 6). By definition of £* and @ we have (6; — 6))’A(£*) =
(8, — 60’A(6) and hence (6 — BoYA(£*) = (6 — 60’A(f), implying I(£*, 60) — I(6, 60) = I(£*,
#) = 0. This completes the proof of the lemma. [

Defining
L(x) = supeeo{8#'x — ¥(9)},
the size-a LR test of Ho:0 = 0 against H,:0 # 0 is given by -

1 L&) > due,
(plll{tx(s) = {0na L()gn) = dn;as
0 L(X») <duas

where X, =n"' Y7, X;,
d,.. = inf{d; supooeeopoﬂ(L(Xn) >d) = a},

and
8nia = sup{d € [0, 1]; supgeo,Eapria(S) = a}.

The distribution of X, is denoted by Pj.

THEOREM 2.4. Let§ € O, 0 # 0, and let t* € (0, 1) satisfy 1(¢*6,0) = I(t*9,6).If0 €
int © and the set {x; L(x) = I(¢*8, 0)} is closed, then the LR test of Hy:0=0 against H,: 0
# 0 is Chernoff efficient at 0.

PrOOF. Let ¢; > 0 be so small that {6; ||#|| = ¢} Cint © and let ey, -+, ex be the
standard basis of R*. Define

c* =1(t*6,0), e = cile* + ci'sup{v(@); | 0| = ¢} and H =Nl {x;] efx | < e}

Then we have foralli=1, ..., k that

Po(eiX, = c2) = J’ exp{—ncieix + ny(cie)} dPZ.(x)

e/x=cy

< exp{—ncic; + ny(cie)} < exp(—nc*)
and similarly Po(e/X, < —c;) < exp(—nc*), implying that
(2.16) Po(X,, & H) < 2k exp(—nc*).

The set H* = {x € H; L(x) = c*} is a compact set. Let ¢ > 0. For each x € H* there exists
g, € O such that 8.x — ¥(6.) > c¢* — &. Therefore Usen {y; 0xy — Y(0:) > c* — ¢} isan
open cover of the compact set H*. Hence H* c U, {y; 0}y — ¢(6,) > c* — ¢} for some
finite number p. Therefore

217)  Po(X, € H*) < Y21 Po{ 0%, — ¥(8) > c* — €}

=y2, J exp{—nb,x + ny(6;)} dPj(x) < p exp (—nc* + ne).
0, x—y(0,)>c*—¢
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Since ¢ was arbitrary, combination of (2.16) and (2.17) gives

liminf, . — n 'log Po(L(X,) = ¢*) = c*.

Further we have
Po{L(X,) <c*} =P, (¢*0°'X, — ¥(¢*0) < I(¢*0, 0)}

= J0’x56')\(t*0) exp{n(l — t*)0’x — ny(0) + ny(t*0)} dPg(x)

< exp{—nI(t*0, 8)} = exp(—nc*)
and hence liminf,_,.. — n"'log Py(L(X,) =< c*) = c*. Since
pLR(0) = max[Po(L(X,) = ¢*}, Po{L(Xy) < c*}],

it follows that liminf,_... — n"'log p¥(8) = c*. Moreover, (2.13) and (2.14) imply that c*
is the optimal Chernoff index. This completes the proof of the theorem. [

Denote by m the Lebesgue measure on R*.

COROLLARY 2.5. Ifpu << m then the set {x; L(x) = ¢} is closed for all c € R and hence
if 0 € int O the LR test of Hy: 0 = 0 against Hy: 0 # 0 is Chernoff efficient at § for all 4

# 0.

ProoF. The function L is convex. Moreover, {x; L(x) < %} is open by Theorem 9.5 in
Barndorff-Nielsen (1978) and hence {x; L(x) = ¢} is closed for allc € R. 0

Although the function L is convex on R*, the set {x; L(x) = c} is not necessarily closed
as can be seen by the following.

ExaMmpLE 2.1. Let (0, 0) = % and pu(A) = %m (A) for all Lebesgue measurable subsets
of [0, 1] X [0, 1]. Then L(x, 0) = o for all 0 < x < 1 and L(0, 0) = log 2. Hence for all ¢ >
log 2 the set {x; L(x) = c} is not closed.

In Section 3 more general testing problems in exponential families will be discussed.
This section is concluded by an example indicating that with Chernoff’s test criterion the
LR test has to be preferred to Wald’s (1943) and Rao’s (1947) approximation of the LR
test, cf. Rao (1973, Section 6e.2).

ExampPLE 2.2, Let X;, Xs, --- be iid. r.v.’s with exponential e(§) distribution, which
means that the density of X, w.r.t. the Lebesgue measure on (0, ) is given by # exp(—fx),
where 6, x € (0, »). Consider the testing problem Hy: § = 1 against H;:6 7 1. The LR test
rejects H, for large values of X, — log X,.. The approximations of the LR test proposed by
Wald and Rao coincide in this case; both tests reject H, for large values of (X, — 1)

Let 6, > 1;for0 <t <1 — 67" define A:(¢) = t — log(1 + ¢), ho(¢) = —¢ — log(1 — ¢) and
hs(t) = —log 6; — log(1 — ¢) — t — (1 — t)(1 — 61). Both A, and A are strictly increasing and
hs is strictly decreasing. Further A,(¢) < hq(¢) for all £ € (0, 1 — 61 1, 21(0) = hs(0) < A3(0)
and A3(1 — 071 = 0 < A(1 — 07Y). By large deviation theory

lim,.. —n " log Py {(X, — 1) > ¢} = h(Ve),
lim, . —n!log Py, {(X, — 1)2=< ¢} = hs(Ve).

In view of Theorem 2.2, the Chernoff index of the Wald and Rao test 0" (6,) is given by
hs(Yec), where c is defined by A (ve) = hs(ve). The Chernoff index of the LR test o™ (6:)
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is given by h;(v/d), where d is defined by A, (vVd) = hs(¥d) . This implies that p"%(6;) <
o8 (6,) for all 6, > 1.

3. Chernoff Deficiency. In this section the concept of Chernoff deficiency is intro-
duced in the same general context as has been used in Section 2 to introduce Chernoff
efficiency. After that, the Chernoff deficiency of LR tests in exponential families is
discussed.

Suppose the hypothesis Hy: 0 € ©, has to be tested against H,:6 € 6, on the basis of the
observations X, - --, X,,. Let N" (a, 8) = inf N?(a, 8), where ¢ runs through all families of
tests of Hy. We say that a family of tests { pn.} is deficient in the sense of Chernoff at  of
order O (h(N*)) if

limsupajo { N?(a, 8) — N* (a, 8) }/R(N" (o, §)) < o0,
where A:N — R is a positive non-decreasing function. Deficiency of order ¢(h(N")) is

similarly defined. Note that if a family of tests { gn.} satisfying (2.8) is Chernoff efficient
at 6, then the family is deficient in the sense of Chernoff at § of order o (N*).

ExampLE 3.1. Let X;, X2, --- be iid. 2-dimensional r.v.’s with normal N(6; I.)
distributions, where § € R? and I, is the 2 X 2 identity matrix. Consider the testing
problem H,:6 = (0, 0) against @ # (0, 0). Normal distribution theory yields

log o (8) = —87'n|| 8> — Ylog n + 0O(1)
and
log px®(0) = —87'n||0||* — Y logn + O(1) asn— o,
where || - || denotes the Euclidean norm. Hence by (2.7) and (2.9)
N'®(a, ) = N*(a, 6) + 2|60 7% log N* (a, 6) + O(1)
?\? a — 0, implying that the LR test is deficient in the sense of Chernoff of order ¢ (log
*).

In the rest of this section it is assumed that the observations are distributed according
to a k-parameter exponential family. For notation see the last part of Section 2.

In many testing problems in univariate exponential families and in some exceptional
testing problems in multivariate exponential families, the LR test is deficient in the sense
of Chernoff of order ¢ (1), e.g. in testing Hy:0® < 0% against o> > o§ in N (&, o°) families
where the LR test is MP. However, in typical multivariate cases the LR test is deficient of
order O (log N*), cf. Example 3.1. Before stating the main result of this section we need
some more notation. We define the “Kullback-Leibler distance” from a point § € ©* to a
set K C © by

I(6, K) = inf{I(6, §); £ € K}.

We also define the “Kullback-Leibler distance” I(K) from the boundary of © to a set K
Cint 6,

I(K) = sup[a € R; {6; 1(0, K) = a} C K, C int O, where K, is compact].

THEOREM 3.1. Suppose that for alln € N and a € (0, 1) the LR test satisfies
(3~1) SUPgeoonK an(P}[;l}(S) = &

for some compact subset K of int © and some ¢ > 0. Then the LR test is deficient in the
sense of Chernoff at 0 of order O (log N*) for those points § € int O, satisfying M (6, ©o)
<min{I(©, N K), I(6)}.
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Condition (3.1) can be interpreted as a very weak form of similarity. Note that in many
cases I(6y N K) = I(8) = x. Before proving Theorem 3.1 we mention the following

COROLLARY 3.2. If©, C K C int O for some compact subset K, the LR test is deficient
in the sense of Chernoff at 0 of order O (log N*) for those points § € int O, satisfying
M(8, ©0) <min(1(6,), I(8)).

Note that the case of a simple hypothesis is covered by Corollary 3.2.

PRrOOF OF THEOREM 3.1. Let 6, € int O, satisfy M (6;, ©y) < min (I(6, N K), I(6,)).
By Lemma 2.3 we have for all § € 6*

(3.2) 1(6,00) <M (6:,00) = 1(6,0,)=M(6:,60).

The size-a LR test of H, based on n observations is given by

1 L(Xn) > dn;m
¢,IZ§(S) = sn;a L(Xn) = dn;a»
0 L(X,) < dus
where L is defined by
o0 " if supgee, {#6x — ¥(6p) } =

L(x) = {supseo{0'x —¢(8)}
— Supgee, {06x — Y(6o)} otherwise

and
dn.e = inf{d; supg,eco, Po (L (X,) > d) < o},
e = sup{8 € [0, 1]; supgeo, Eopprn(S) < a}.

In the particular case that X, € A, A" (%,) is the maximum likelihood estimate of § and
thus L (x,) = I(A7'(X,), ©). Let the size a, of the LR test be such that Ona, = 1 and dp,,
= M (6, ©o). In view of (3.1), the properties of §;, Lemma 3.2 in Kallenberg (1981) and
(3.2) we have for some positive constants ¢, and c.

a, < ¢; n'2*% 2 exp{—nM (6:, 6o) }
and
1— Eopin (S) = Po[ X, € A (6, 1(0, 6,) < M(6:,60)}]= czn'/**? exp{—nM (6:,0)}.
This implies
3.3) os®(0:) =< csn'/?*? exp{—nM (6, 60)},

where ¢3 = max(cy, ¢2).
Let 6o, € 6, satisfy

M6y, 00.) = M (6, ) + can™' < I1(6y)

for all n and some ¢, > 0 and define 0} = 6, + £ (61 — 05,), 0 < ¢} < 1, by I(8, 6on) =
I8}, 6,) = M(8,, 6o.). Consider the level-a MP test @ of 6o, against 6, given by

1 if (6 — Oon) ' Xn > Cnia
q’;—;(s) = {VYma if(6— 007!.),)§n = Cnja
0 if (601 — 6on)' X\, < Cria

where the constants c.. and vy.. are determined by Eg, pra (S) = a. If ¢pe = (6; —
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6o.)'A(6}) then
pr (@, 01) = a = Py, { (61 — 00n) ' X > (61 — 60n) 'A(6%) ).
If Cso > (61 — B0,) (%) then
pit (@, 01) =1~ Egg;it(S) = P, { (81 — bon)' X < (6 — 60n) A (63) ).
Hence
(34)  pit(6:) = min(Pe,[ (8% — b0,) (X, — A(6%)} > 0],
Po[(6: — 62) (X, — \(6F)} < 0]).

Since 1(0, 6,) = M(61, ©o) + c4 < I(6:), the points 6,5 belong to some compact set K* C
int ©. Application of the Berry-Esséen theorem yields that there exists ¢; > 0 such that

P [ {(8% — Bon) Zg; (6% — 00,) }/2(0% — o) { X — A(6%)} € (0, csn7']] = 72,

By Lemma 3.1.(b) in Kallenberg (1981) it follows that the sequence { |6} — 6o. |} is
bounded. Hence, writing S, = {x; 0 < (0% — o.)" (x —A(8%)) < ¢s R [0%F — Oon)’ Yo
(6% — 6on) 1'%}

Py, [ (6% — 60,)" { X — A(8%)} > 0] = J exp{n(on — 67)'x — ny (6on)

S,

n

(3.5) + ny(6%)} dP%: (x) = n~V? exp[—nI (8%, Oon) — s || 0% — bon ||
sup{u' Y w; || ul| =1, £ € K*}] = con™"* exp{—nM(6:, ©0) }
for some positive constant cs. Similarly one shows that for some ¢; > 0
(3.6) Po[ (6 — 6%) (X, —A(6¥)} < 0] = cn"/? exp{—nM (6, 6)}.
Combination of (3.3), (3.4), (3.5) and (3.6) leads to
csn™ % exp{—nM (6:, ©0)} = pi* (61) < p; (1) < pER(61) = csn'**™? exp{—nM (6,1, 6) },
where ¢g = min (cs, ¢7). In view of (2.7) and (2.9) it follows that
0=<N"(a, 6,) — N"(a, 61) < Ya(k — 1) M (61, 00) " log N* (a, 1) + co

for some ¢y > 0. This completes the proof of Theorem 3.1. 0
The following examples are applications of Theorem 3.1.

ExampLE 3.2. Let {X,} be a sequence of iid. r.v.’s with p-dimensional normal N(§;
¥) distributions and consider the testing problem Ho:¢ = & against £ # & where & € R is
given. The LR test, the familiar T*-test, is similar; hence (3.1) is fulfilled for every compact
set K C int © = ©. Moreover, it is easily verified that M (68, 6y) < min(I(6, N K), 1(4))
= o for all § € int ©; = O, and all compact K C int © = ©. This implies that the T>-test
is deficient in the sense of Chernoff at (¢£,X ) of order ¢ (log N*) for all points (£ X ) with

£# &.
In the particular case p = 1 we have the following.

PROPOSITION 3.3. For N (¢, o°) r.v.’s the two-sided t-test of the hypothesis Hy:¢ = & is
deficient in the sense of Chernoff of order 10 (1) at (&1, 0?) for all & # &, o > 0.

ProOF. Let (£, 07) be a fixed alternative. Without loss of generality assume that & =
0 and ¢, > 0. The measure p, concentrated on the parabola {(x, x*); x € R'} in R? is
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defined by
(3.7 p((a, b] X (¢, d]) =Pr{UE (a, b], U € (c, d]},

where U has a standard normal distribution. The two-parameter exponential family {Py;
# € O} with P, defined by (2.15) and (3.7) corresponds to the family of N(¢ ¢%)
distributions, where 8 = (8, §?) and (£ o) are related by 6 = ¢72¢ and 6? =
%(1 — ¢7%). So we consider the testing problem H,:0" = 0 against H;:0® # 0 with the
available independent observations Y7, - - -, Y, which are distributed according to P,. Let
the size a, of the LR test, i.e. the two-sided ¢-test, be such that the acceptance region
equals {Y,; I(A"1(Y,), o) < M(6:, ©)}. Note that O, = {(0, t); ¢t < %} and 6, =
(61", 6?) with 8" > 0. Since by partial integration

f {1 + (n —1)—1y2}—n/2dy — t—l{l + (n _ 1)—1t2}—(n—2)/2 _

j YA+ (-1 )Y P dy = {14 (n - )Y P01+ 0077}

as t — o uniformly in 7, and since the norming constant in the ¢,-distribution tends to
(27)™Y? as n — o, we obtain

a, = exp{—nM (6, 6) — % lbg n+ 0()}asn— oo,
Let 6, € O, satisfy M (6,, 6,) = M (6, ©y) and define 8* = 6, + t* (6, — 65 ),0<t* <1, by
1(6*%, 60) = I1(6*, 6:) = M (61, 6o). Since I(8:, o) < M (6, ©o) implies I1(6, 6:) > M (61, Oo)
(cf. Lemma 2.3), the acceptance region of the LR test and the set {Y,; I(A\"(Y,), 1) <
M(6,, ©o)} are disjoint sets. Moreover, both sets are convex and A(6*) is a common
boundary po~int (suppgse that I(6*,600) = I(6*, 6’0)_— ¢ for some 6 € 6y and ¢ > 0, then
there exists § with 1(6, 65) < I(68*, 6y) — Y%¢e and I1(4, 6,) < I(6*, 6,); in view of Lemma 2.3
a contradiction with the definition of #* is obtained). The unique suppozting hyperplarie
to the set { Y,; I(A™*(Y,), 6:) < M(6:, 6,)} through A(6*) is given by { ¥,.; (8: — 6*)' (Y,
— A(6*)) = 0}. Hence
{Y.; I(N(Y,), 80) < M(8:,,60)) C {V,; (6, —6*)' (Y, —\(6*)) <0)
and thus (cf. Hoeffding, 1967, formula (12))
1 — Eo i, (S) < Py, [(6: — 6*)' {¥. — N (6%)} < 0]
= ein V2 exp{—nlI(6*, 6,)} = cin” ' exp{—nM (6, 6,) }
for some positive constant ¢;. This implies
(3.8) P (01) < con”V? exp{—nM (61, 60) }
for some positive constant c¢;. Since
(3.9) P (0) = min(Pe[ (8 — 80)' (T, — A(8*)) > 0, Pu (61 — )’ { ¥ —A(6*)} < O])
= exp{—nM(6,,00) — %logn+ O(1)} asn— w,
the proof is completed by combination of (2.7), (2.9), (3.8) and (3.9). O

ExaMPLE 3.3. Suppose the sequence {X,} is distributed as in Example 3.1 and
consider the testing problem Hy: X = ¥, against ¥ # X,. Since the LR test is again similar
and M (64, ©9) < min{I(6o N K), I(8)} = o for all § € int O, and all compact sets K C int
O, the LR test is deficient in the sense of Chernoff at (£ X ) of order O (log N*) for all
points (£ X) with ¥ # ¥o. It turns out that in the particular case p = 1 the LR test is
deficient of order (@(1). Note that in this case the LR test is slightly different from the
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familiar equal-tailed Chi squared test. However, the latter test is also deficient of order
o).

ExampLE 3.4. Let {X,} be a sequence of iid. r.v’s with k-dimensional N (& %)
distributions, where the covariance matrix ¥, is known. Suppose the hypothesis Hy: £ €
E, has to be tested against ¢ & =, where Z, C R*. Condition (3.1) only serves to obtain an
appropriate upper bound for p*(6), cf. (3.3). However, in this case it is much easier to
derive such an upper bound directly. Since we investigate an arbitrary null hypothesis, we
assume without loss of generality that ¥, is the identity I.. Then the dominating measure
appearing in the definition of exponential families is the N (0; I,) distribution and 8 = £
The functions y, A and I are given by y(8) = % 8]|% A\(0) = 0 and I(8, §) = %| 6 — §)>
Hence the LR test rejects H, iff inf{% || X, — 6o || % 6o € Oy} is large. Let 6; € int O, and let
the size a, of the LR test be such that the critical value of the LR test statistic equals
M(Bl, 0()). Then

O, = Supooeenpgo {inf,eoo " X,, -7 " 2> 2M(01, 90)}

= supgeo,Pa (| Xn — o ||> = 2M (61, 60))

= J {F(I/Zk)zk/z}—le‘ﬂx(k-%/z dx
2

nM(0,0,)
=< cn*?"% exp{—nM (6,, 60) }

for some constant ¢ > 0. Since I(6;) = w, and since in the rest of the proof of Theorem 3.1
we have used only M (6, ©,) < I(6), the LR test is again deficient in the sense of Chernoff
of order @(log N*) for all £ € int (R* — =,).
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