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ESTIMATION OF NONLINEAR ERRORS-IN-VARIABLES MODELS

By KirRk M. WOLTER AND WAYNE A. FULLER
U. S. Bureau of the Census and Iowa State University

An estimation procedure is presented for the coefficients of the nonlinear
functional relation, where observations are subject to measurement error. The
distributional properties of the estimators are derived, and a consistent esti-
mator of the covariance matrix is given. In deriving the results it is assumed
that the covariance matrix of the observational errors is known and that this
covariance matrix is o(n~"/?), where n is the index of the sequence of esti-
mators.

1. Introduction. The term errors-in-variables refers to the general class of statistical
models in which the “true” values of a set of variables satisfy a given mathematical
relationship. The observable variables are the sum of the “true” values and errors of
measurement. Given the observations, the parameters of the relationship are to be
estimated. Such models occur in both the physical sciences and the social sciences. The
models were popular in economics in the 1930’s and have recently enjoyed a resurgence of
popularity; cf. Griliches (1974). For other applications, see Bohrnstedt and Carter (1971)
and Wolter and Fuller (1975). A wide area of application arises from the fact that almost
all survey data collected by personal interview are subject to errors of measurement; cf.
Dalenius (1977).

To define the model, let (2, %, ) be a probability space, and let {b,.} -1 and {a.} -1
be sequences of positive real numbers such that n = b,a, forn =1, 2, ..., 0. We assume
the existence of a sequence of experiments indexed by n. The functional relationship is

(1.1) y¢ =gx?; B°),
and (Y, Xn:t=1,2, -+, b,) are observed in the nth experiment, where
Y"t = y(t) +enl, Xnt = x(t) + Wyt

The p X 1 parameter vector B8° is an interior point of ®, a compact, convex subset of p
dimensional Euclidian space %#7; {x{} is a sequence of fixed, 1 X g vectors; the vectors x{
are members of the set o/ C #7; and g:#”*? — #' is a real valued continuous function.
The random variables (e, u..), defined on (2, %, ), denote errors of measurement. The
unknown vector 8° is to be estimated. Model (1.1) is nonlinear if g(x; 8) is nonlinear in
either x or S.

Algorithms for estimating 8° for nonlinear g have been given by Deming (1931, 1943),
Cook (1931), Dolby and Lipton (1972), Dolby (1972), Britt and Luecke (1973), and Clutton-
Brock (1967). Estimation of specific nonlinear models has been considered by O‘Neill et al.
(1969), Hey and Hey (1960), Chan (1965), Kendall and Stuart (1961), and Griliches and
Ringstad (1970).

Anderson (1951) obtained the maximum likelihood estimator of 8° for the linear model
with b, = b and a;' = O(n™"') and proved the asymptotic normality of the estimator.
Asymptotic normality of the maximum likelihood estimator for 8° for the linear model has
been established by Fuller (1980) for the univariate model and by Gleser (1981) for the
multivariate model under the assumption that a, = 1 and b, = n.
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Villegas (1969) considered the nonlinear model with b, = k and a, = n. This model is
statistically equivalent to an experiment with n observations at each of % true values of x.
For these conditions, Villegas presented an estimator of 8° whose error, normalized by
n'/? is asymptotically normal with zero mean.

In this article, alternative estimators for the parameters of the nonlinear functional
model are constructed and the statistical properties are examined under less restrictive
assumptions than those of Villegas. An estimator is presented that is asymptotically
normal under the assumption that a;' = o(n™"?). The main distributional results are
stated in Section 2. A modification that improves the small sample behavior of the
estimators is given in Section 3. A Monte Carlo comparison of the various estimators is
presented in Section 4. Section 5 contains the proofs of the theorems.

2. An iterative estimator of 8°. The estimator developed in this section is a
modification of the maximum likelihood estimator for the model with normal measurement
error. The statistical properties of the estimator will be derived for a somewhat wider class
of distributions. In deriving our results, we assume that the covariance matrix of (e.;, W),
denoted by ¥.,, is nonsingular and of order a;;*. One way of interpretating this assumption
is to let a, denote the number of observations made at each point (y{, x7). Under this
interpretation, the total number of observations is b,a, = n and each of the vectors (Y,
X,.) used in the analysis is the mean of a, replicates.

We assume g(x; B) possesses continuous first and second derivatives with respect to
both arguments on & X ©. Let g.(z; #) denote the g-dimensional row vector of partial
derivatives of g(x; B) with respect to the elements of x evaluated at (z; 9); let gz(z; @)
denote the p-dimensional column vector of partial derivatives with respect to the elements
of B evaluated at (z; 9); let g..(z; @) denote the ¢ X ¢ matrix of second partial derivatives
with respect to the elements of x evaluated at (z; 8); and let gg. (z; ) denote the p X ¢
matrix of second partial derivatives with respect to the elements of 8 and x, evaluated at
(z; 6).

Assume (e, W) to be independent, normal (0, ¥,) random variables, where ¥, is
known. Then the maximum likelihood estimators (MLE) are those values of x; and 8
contained in &/ X @ that minimize the sum of squares

(2.1) 25721 q(ﬂ, X¢; Yoty Xne)

= 25721 {Ynt - g(x;; B), X — Xt} 2‘-21 {Ynt - g(xt; B), X — Xt}l-

To condense the notation, we henceforth suppress the subscript n, when no confusion
will result.

While an explicit expression for the MLE of 8° has not been obtained, one can construct
an iterative procedure leading to an estimator of 8°. To this end, let B denote a preliminary
estimator of 8°. We suggest the ordinary least squares estimator, and this will be discussed
further in Section 5. Let X; be the value of x; contained in .o/ that minimizes q( ,E, X Y,
X,). Assuming X, is in the interior of <7, X, satisfies

(22)  o*{Y.— g(%ks; B) }8:(ks; B) + (Y., — g(%s; B)} X
+ (X, — %,} T g. (% B) + (X, — %} 3*“ =0,

2_1 =|:;ue guu] .
To obtain a geometric interpretation of %, let ¥ = I. Then %; is the x-coordinate of the
point on g(x; B8) that is the minimum Euclidian distance from (Y;, X;). If ¥ is not the
identity matrix, then the distance being minimized is a weighted distance.
By expanding g(x; 8) in a Taylor series about the point (%.; 8) and retaining only the
linear terms, we obtain

(2.3) Ay: = gh(%s; B)(AB) + g.(Rs; B)(AX.),
where 5, = g(X;; B), AB = B— B, Ax, = x, — %,, and Ay, = y; — J.. Letting é; = Y, — y, and

where ¥ is partitioned as
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1, = X, — %, the local approximation to the sum of squares (2.1) is

(2.4) Yo, {é — Ay, G, — Ax,} $7' {(é, — Ay, G, — Ax,)".
The value of AB, say AB, which minimizes (2.4) subject to (2.3) satisfies
25) M. (AB) = n™" Tio1 657 8o (%e; B) (6, — Gugl(%s; B)),
where

alz)t = {19 - gx(it; E)} 2 {19 - gx(ﬁt; B_)}”
Mxx =n"! Zf=1 & gs(Xs; ﬁ)gk(z‘n; B_)~
Hence, an improved estimator of 8° is given by
B=B+ B

The construction of £ is based on a local quadratic approximation to (2.1). Assuming
that a," = o(n™"/*) and that 8 — B° = O, (max[a,", n™"/*]), it is demonstrated in Theorem
1 that n™/%(8 — B8°) converges in distribution to a normal random variable.

We next develop a modified estimator whose limiting distribution can be established
under the weaker assumption that a;' = o(n™"/%). The weaker assumption is useful
because, interpreting a, as the number of replicates, the modified estimator will be
applicable in experiments with fewer replicates. That is, the modified estimator is appli-
cable in situations where the variance of the measurement error is larger.

The modification was constructed after investigating the right side of Equation (2.5). If
a;! = o(n"?), then

é — g« (ke B)A; — % tr{gu(Re; B) (1, — Bu)} = g5 Ris B)BB) + g + 0, (n7),
where
g = e — g (x; BO)u; — % tr{g..(x?; B%) (win, — X))}

On the basis of this result, the modified estimator is

B=B+1B,
where Af satisfies
2.6) M. (AB) = n7 $i1 62 gs(%e; By

Ge = & — 4,85 (%s; B) — % tr{geRs; B) (WAL, — X))

The limiting distributions of the estimators are given in Theorems 1 and 2. The proofs
are presented in Section 5.

THEOREM 1. Let Model (1.1) hold and assume:
(i)  The partial derivatives through order two of g(x; B) are continuous and bounded

on o/ X 0.

(i) The preliminary estimator B € © satisfies B — B° = O,(max[a;’, n7/?]).
(i) The random variables (e,:, Un:) are mutually independent (0, ¥,) random variables.
(iv) The error covariance matrices ¥, are known and positive definite.
(v) Thep X p matrix

m,, =n"' Yo 0. gp(x?; BO)gH(x?; B)
is positive definite for all b = b, > p, where
oo = {1, — g(x%; 8°)) ¥ (1, — g:(x?; B°))".

(vi) lim,_,. m,, = m,, exists and is positive definite.
(vii) The error covariance matrices satisfy

s
. /|
lim, .« a, ¥.= ®,

i /



542 KIRK M. WOLTER AND WAYNE A. FULLER

where ® is nonsingular, and the 2 + § moments of a*(en, u.:) are bounded for
some & > 0.
(viii) The elements of the sequence {a,}u-1 satisfy a,' = o(n~"?).

Then,
n¥ (B — B°) —» N(0, mzl). u|

THEOREM 2. Let Model (1.1) and Assumptions (ii) through (vi) of Theorem 1 hold.
Assume that (ia) the partial derivatives through order three of g(x; B) are continuous
and bounded on £ X ©; (viia) the error covariance matrices satisfy limn.a,%. = ®,
where ® is nonsingular, and E{| (e.; un)|*} = La;” for some real L and all t and n,
(viiia) limp—.n2a;! = 0.

Then,

n'2(B — B%) -« N(0, mz;l). . 0

Assumption (v) is an assumption of convenience because Assumptions (vi) and (vii)
guarantee positive definite matrices for sufficiently large n. Also, Assumption (iv) is an
assumption of convenience because the data could be transformed to obtain the nonsingular
model if ¥ were singular.

3. Comments on the estimation procedure. The estimation procedure defined in

Section 2 can be summarized as follows:

(a) Compute a preliminary estimator of 8°, say B.

(b) Fort=1, --., b, compute X; defined by (2.2).

(c) Compute B = B + AB, where AB is defined in (2.6).

This procedure can be iterated using ﬁ as the preliminary estimator in a second round of
calculation. For any finite number of iterations, the asymptotic properties of the final
estimator are given in Theorem 2. The maximum likelihood estimator can be obtained as
the limit of the iteration by including a modification in the procedure to guarantee
convergence.

For many g functions, obtaining a solution to (2.2) will be difficult. Expanding (2.2) in
a Taylor series about the point X, gives an approximation, X, to X, where X, satisfies the
linear system

0 =0"{Y, — g(X; B)} {g8:(X;; B) + £}
(3.1) + (& — Xo) (0 T—g2(Xe; B)g:(Xs; B) + (Y. — 8(Xs; B)} 8:(Xs; B)]
- gu(Xy; BE - $Ug(X,; B) — ).

Under the assumptions of Section 2, X, = %, + Op(a;"). Thus, B may be defined with x,
replacing %,, and the limiting distribution of # will remain as given in Theorem 2. Likewise,
in iterating the estimator, the second approximation to x{ can be computed using (3.1)
with X, replacing X, as the initial estimate.

It is worth noting that our estimation procedure is applicable to an extremely bread
class of problems. The procedure is applicable to models where some of the variables are
measured without error. If ¥ is singular, it is possible to define a linear transformation of
(Y:, X;) such that some variables have zero error. The function g(-) is transformed
accordingly. In this case, the rows and columns of ¥ which correspond to the error-free
variables are identically zero and the “estimated values” for such variables are equal to
the observed values. Equation (2.2) or (3.1) is applied to that portion of the x-vector
measured with error, i.e. to that portion for which the error covariance matrix is nonsin-
gular. If all of the “independent” variables are measured without error, i.e. £,, = 0, then
the errors-in-variables model reduces to the customary nonlinear “regression” model.
Implicit models of the form g(x?; 8°) = 0 may be estimated by taking y? = 0 and o2 = 0.

Preliminary Monte Carlo work demonstrated that the small sample distribution func-



NONLINEAR ERRORS-IN-VARIABLES 543

tion of the maximum likelihood estimator (the estimator B iterated to convergence) had
“thick tails.” This effect can be reduced by using an estimator similar to that studied by
Fuller (1980), obtained by replacing %, with X, in the construction of the estimator, where

(32) ig = (1 - b_la)i, + b_laXt

and a is a fixed number (1 = a < 4).

Preliminary Monte Carlo work also indicated that M.. was often a poor estimator of
the variance of ﬁ One source of bias in M, as an estimator of M., is due to the fact that
the expectation of (X;%,) contains a term arising from the variance of X, as an estimator of
x?. An additional bias is associated with the fact that (Y;, X;) is being projected onto a
nonlinear surface. Expanding gs(%.; B) about (x?; 8°), we obtain

(33) gk B) = go(x¥; B°) + gas(ke; BN (B — B°) + gpu(x?; BO) (R — xP) + C,
where the ith element of C is
Ci = %(&k, — x) Rdx]; B°) (k. — x?),
the jkth element of Ri(x!; B°) is
a°g(x]; B)
(e - ¢
T (X3 BO) 3B: 070X ’

x! is on the line segment joining x¢ and %,, and B! is on the line segment joining B° and
B. Because E{| %, — x?|%} = O(a;"), there is a bias in M. of O(az"). }

Equation (3.3) suggests that the variance of the limiting distribution of n'?(8 — ) be
estimated by

(3.4) (M. — A7,
where M., =n7' 3, 67 wiw,,
the ith element of w, is
wi = gpil%s; B) — % tr AT Rilks; B),

the ith element of gg(X,; B) is gui(X:; B),

A, =X + $eg(&; B) + gu&s PE + gi(Xs; B) g&i; B)o”,

A =Ne)n™ Tty 63 gaxlXe; BYAT gle(Xs; B),

=i AT
A is the smallest root of the determinantal equation
| Mo — A" $hes 6o gelkes BVAT'8:(%s B) | = 0,

and « is the constant introduced in (3.2). This modification of M., should result in several
improvements. First, the use of @ guarantees that the matrix M. — A is nonsingular.
Second, based on (3.3), w, should give a better estimator of gsz(x?; B°) than gs(%:; B),
because the trace term in w, estimates the term C;. Third, A is an estimator of the bias in
M., arising from the fact that %, is an estimator of x/. Finally, replacing X; by X, is
analogous to the modification introduced by Fuller for the linear model.

The considerations leading to (3.2) and (3.4) suggest a class of estimators whose
asymptotic properties are identical with those of ﬁ, but whose small sample properties
may be superior. We denote this class of estimators by B1(a), where the estimator is
defined by the expression for 8, with %, replacing %, and (M..., — A) replacing M... That is

(3.5) Bl =B+ Muw — A H{n' T 5ol 8p(Xe; B)G1},

where 5% and §; are defined analogous to 67, and/g, with X, replacing X.. In the next section,
we investigate the sampling behavior of 8 (1), B(4), B, and B.
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TABLE 1
Monte Carlo Properties of Estimators of B2 in Model (4.1)
(500 samples)
Parameter ) Percentiles

Set Estimator Mean Var. MSE
25% 75%
(i) B 1.374 1.808 1.948 0.644 1.861
B'z 1.233 1.583 1.638 0.644 1.652
1) 1199 1213 1.252 0.629  1.633
B1(4) 1.046 0.761 0.763 0.592 1.486
(ii) B 1.055 0.131 0.134 0.804 1.266
B 1041 0115 0117 0810 1.241
Bi@) 1.039 0.113 0.114 0.810 1.234
Bl4) 1.014 0.103 0.104 0.800 1.205
(1ii) B 1.009 0.0187 0.0188  0.911 1.095
B, 1.004 0.0182 0.0182 0.906 1.090
T 1.001 0.0181 0.0181 0.904 1.086

B1(4) 0995 00178 00178 0899 1078

4. Monte Carlo Results. Estimators of the parameters of the model
(4.1) Ye= Bo + Brx: + Bax?

were studied using the Monte Carlo method. In this study, measurement errors (e;, u:)

were generated as a random sample from a bivariate normal (0, ¥) distribution, the true

parameter vector was B8° = (.25, 1, 1)’, and the remaining parameters were selected from

one of the following sets:

(i) Sample size b = 33, the x-values (x1, x2, -+, xs3) = (1, 1, 1) ® (-0.5, —0.4, —0.3, - - -,
0.4, 0.5), and ¥ = 0.0324L.

(ii) Sample size b = 66, the x-values (x1, x2, + -+, xes) = (1,1, 1,1, 1, 1) ® (0.5, —0.4, —0.3,
.++,04,05), and ¥ = 0.01441.

(iii) Sample size and x-values as in parameter set (ii) but

- 0.0081 0.0027
0.0027 0.0036 / °

The ratio of the standard error o, to the root mean square for x is 0.5692, 0.3795, and
0.1897 for parameter sets (i), (ii), and (iii), respectively. .

For each parameter set, 500 samples were generated and the four estimators B, 8, 81(1),
and B7(4) computed for each sample. The estimators are defined in equations (2.4), (2.5)
and (3.5) respectively. The ordinary least squares estimator was used as the preliminary
estimator and the four estimators were iterated to convergence. While certain x-values
were repeated, this fact was not used in the estimation.

Table 1 contains the Monte Carlo properties of the four estimators of 83. The estimator
biases are generally in the order

| Bias{8'(4)} | = |Bias{8'(1)} | =|Bias{8)} | = |Bias{8} |.

This result is most evident for parameter set (i), where the bias in [;’2 is eight times that of
B>(4). In most cases the quadratic coefficient was overestimated.
The estimator mean squared errors are in the same order as the bias

MSE{B'(4)} = MSE{81(1)} = MSE{f} < MSE{8}.

The 25th and 75th percentiles are also given for each estimator and parameter set. The
order of the differences between these percentiles generally agrees with the order of the
estimator variances. The distributions of 8 and B1(1) tend to be more symmetric than the
distribution of B7(4).

For the small error variances of parameter set (iii), the four estimators are very similar.
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TABLE 2
Monte Carlo Percentiles for Studentized Statistics
(500 samples)
Parameter . Percentiles
Set Statistic >
5% 10% 50% 90% 95%
(o) & -3550 —2446 0331 2122 2355
t, -3.538 —2.437 0.250 1.933 2.211
ti(1) -2.355 -1.676 0.063 1.158 1.483
{; (4) —2.554 —1.745 - —0.083 1.059 1.307
(i) t —-2.491 -2.015 0.089 2.132 2.539
t, —2.437 -1.987 0.088 1.982 2.354
ti(1) -2.010 -1.575 0.055 1.458 1.766
{; (4) —2.080 -1.686 —0.062 1.377 1.692
(idd) t —-1.763 -1.399 0.001 1.450 1.919
t, —1.786 —-1.421 —0.043 1.385 1.841
ti) -1.690 -1.366 —0.056 1.295 1.724
ti@) -1.737 -1412 -0.115 1.240 1.673
TABLE 3
Ratio of Asymptotic Variance to Monte Carlo Variance
Estimator
Parameter Set R -
Ba -2 BiD Bl

(i) 0.15 0.17 0.22 0.35

(ii) 0.46 0.52 0.53 0.58

(iii) 0.85 0.88 0.88 0.90

For large error variances and (or) small sample sizes, B7(1) and B7(4) are the preferred
estimators. It is somewhat surprising that the Monte Carlo moments of B are of the same
order as those of the other estimators, because it is known that the maximum likelihood
estimator of 8° does not possess finite moments for the linear errors-in-variables model.

Statistics analogous to Student’s ¢ were also computed for each parameter set, and the
sample percentiles are given in Table 2. These statistics used the estimated variance from
the inverse of the M-matrices on the left side of the expressions defining ,B, B, B (1), and
B1(4), respectively. There is reasonable agreement between the sample percentiles for tt(1)
and tf(4) and the theoretical percentiles for the N(0, 1) distribution. The agreement
improves as the sample size increases and (or) the error variance decreases. The statlstlcs
tT(l) and t}(4) have negatively skewed distributions. The tails of the distributions of tand
f are heavy in comparison to the N(0, 1) distribution for parameter sets (i) and (ii). The
modification to the M-matrix introduced in (3.4) substantially improves the estimated
variances and the corresponding studentized statistics. That is, the tail percentiles of ti1)
and ¢}(4) are in much better agreement with those of the normal distribution than are the
tail percentiles of t, and 2.

The variance of the asymptotic distribution is generally smaller than the Monte Carlo
variance for all estimators and parameter sets, though the discrepancy declines as the error
variance declines relative to the variability in x, i.e. as one moves from parameter set (i) to
(iii). See Table 3.

In summary, the Monte Carlo results suggest that the estimators 7(1) and 8 f(4) can be
recommended in samples as small as 30 with the ratio of error variance to variability in x
as large as 0.3. In such samples, the variance of the estimator is much larger than theory
suggests, but the “t-statistics” have a distribution reasonably close to N(0, 1). Therefore,
error rates for inferences based upon the sample statistics will not deviate greatly from the
nominal rates.
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5. Proofs of primary results. The classical results on the consistency and asymp-
totic normality of the maximum likelihood estimates are not immediately applicable for
the errors-in-variables model of Section 2, because the number of unknown incidental
parameters increases with increasing sample size.

The proof of Theorem 1 is not presented because it is nearly identical to that of
Theorem 2. As a first step in obtaining the limiting distribution of B, the order of the error
in %, is established.

LeEmMMA 1. Let Model (1.1) and Assumptions (i) through (iv), (viia), and (viiia) hold.
Then

%, = x{ + 8, + O,(max[a;’, n7"?])
fort=1, ..., b, where
G 0= [ {E o+ Frgaals B) + e (3 + o gulxd; B) AT
Ar= X + Tog(x¥; B°) + gixd; BOE” + gix?; BO)g.(x(; B)o™,
and X, is the root of (2.1) maximizing the likelihood. Furthermore,
(5.2) E(|%,—x?|*) = O(az?).

ProoF. By definition, %, is the value of x, in </ that minimizes D*(x,) = g( ﬁ, X Y,
X.). Since D*(x?) = O,(1) it follows that %, — x? = O,(a,"?). Similarly E(| %, — x?|*) =
O(a;?) because E{D*(x9)} = O(1).

Now expanding g(X.; B) and g.(X.; B) about (x?; 8°) gives

Y. — g(&s; B) = e — gi(x?; B%) (k. — x?)' + Opmax[a;’, n™*])
and
g:(%;; B) = g:(x?; B°) + Op(az"?),
respectively. The lemma follows by substituting these results into (2.2). 0
LEmMMA 2. Let Model (1.1) and Assumptions (i), (iii), and (iv) hold. Then
Cov{d:, e: — u.gi(x?; %)} = 0.

ProoF. The resultis obtained by evaluating the covariance using (5.1) and the relation
between a partitioned matrix and its partitioned inverse. O

PrROOF OF THEOREM 2. Expanding gs(%.; B), g:(X:, 8 ), and &% about (x{; 8°), we
obtain

gi(%; ) = g(x?; B°) + gax(x; B)8: + Op(max(a;’, n™'")),
g:(%e, B) = g(x?; B°) + 8:g.:(x; B°) + Op(max[ai’, n™v2]),
n6% = an0% + an(Ao%) + Op(max[a;’, n™2)),
where
Aol = 28zgn(X?; ﬁo) {rﬂmg;(x(}; ﬁo) - $ue}.

In all cases the part of the remainder associated with (X, — xY) has expectation that is of
the same order as the order in probability of the term.
By these results and Lemmas 1 and 2, it follows that

(5.3) M.. = m,. + O,(max[a;}, n7"%))
and

(54) n(B—B°) =m[nb7 YL (ar'ox)gs(x?; B) (e — wgi(x?; B9} + 0p(1).
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Hence, the limiting distribution of n/2( — B°) is the same as that of the leading term of
(5.4). The theorem then follows by application of the Liapounov central limit theorem. [

Theorems 1 and 2 assume the existence of a preliminary estimator # of 8° whose error
is O,(max[a;?, n™"%]). We now demonstrate that the ordinary least squares estimator
satisfies this condition. Let

(5.5) T.(B) =b7' 3o (Y. — gXs; B}

where it is understood that in (5.5) and in the ensuing development, X, is replaced by its
projection onto the space o, whenever X, is outside of /. Then the ordinary least squares
estimator, denoted by [3,, is the B that minimizes 7,(8). We assume:

(ix) The matrix

H.(0, B) = b™' 321 L'(x?; O)L(x?; B)
converges to the matrix H(#, 8) uniformly for all § and 8 in ®, where
L(x?; 0) = [g(x?; 0), ga(x?; 0), Vec{gg(x?; 0)}]

and Vec{ggs(x?; 8)} denotes the row vector created by listing the rows of ggs(x?; 6) in

order.
(x) The function

lim, 07" $o-1 {g(x?%; B) — g(x?; B°)}*

defined on © has a unique minimum at 8 = 8°.
(xi) The matrix

lim, 7" Tt go(xf; B°)gh(xf; B)
is nonsingular.

LEMMA 4. Let Model (1.1) and Assumptions (i), (iii), (vii), and (viiia) through (xi)
hold. Then

B:~ B’ = O,(max[az", n™"?]).
. Proor. Let B(x) be the estimator of 8 constructed using the true x-values. That is,
B(x) is the B for which
(5.6) b7 Yo (Y. — g(x2; B))°
is a minimum, where the subscript n on b is suppressed. By the results of Jennrich (1969),
Bx) — B° = 0,(n"").

Now

b7 Y Y. - g(Xs; B)Y

= b7 0 (Y, — g(x; B) — g:(x]; Bus)?
67 =57 T [(Y. - gx2; B)) — 2(Y. — g(x?; B))g(x]; Blut + {g.(x]; BHur}’]

=b7' Y (Y. — g(x?; )} + Oplar)),
where x| is on the line segment joining X, and x?. The order of the remainder in (5.7)
follows from assumptions (i) and (vii). Because of the uniqueness of the minimum, it
follows that

plim,_.B.- B°.

By the mean value theorem (see Jennrich, 1969, equation (3)), there exists a B such
that
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68 b7 Vi gs(Xe; BOY: — g(Xs; B%)) = 070 go(Xy; B) (Y — (X B2))

+[07 20 ge(Xs; B)ga(Xeis B) — b7 Tio gee(X s B)(Y: — 8(Xs; ) 1B, — BY)

where | — B°| = | B, — B°|. The inner products on the right side of the equality are zero
by the least squares property; O,(1) by assumption (i); and 0,(1) by assumptions (vii) and
(viiia), respectively. The conclusion follows from assumption (xi) and the fact that the
quantity on the left side of (5.8) is O,(max[a;’, n™/2]). O
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