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CONSTRUCTION METHODS FOR D-OPTIMUM WEIGHING DESIGNS
WHEN n = 3(mod 4)

BY Z. GaLL! and J. KiEFER"Y?

Tel Aviv University and University of California, Berkeley

In the setting where the weights of k£ objects are to be determined in n
weighings on a chemical balance (or equivalent problems), for n = 3 (mod 4),
Ehlich and others have characterized certain “block matrices” C such that, if
X’X = C where X(n X k) has entries 1, then X is an optimum design for the
weighing problem. We give methods here for constructing X’s for which X'X
is a block matrix, and show that it is the optimum C for infinitely many (n, &).
A table of known constructibility results for n < 100 is given.

1. Introduction. Let % and n be positive integers with 2 < n, and let = % (n, k) be
the set consisting of every n X k matrix X whose entries are all +1. Our goal is to find a D-
optimum X, i.e., one that maximizes det(X’X) over Z. A discussion of the settings
(weighing, fractional factorial, first order regression) where this problem arises, some
history, and statements of results obtained up to that time are contained in Galil and
Kiefer (1980a, b). The most interesting unsolved cases noted there are ones for which n
= 3(mod 4). '

Throughout this paper n = 3(mod 4). In the present paper we give methods for
construction of D-optimum X’s for infinitely many pairs (n, k) for which an optimum X
was not previously known.

Section 2 gives methods for constructing X’s for which X'X is a “block matrix” of a type
we now describe. A block of size r is an r X r matrix with diagonal elements n and off-
diagonal elements 3. A k& X k block matrix with s blocks of sizes ry, rs, - - -, 1, satisfying
¥{ r: = k, was diagonal blocks of those sizes and elements —1 everywhere else. If the blocks
are of two neighboring sizes (one size R if s| k), the sizes are R = [k/s] and R — 1, where
[x] is the least integer = x. (We shall also later use |x] for the greatest integer < x.) The
X’s constructed in Section 2, denoted X (n, %, s, R) or X (n, k, s), have X'X of the last form
for certain n, k&, s, R, although (Remark 3) the method also yields block matrices X'X with
blocks of more than two sizes.

The reason for constructing X’s of this form is that for each (n, k) there are particular
values (usually one, sometimes two) sopr such that, if an X(n, &, sopr) exists, it is D-
optimum. This is a consequence of a theory originated by Ehlich (1964) and further
developed in Galil and Kiefer (1980a, 1981a), which shows that, for each pair (n, k),

(1.1) maxxezdet(X’X) < max.det C;

where C; is a block matrix with s blocks of at most two neighboring sizes. Thus, if sopr is
a value maximizing det C,, a sufficient condition for X to be D-optimum is that X =
X (n, k, sopr). The condition is not necessary because X’s of this form do not always exist.

In Section 3 we use our knowledge of sopr to give examples of pairs (n, k) for which the
methods of Section 2 yield D-optimum X’s. Although sopr is not known exactly for every

Received May 1981; revised October 1981.

AMS 1970 subject classification. Primary 62K5, 62K15, 056B20.

Key words and phrases. Optimum designs, weighing designs, construction methods, D-optimality,
first order designs, fractional factorials.

! Research supported by NSF Grant MCS 78-25301. The contents are part of an invited hour
address given by one of the authors at the August 1980 AMS-IMS Annual Meeting in Ann Arbor.
The first author was also supported by the Israel Commission for Basic Research.

% Professor Kiefer died on August 10, 1981.

502

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @?’ )z
The Annals of Statistics. RIK@J:Y

25

i

®

WWw.jstor.org



D-OPTIMUM WEIGHING DESIGNS 503

(n, k), it is known for many (n, k). The following information is taken from the above
references; other values of sopr are listed here, or are obtainable by the methods of those
papers.

(A) If 2k — n < 5, sopr = k uniquely.

(B) Two neighboring values of sopr exist iff
2k — n=25,7 (and n = 3(mod 8)), 9, 11, 17 (and n = 3(mod 12)).
(C) Ford=2k—n=5,17,9,11, 13, 15 and 17, sopr and Ropr = [k/sopr] are given by
d=>5: (sopr, Ropr) = (k, 1) or (k—1,2)

(Bk+1)/4,2) or ((3k—3)/4,2) if n = 3(mod 8),

d="T. (sopt, Ropr) = ((3k — 1)/4,2) if n = 7(mod 8);

d=9: (sopr, Rorr) = ((k+2)/2,2) or (k/2,2);
d=11: (sopr, Ropr) = ((k + 1)/2,2) or ((k—1)/2,3);
d=13: (sort, Ropr) = (L(4k + 3)/9], 3);
d =15: (sopt, Ropr) = (L(13% + 25)/36], 3);
((k+2)/3,3) or ((k—1)/3,4) if n= 3(mod 12),

d=17: (sopr, Ropr) = { (k/3,3) if n=7(mod 12),
((k+1)/3,3) if n=11(mod 12).

We refer to {(n, k):2k — n = d} as “the series 2k — n = d”.

(D) For all (n, &),
6k/(2k — n+ 7) < sopr < 8k/(2k — n — 3),
2k —n+3)/8=<Ropr=2k—n+17)/6.
(E) For n — o with k/n— 1 — A, we have

=7 if 0= A =.08837,
=8 if .08838= A = .17027,

=9 if .17028= A = .22494,
>9 if .22495< A.

lim SopT

In Table 1 we list the values of sopr for n < 100, omitting (A), and also summarize the
known results, including those of this paper, on D-optimum designs X. These constructi-
bility results, in the form of symbols x, e, # and * as described there, are based on the
results of Section 3 herein and also the following facts from the earlier and other references.

(F) Whenever H,.; (a Hadamard matrix of order n + 1) exists, normalize it by letting the
first row consist of 1’s, and delete that row. Any % columns of the resulting matrix yield an
X with X'X = C;, optimum for (A) above and for the first value, k&, of sopr in (C) with d
= 5. This exists for all “practical” n including all n < 100, and is omitted from Table 1 in
the domain of (A). It is denoted in Table 1 as constructible by the methods of this paper
for d = 5 because this simple and old construction scheme is a degenerate case of our
methods. Even when existence of H, ., is unknown, an X with X’X = C, can be constructed
for sufficiently small % by adjoining several H;’s; see Galil and Kiefer (1980a, top of page
1297).
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TABLE 1
Values of sopr for (n + 5)/2 < k < n < 100, n = 3(mod 4), with some
constructibility results
KEY: j indicates a tie, sopr = j or j + 1, which occurs when 2% — n = 5, 7
(every other n), 9, 11, 17 (every third n); * a design attaining the bound (1.1)
is constructible by the methods of the present paper; # a design is constructed
in an earlier paper; see (G) and (H) of Section 1; x design is not constructible,
as described in () and (J) of Section 1; e a design attaining the bound (1.1) is
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TABLE 1 continued

not constructible but the optimum design is known; see (I) of Section 1. The
pair of constructibility symbols.after a tie]_T refer in order to j and j + 1. If only
the symbol * is given, it refers to j, while * alone refers to j + 1. Absence of a
constructibility symbol denotes ignorance.

7% 19 8 87 91 95 99 %

55 59 63 67 71
7 7 8 8 9 10 11 13 15 18 21* 57
7 7 8* 8 9 10 11 12 14 16 19** 58
6x 7 7 8 9 10 10 12 13 15 19* 59
7 7 8 8 9 10 11 12 15 17* 60
7 7 8 8 9 10 11 12 14 ~ 16+ 61
7 7 8 8 9 9 10 12 13 15 62
™ 7 7 8 9 9 10 11 13 14 63
7 7 8 8 9 10 11 12 13 64
7 7 8 8 9 10 11 11 13 65
7 7 7 8 9 9 10 11 13 66
™ 7 7 8 8 9 10 11 12 67
7 7 8 8 9 10 10 11* 68
7 7 8 8 9 9 10 11* 69
7 7 7 8 8 9 10 1* 70
™ 7 7 8 8 9 10 10+ 71
7 7 8 8 9 9 100 72
7 7 8 8 9 9 10+ 73
7 7 7 8 8 9 10+ 74
™ 7 7 8 8 9 9 75
7 7 8 8 9 9 76
7 7 7 8 8 9 77
7 7 7 8 8 9 78
™7 7 8 8 9 79
7 7 8 8 8 80
204+ 7 7 7 8 8* 81
23 7 7 7 8 8* 82
16 31#* 7x 7 7 8 8* 83
16 24* 7 7 7 8* 84
15 T17** 33#* 7 7 7 8* 85
13 17" 2 7 7 7 8* 86
12 16 18  35#* Tx 7 7 8* 87
12 14 18 27** 7 7 7 88
11 13 17 19** 3T#* 7 7 7 89
10 12 14 19 29 7 7 7 90
10 11 13 18 20  39%* 7 7 7 91
9 11 13 15* 20  30** 7 7 92
9 10 12 14* 19  2I** 4I#* 7 7 93
9 10 11 14* 16 21F 32 7 7 94
8 9 11 12 15 19 22 43#* Tx 7 95
8 9 10 12* 14 16 22  33** 7 96
8 9 10 11 13 15 20  23** 45#* 7 97
8 8 9 11 12 15 17 33* 35 7 98
7 8 9 10 12 13 16 21 24 AT x99
7 8 9 10 11 13 16 18 24 36*+
7 8 8 10 10 12 14 17* 22 5%+ 40#*
7 8 8 9 10 12 13 16* 19 25 38
7 7 8 9 10 11 13 5 17 23 26 BI#*
7 7 8 9 9 11 12 14* 17 19 26 39**
7 7 8 8 9 10 11 13 15 18 24 27+
6x 7 7 8 9 10 11 12 14 18 20 27*
7 7 8 9 9 11 12 14 16 19 25
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(G) Assuming H,.; exists, a construction of D-optimum X with X’X = C,_; when d = 5,
the other optimum structure for that case of (C) is given in Galil and Kiefer (1980b, page
185). (For n = 7, 11, 15, these X had been found earlier by computer search.) That case
sopr = k — 1 is not covered by the methods of the present paper.

(H) D-optimum X’s with X’X = Cs,,,, obtained by computer search, are given in Mitchell
(1974) for (n, k, sopt) = (11, 10, 5); in Galil and Kiefer (1980a) for (11, 9, 6), (11, 10, 6), (15,
11, 8), (15, 12, 6); and in Galil and Kiefer (1980b) for (15, 12, 7). These are not obtainable
by the methods of the present paper.

(I) For the saturated cases, k = n, det(X'X) is a square, and hence equality in (1.1) is
rarely achieved. Thus, one can easily check that with the possible exception of 2 = n =91,
an X with X’X = Cs,,, does not exist in all saturated cases in Table 1. When k=n=7,a
D-optimum X was first found and proved optimum by Williamson (1946), and when % =
n = 11, three X’s yielding the three possible nonisomorphic matrices X'X that are
D-optimum were first found and proved optimum in unpublished work of Ehlich, and are
given in Mitchell (1974) (who found one by computer search) and in Galil and Kiefer
(1980a).

(J) Nonattainability of (1.1) for (n, &, sopr) = (11, 9, 7), (15, 13, 6), (15, 13, 7), (15, 14, 6) was
shown by Galil and Kiefer (1980b) using a computer search of the tree of all possibilities,
reduced somewhat by taking account of certain symmetries. For (n, k) = (11, 9), we know
a D-optimum design from (H); for (15, 13) and (15, 14), optimum designs are still unknown
at this writing.

In the cases mentioned in (B) and (I) in which the D-optimum X’X may not be unique
to within obvious isomorphisms, these designs may be compared according to other
criteria. For example, in the cases listed in (B) in which det Cs; = det C;.; for some s, it is
always true that C; is better than C..; in terms of giving a smaller value of the ®,-criterion
for 0 < p = o, where ®,(C) = (™ tr(C™))”? for 0 < p < o, and ®..(C) = maximum
eigenvalue of C~. See Galil and Kiefer (1980b, 1981b).

2. Construction methods. We again write H, for a Hadamard matrix of order g. Let
H; have first row ¢; = (1, 1, ---, 1), and write G, for the (J — 1) X JJ submatrix of H;
consisting of the last J — 1 rows. Let Hy+4 be an (M + 4) X M matrix of +1’s with
orthogonal columns and first row e,. Our basic construction is the (JM + 4) X JM matrix

(2.1) Z=2Z(J,M) = [Z’J%%“].

Here ® denotes the Kronecker (tensor) product.

If we denote the ith column of H,; by ; , we have

1

’

. Hyss |[Huea | _[IM+ Iy if i=7,
’ g,®HM g,~®HM 4IM if L?éll

We hereafter write L = JM + 4. Hence, if P is the J X J matrix with diagonal entries
L and off-diagonal entries 4, we have

(2.3) Z2'Z=PQ® Iu.

Let Y be obtained from Z by deleting the first row esux of the latter. Then Y'Y =
Z'Z — Eju, where E,, = el e, is a matrix of 1’s; Y'Y has diagonal entires L — 1 and off-
diagonal entries 3 or —1. We permute the columns of Y to form an (L — 1) X JM matrix
X = X(J, M), as follows: for i and A integers, 0 <i<J—1,1<h <M, the (h—1)J +
(i + 1))th column of X is the (iM + h)th column of Y. Then, denoting by B (p, n) the p X
p “block matrix” with diagonal entries n = L — 1 and off-diagonal entries 3, we obtain
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B(J,n)—E; ---—E;
—E; B(J,n)

@ xx-| o]
—-E, -+ -B(J,n)

a block matrix with M blocks of size /.
Finally,fors=M,R<J,and1=v=<s,writek=sR—s+v,andlet X=X (n,k, s, R)

be the n X % matrix obtained by selecting R columns from the ith set of J contiguous

columns of X, 1 =i =< v, and R — 1 columns from the ith set for v < i < s (there are none

of the latter, if v = s). We have obtained

X(n, k, s, R), n X k, with X’X having s blocks, maximum block size R, all

blocks of size R or R — 1.

Of course, n, k, s determine R, but n, £, R do not determine s. Given n, %, s, R, and n

= 3(mod 4), write n’ = n + 1. The above method of construction yields an X(n, &, s, R) if
and only if, for some o/ and M for which H, Ha, Hys.4 exist,

(2.6) n=JM+4, k=JM, s=<M, [k/s]=R=..
Suppose (2.6) is satisfied for (J, M) = (J1, M;) and that JoM, = J,M; and J> < J; and
the required H’s and H exist. If R < o3, then since s = M; < M, we see that (2.6) is

satisfied for (Jz, M>). Similarly, if JsM;s = J1.M; and s = M; < M, we have (2.6) satisfied
for (J3, M3). In summary,

(2.5)

If the above construction works to yield an X (n, %, s, R), then it works for the
smallest J for which the required H’s and H exist and for which R < ¢/, and
it also works for the smallest M for which the required H’s and H exist and
for which s = M.

We now turn to the role of existence of H’s and H. The trivial case = 1 produces
blocks of size 1, the design of (F) of Section 1. We hereafter assume R =2 so J = 2. If Hys+4
is obtained as M columns of an Hys+4, then 4| M, say M = 4m.

In the present and next paragraph we treat the construction with R = 2. When R = 2,
we obtain X(n, k&, s, 2) by the above construction with J = 2, provided that, for some
positive integer m, Hyn and Hy, 14 exist and

(2.8) n=8m+3, k=8m, s<4m, R=2.

2.7

Since s < 2 — 1 for R = 2, a sufficient condition for (2.8) when R =2isn = 8m + 3,
k=dm+ 1.

Because of (2.7), when R = 2, one cannot do better by our method of construction than
with = 2. When JJ = 2 there remains the single additional case M = 2: the possibility that
H,, and H,.4 but not H,, 4 exist is eliminated by a result of Vijayan (1976); but for M
= 2 we know that H, exists and Hg does not, but Hs does (a column of 1’s, a column of
three 1’s and three —1’s). This yields a construction of X (7, &, s, 2) for 2 < 4; s < 2.

For R > 2, we need J > 2 and hence 4| J, say J = 4j. We obtain an X (n, &, s, R) by our
method if, for some positive integers m and j, Hy;, Hym, and Hyn .4 €xist and

2.9) n=16mj+3, k=16mj, s=<4m, R =<A4j.

For given n = 3(mod 16), write n* = n — 3. If jr is the smallest divisor of n*/16 which is
=R/4, we see by (2.7) that X can be constructed (for some j and m) by this method if and
only if (assuming all necessary H’s exist)

(2.10) k=n* s=n*/4jz.

Since s = (& — 1)/(R — 1), a sufficient condition for (2.10) is 2 =< (R — 1)n*/4jr + 1.
Additionally, corresponding to the special case described in the previous paragraph when
R = 2 there, we now obtain, for M = 2, the designs X (8 + 3, &, s, R) for k < 8j, s < 2,
R =4j.
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REMARK 1. We have phrased the results, using (2.6), in terms of given R. Similarly,
one can work in terms of s, an m,, and the second inequality of (2.10) replaced by R <
n*/4ms.

REMARK 2. The Hi/’s (resp., Hi+4's) are the same across each set of M contiguous
rows of Z, but can vary from one set of M rows to the next.

REMARK 3. It is clear that submatrices X of X can also be selected to yield block
matrices X’X with blocks of more than two sizes. This may be of interest, e.g., for optimality
criteria other than D-optimality.

3. Construction of optimum designs. We now apply the methods of the previous
section to construct optimum designs by implementing (2.6), usually in the form (2.8) or
(2.9), for value(s) of sopr listed in Section 1 (A) through (E) fpr various (n, k).

I. Series 2k —n=4d,5 =d = 17; see (C).

(a) d = 5: The “very regular” case sopr = k is a trivial construction, but as noted earlier,
R = J =1 in (2.6) formally includes it. The construction for sopr = 2 — 1 with R = 2
requires J = 2 and thus sopr =< k/2, which is false. However, a design for sopr = & — 1 is
listed in (G) of Section 1.

(b) d = 7: Here R = 2, and it turns out here and in the next two series that only (2.8),
with J = 2, can be used; the inequality sopr = (n — 3)/4 required for (2.9) is always false.
We find (3% — 3)/4=3(n+5)/8<(n—-3)/2en=27and 3(n + 5)/8 + 1= (n — 3)/2
< n = 35. Thus, for n = 3(mod 8) we obtain designs for both sopr values if n = 35, but only
for the smaller sopr value when n = 27. We note that in this and the next two series, the
method gives a construction once it starts, only for every other value of n = 3(mod 4),
since it requires n = 3(mod 8).

(c) d = 9: Again R = 2 and we find both inequalities soptr = (n — 3)/2 are satisfied for
n = 3(mod 8) when n = 19. Thus, we get both designs.

(d) d = 11: For sopr = (B + 1/2, R = 2, the method of (2.8) works for n = 19, n =
3(mod 8). However, for sopr = (£ — 1)/2, we have R = 3, and the method does not work
since we never have sopr = (n — 3)/4.

(e) d = 13: We use (2.9) with j = 1, with n = 3(mod 16). We have sopr = | (2n + 29)/9],
which is < (n — 3) /4 if n = 115 and n = 3(mod 16), and thus we obtain an optimum design
for these values, all of which fall outside Table 1.

(f) d = 15: We again use (2.9) with j = 1. Now sopr = |(13n + 245)/72}, which is
< (n — 3)/4 if n = 51 and n = 3(mod 16), so we obtain optimum designs in all these cases.

(g) d = 17: Once more we use (2.9) with j = 1 and n = 3(mod 16). From (C) we obtain
the four expressions for sopr in the three cases (mod 12), three with R = 3 and one with
R = 4. We use (2.9) with j = 1 and check sopr = (n — 3)/4, and find that both possible
values of sopr satisfy this condition when n = 51 for n = 3(mod 48), i.e., n = 3(mod 16) and
n = 3(mod 12); and find that the condition is satisfied when n = 67 for n = 19(mod 48) and
when n = 83 for n = 35(mod 48). In summary, then, when n = 3(mod 16), designs for all
values of sopr are constructible if n = 51.

II. Other constructions when n < 100. In addition to the parameter values that
fall into the series of part I, we obtain constructions in the following cases, using (2.9):

n=35 k=2829 (m=2,j=1).
n=51, k=235,36,37 (m=3,j=1).
n==67 k=43,44,45 (m=4,j=1);

k=54(1)58 (m=2,j=2).
n=283, k=51,5253 (m=5j=1).
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n=99, k=59,60,61 (m=6,j=1);
k=67(1)74 (m=3,j=2);
k = 80(1)87 (m=2,j=3).

The above designs and those for the series of part I above for n < 100 are designated by
an asterisk (*) in Table 1.

In the above listing, the large number of cases covered when n = 67 and 99 is a reflection
of divisibility properties of n — 8. In the actual construction, one really needs to use only
a subset of the columns of Hy and Ha.s in some cases; for example, we need use only 16
of the 24 columns for n = 99, 2 = 61, s = 16, R = 4. We can only use (2.9), never (2.8), for
cases outside the series of Part I, since we never have R = 2 for d > 11.

III. Constructibility without knowing soer. Suppose we use only the simple
inequalities (D) which do not determine Ropr oOr sorr. Sometimes these inequalities are
nevertheless sufficient, in that the conditions (2.6) are sufficiently weak that we can
conclude constructibility of an optimum design by our methods whatever sopr turns out to
be. We give only one example, since the development is straightforward, and since one
would be unable to use it without knowing sopr exactly. Nevertheless, the technique could
be useful for showing, for a given (%, n), that it is worthwhile working out sopr exactly
because it will definitely be possible to construct an optimum design.

Suppose d = 41. From (D), Ropr =< 8, so we can use (2.9) with j = 2. Using our method,
we see we must have sopr < (n — 3)/8. But (D) gives sopr < 8%/(d — 3), so we can use
(2.9) if k/(n — 3) < 19/32. We conclude that, for n = 3(mod 32) and n = 259, with £ =
(n + 41)/2, the method works with j = 2 and m = (n — 3)/32 in (2.9).

IV. Asymptotics. Asn— o with 2/n— 1 — A, considerations like those of III above
can be obtained from (D), but we now consider the more precise results obtainable from
(E).

If sopr = 7, using (2.9) we need R < 4j and m = 2, so that k/n < TR/(16mj + 3) = 7/8.
From (E), sopr = 7 for n large only if k/n > .91, so we conclude that our construction
method can never work in that domain for n large. In fact, from looking at the results for
n < 100, we doubt that the method applies to any cases for which sopr = 7, except for the
single case (n, k) = (19, 14).

If sopr = 8 and n = 3(mod 32), for m = 2 we obtain, if .83 < k/n < 91 (see (E)) with
j = (n—3)/32, that R/4j = (k/8)/4j = k/(n — 3) < 1 and n — =, so the method works as
n — . In fact, Table 1 (for n = 35, 67, 99) indicates that the method might always work
for sopr = 8 and n = 3(mod 32). For m = 3, one finds that the construction only works if
k/n < .8, so this cannot work asymptotically. Again, examination of part II above indicates
that this may be the case for all n of the right congruence, when sopr = 8.

When sopr = 9, we need m = 3 in (2.9) and hence k/n = 9R/n < 36j/16mj < .75, whereas
asymptotically, from (E), /n > .78 for sopr to be 9. So the method does not work for large
n. Again, from Table 1 (for n = 51 or 99) it seems likely that the method never works when
sopr = 9.

When sopr = 10, 11, or 12, for n = 3(mod 32), m = 3, and j = (n — 3)/48, we obtain
R/4j = k/4jsopr = (k/n)(12/sopr) < 1 asymptotically, since from (E) 2/n < .78 asymptot-
ically in order that sopr > 9. Thus the method works for large n = 3(mod 48) when sopr
= 10, 11, or 12, and Table 1 for n = 51, 99 indicates that it might work for all n. We omit
discussion of larger sopr values, which are handled similarly.
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