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THE ASYMPTOTIC EFFECT OF SUBSTITUTING ESTIMATORS FOR
PARAMETERS IN CERTAIN TYPES OF STATISTICS!
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Oregon State University

In a variety of statistical problems, one is interested in the limiting
distribution of statistics T, = T,( Y1, Y2, + 5 Yn; An), Where A, is an estimator
of a parameter in the distribution of the y; and where the limiting distribution
of Th = Twu(y1, ¥2 +++, ¥n; A) is relatively easy to find. For cases in which the
limiting distribution of T, is normal with mean independent of A, a useful
method is given for finding the limiting distribution of T,. A simple application
to testing normality in regression models is given.

.

1. Introduction and main result. The result here is of interest primarily in hy-
pothesis testing, using statistics which involve substituting estimates for nuisance param-
eters. Special cases have been derived before; some of these are mentioned later. The aim
is to present the result in a quite general setting, using tools which avoid ordinarily tedious
calculations. There are close ties to results of Randles (1982), which will be pointed out.

Let y1, ys, - - - be a sequence of random variables whose joint distribution depends on a
parameter A, possibly vector-valued. It is not necessary that these observations be
independent or identically distributed. Let A, = A.(y1, ---, y») be an asymptotically
normal and efficient sequence of estimators. It is desired to find the limiting distribution
of a statistic T, = T, ( Vi, oy Yn} A.), where at the true A the corresponding sequence T,
= To(y1, -+, ¥n; A) has a limiting normal distribution with an asymptotic mean which is
constant in A. Without loss of generality, this asymptotic mean will be taken as zero.

A generalization is possible to statistics S, = S, (y1, - -+, ¥»; A) with asymptotic mean
p»(A) which is not constant, by taking T, = S, — p.(A). But then the result will be for the
limiting distribution of S, — ;L,,(X,,), rather than S, — un(A). The emphasis of Randles
(1982) is on the more conventional latter case. The former case may be useful, however,
when A is a nuisance parameter.

It is apparent that under regularity conditions T, is asymptotically normal with mean
zero. The primary point here involves calculation of its asymptotic variance. Three
regularity conditions, and then the main result, are now given.

The first assumption is that for every A there is joint convergence in law to normality:

(1.1) =N ~N|O, .
Ve =) 8 Vo Vi

The dispersion matrices may depend continuously on A. It is assumed for convenience that
V2 is nonsingular.

The second condition is that there is a matrix B, possibly depending continuously on
A, such that

(1.2) VaT, = vaT, + BVn(A. = \) + 0,(1).

When T, is differentiable in A, this ordinarily follows from a first-order expansion, and
B = lim E(8T./d)\). More generally, however, (1.2) often holds when T, is only asymp-
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totically smooth in A. For example, this occurs in applications mentioned later where T,
is a functional of the empirical distribution function of probability integral transformations
{Fi(y;\),i=1, ---, n}. Section 4 of Pierce and Kopecky (1979) illustrates an approach.
Randles (1982) in effect provides a more general treatment of the validity of (1.2). Note
that his function p(-) is not the asymptotic mean of T),, but is rather a function of A and
another variable.

The third condition is that X, is asymptotically efficient. This is defined as follows in
order to dispense with superefficient estimators, which quite generally can improve on
regular efficient estimators only on sets of Lebesgue measure zero; see, for example, LeCam
(1953), Zacks (1971, Chapter 4). There should be no estimator Ax , asymptotically normal
as above, with dispersion matrix V% such that (i) Vo2 — V'3 is nonnegative definite for all
A, and (ii) for some x and all A in some open interval, x'V$ x < x'Vaox.

The main result is that under these conditions

(1.3) VaT,— L ~N(, Vi, — BVyuB’).

The essence of the argument, given later, is as follows. From (1.1) and (1.2) it follows that
VnT.— L, which is normal with the distribution of L + B§. The result (1.3) then follows
from the fact that L and § are independent. That this is true is an asymptotic version of
the fundamental result that minimum variance unbiased estimators (8) are uncorrelated
with statistics having constant expectation (Ly; see, for example, Rao (1973, Section 5a.2).

Observe that Var(f) = Var(L + B 8 ) would ordlnarlly be calculated as Vi; + B szB !
+ V2B’ + BV3. Computation of V. is often difficult, involving representation of 8 in
terms of efficient scores. The two expressions for Var(L) suggest that B = —V}, V 37, which
is discussed later.

2. An illustrative application. Consider the standard simple linear regression
model for independent observations y; ~ N(a + Bx:, 6%), where the x; are fixed and A =
(a, B, o). Using maximum likelihood estimators, consider the limiting distribution of the
skewness statistic

Ty = n"V2 Y% (3 — én — Buxi) /60

It is easily calculated that the limiting distribution of Jn T., involving true parameters
and hence true errors, is N(0, 15). The result (1.3) will be used to show that the limiting
distribution of vn T, is N(0, 6), assuming ordinary regularity of the x; so that vai, is
asymptotically normal.

Before giving this calculation it is interesting to note that similar calculations yield
precisely the same limiting distribution when either (i) 8 and x; are replaced by vectors of
fixed dimension, or (ii) the terms Bx; are omitted so that the y; are identically distributed.
More general results of this nature are given in Pierce and Kopecky (1979). It is also noted
that Anscombe (1961) gave formulas for the exact variance of T}, but the asymptotic result
is less than obvious from that approach.

It will be assumed that =x;/n — & and 3 (x; — ¥)?/n — s The matrix B can be found
by a first-order approximation to be

B = (- 3/0)[1, %, 0].

Further, the upper left 2 X 2 part of Vs is

s% + &2 -x
(a%/s%) ,
-x 1
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and as previously noted, Vi; = 15. Direct calculation using (1.3) shows thatvn T I~
N(0, 6).

3. Discussion of applications. In many applications T, is a statistic for testing
validity of the model for the y;, where T}, is a statistic that could be rather easily used if
A were known. Of particular interest in this context are cases where T, is a function of the
probability integral transformations F;(y;; A). The results here are then closely related to
those of Durbin (1973), Pierce and Kopecky (1979), and Loynes (1980). Somewhat more
generally, the results here are useful in the analysis of generalized residuals, as developed
by Cox and Snell (1968). In fact, (1.3) yields results equivalent to, but much simpler than,
equations (19) and (20) of Cox and Snell (1971), where the simplification discussed at the
end of Section 1 above was understandably overlooked.

Another general area of application, although overlapping somewhat with the above, is
where T, relates to inference about parameters other than A. For example, nT, may be the
derivative of the log likelihood function with respect to the additional parameters, evalu-
ated at an hypothesized value for them and at A = A.. In this sense the results here are
closely related to standard results on use of efficient scores for testing composite hy-
potheses; see, for example, Cox and Hinkley (1974, page 323). It should be emphasized that
when A does not completely specify the distribution of the y;, then (1.3) is only valid where
. is asymptotically efficient when treating the remaining parameters as known.

Another type of situation where these results may be useful is in developing distribution
theory for tests of separate hypotheses, as suggested by Cox (1962). -

An interesting application of the result is given by Habib and Thomas (1981), where
asymptotic distribution theory for goodness-of-fit tests for censored data, with estimated
parameters, is developed.

Finally, the results of Pierce and Kopecky (1979) and Loynes (1980) relate to asymptotic
distributions of statistics which are permutationally symmetric functions of generalized
residuals { F;(y;; 5\); i=1,2,...,n}. This symmetry may be an extremely limiting feature
for statistics intended to test adequacy of a generalized regression model; departures of
interest very often will involve relationships between the generalized residuals and poten-
tially explanatory regression variables. The results of this paper apply without the
restriction of this type of symmetry.

4. Proof and related calculations. It is clear that (1.1) and (1.2) imply nt, - L,
which is normal with the distribution of L + B&. The key fact that E (L) being free of A
implies that Cov(ﬁ, 3) = 0 can be established as follows.

Write V; = Var(L) and Vor = Cov(é, L). For simpli(iity, assume that Vy; is nonsingular.
Consider the estimator suggested by the regression of A, on T,,

A=Ak, - Va vl_llfn,

where V;; and Vy; are evaluated at A, if necessary, with asymptotically negligible effect.
Then for all A, Va(A¥ — A) > N(0, V&), with Vi = Vao — Vo Vil Vio. Thus Vi, — Vi is
nonnegative definite for all A, and if V.1 were nonzero for some ), simple continuity
arguments show that then x’ V%x < x’ V. x for some x and all A in an open interval. Thus
the asymptotic efficiency of An implies that V2 = 0, which completes the argument.

The above argument seems useful for application to moderately complicated models,
since the essence of the argument is separated from rather arbitrary regularity conditions
which would imply the hypotheses used here. The following formal calculations along
more conventional lines may be helpful, however, in understanding why the result is true.

Suppose that T, is differentiable in A and that (1.2) results from a first-order approxi-
mation, so that (i) B = imE (97T, /d\). Assume also that the usual asymptotic approxi-
mation (i) U,(A)/vn = Vz vr(A, — A) holds, where U,(}) is the derivative of the log
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likelihood 4,(A). If E(T,) is constant in A, then

0= 8E(Tn)/3)\ = B[J Tnexp{/n(}\)} d(yl, b '1yn):|/aA
= f @Tn/0N)exp{Zn(N)} d(y1, =+, yn)
+ J’ T.U.(N)exp{Zn(A)} d(y1, +++, Yn),

so that (iii) E(8T,/0A) = —Cov(Vn Ty, U./Vn).
Assuming that these covariances converge to that of the limiting distribution, then (i),
(ii), and (iii) together yield that

B =1lim E(8T,/d\) = —lim Cov(vVn Ty, U,/Vn) .
= —lim Cov{VnT,, Vi vn(An — A\)} = —=Cov(L, Vz8) = Vi, V3.
The calculations suggested at the end of Section 1 then yield the result.

Acknowledgement. The author expresses appreciation to the editor for suggesting
improvements in presentation.

REFERENCES

ANSCOMBE, F. J. (1961). Examination of residuals. Fourth Berkeley Symposium on Statistics and
Probability, Vol. 1, 1-36. Univ. of California Press, Berkeley.

Cox, D. R. (1962). Further results on tests of separate families of hypotheses. J. Roy. Statist. Soc. B
24 406-424.

Cox, D. R. and HINKLEY, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.

Cox, D. R. and SNELL, E. J. (1968). A general definition of residuals. J. Roy. Statist. Soc. B 30 248-
275.

Cox, D. R. and SNELL, E. J. (1971). On test statistics calculated from residuals. Biometrika 58 589-
594.

Durslin, J. (1973). Weak convergence of the sample distribution function where parameters are
estimated. Ann. Statist. 1 279-90.

HaBgiB, G. and THOMAS, D. R. (1981). Chi square goodness-of-fit tests for censored data. Unpublished.

LECAM, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes
estimates. Univ. of California Publ. in Statist. 1 277-330.

LoyNEs, R. M. (1980). The empirical distribution function of residuals from generalized regression.
Ann. Statist. 8 285-298.

PiERCE, D. A. and KoPECKY, K. J. (1979). Testing goodness-of-fit for the distribution of errors in
regression models. Biometrika 66 1-5.

RANDLES, R. H. (1982). On the asymptotic normality of statistics with estimated parameters. Ann.
Statist. 10 462-474.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd Ed. Wiley, New York.

ZACKS, S. (1971). The Theory of Statistical Inference. Wiley, New York.

DEPARTMENT OF STATISTICS
OREGON STATE UNIVERSITY
CoRvALLIS, OREGON 97331



