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ON INCONSISTENT M-ESTIMATORS

By D. A. FREEDMAN' anD P. Diaconis?®

University of California, Berkeley and Stanford University

If M is not convex, and the underlying density is multi-modal, M-esti-
mators can be inconsistent. Examples are given, as well as some positive
results.

1. Introduction. Consider a symmetric location problem where the parametric form
of the underlying density is unknown. The use of M-estimators is often suggested. For
some asymptotic theory, see Huber (1964, 1981), Collins (1976), Portnoy (1977), and Zaman
(1981). Efficiency calculations are often made on the basis of Monte Carlo experiments;
see, for instance, Andrews et al. (1972). Recently, M-estimators have found their way into
the textbooks, with little discussion of underlying stochastic structure: see, for instance,
Mosteller and Tukey (1977). The choice of the criterion function M in the M-estimator
often seems slightly ad hoe¢, and the object of this paper is to point out a possible difficulty:
for many M’s, the corresponding estimator will be inconsistent. Roughly, this happens if
M is not convex. Then, there are densities which are symmetric about zero, such that the
M-estimator oscillates indefinitely between two wrong answers.

To be more specific, let M be a smooth function on (—o, ) and let Y(¢) = M’(¢). If
lim, 4.y (t) = 0, then M is said to have a “redescending y-function.” The inference
problem for which M is used can be stated as follows. Let X, Xo, - - - be independent, with
a common (unknown) density f, assumed symmetric about 0. Let 6 be a transla-
tion parameter, to be estimated. The random variables Y; = § + X; are observed for i =
1, ---, n, and 6 is estimated as the location of the global minimum of

(L1) ", M(Y" - ”).
ko

In (1.1), the tuning constant % depends on M; often, k is chosen so that the corresponding
estimator is efficient when X has one of a few artificial distributions. The expression o, is
a scale factor computed from the data: the median absolute deviation from the median
(MAD) is a common choice. To simplify the analysis, it will be assumed here that the
population MAD is known; then the choice o, = MAD seems appropriate. (Division by the
sample MAD of the data might be handled by the usual von Mises calculus.) Also, we
assume throughout that § = 0 without loss of generality.

Some positive results will be stated carefully in Section 2. Essentially, the Af-estimator
is consistent if M is convex, or if the density f is strongly unimodal, that is, monotone
decreasing on [0, ») and increasing on (—, 0]. The examples of inconsistent behavior will
involve nonconvex M. Two of these M’s will be fairly standard. The first was used in the
Princeton Robustness Study (Andrews et al, 1972). It corresponds to the Cauchy likelihood

(1.2) M(x) =log(1 + x?).

The second corresponds to Tukey’s biweight:

-1 =-x»® for |x|=1,
(13) M(x) = {0 for |x|>1.
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The third is somewhat artificial:

_ -0 =x»* for |x|=1,
(14) M(x) = {0 for |x|>1.

The underlying density f will be multi-modal, but will satisfy the following regularity
conditions:

(1.5) fis symmetric about 0, infinitely differentiable, strictly positive on a compact
interval, and vanishes outside this interval; f has a unique maximum at 0; and
the MAD of fis 1.

With M as defined in (1.2) or (1.3), there seems to be a cutoff ks such that if the tuning
constant & > ks, the M-estimator is consistent. With M as defined in (1.4), however, there
is no such k. On the other hand, there may always be a ks such that 2 > ka, s entails
consistency. (For inference, this is not so useful, since f is unknown.)

Some authorities suggest that  be estimated as the root of the equation

Y.—t¢
mM =0,
Z ' ( ko"’ ) 0

and if there are several roots, these authorities take the one closest to the median of the
data. In reply, we observe that the M-estimator is of the maximum likelihood type with
the pseudo-likelihood function e™, as one sees by taking logs and changing signs. Thus,
M (x) = x* corresponds to the normal; M (x) = | x| to the double-exponential; M (x) = log(1
+ x?) to the Cauchy. In the examples, the root closest to the median is indeed a consistent
estimator. However, it corresponds to a local maximum of (1.1), i.e., a local minimum of
the pseudo-likelihood function ITe™, which is unattractive and which may lead to
estimators with poor operating characteristics.

Our argument starts from the following proposition, whose proof is deferred to Section
3. For simplicity, the tuning constant is taken as 1; in effect, 2 can be absorbed into M. Let

(1.6) A(t)=E{M(X;—-1t)} = fm M(x —t) f(x) dx,
(L7 Su(t) =Y M(X; — t).

Suppose

(1.8) M has a bounded continuous derivative M’,
(1.9) h(t) <o forall ¢,

(1.10) h does not have a global minimum at 0.

ProposiTiON 1.1. Suppose (1.6) through (1.10). For some positive €, almost surely, for
all sufficiently large n, the function S,(-) does not have its global minimum in [—e, €]. In
particular, the M-estimator is inconsistent.

Condition (1.10) looks hard to check: the following criterion is useful. Recall that X; has
a continuous, symmetric density.

LEMMA 1.1. Suppvse (1.6) through (1.9). If M’ is Lipschitz and E{M”(X;)} <0, then
h has a local maximum at 0.

We now present some specific examples. The tuning constant 2 will be dealt with
explicitly.

ExaMmpLE 1.1. Define M by (1.2). Let xo =vv32 — 5 = 81. Fix k with xo < 1/k < 1.
Then there is a density f satisfying (1.5) such that the M-estimator based on (1.1) is
inconsistent: for some ¢ > 0 almost surely, for all sufficiently large n, the global minimum
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of (1.1) is not to be found in [—¢, €]. Preliminary computations indicate that if £ > 1/x, =
1.2, then this M-estimator is consistent.

ExaMPLE 1.2. Define M by (1.3). Let xo = v3 — v8/+v5 = .185. Fix k with xo < 1/
< v3/5. Then there is a density f satisfying (1.5) such that the M-estimator based on (1.1)
is inconsistent. Preliminary computations suggest that if 2 > 1/x, = 5.41, then this M-
estimator is consistent; something of a close call, for a 2 = 6 is standard choice.

ExampLE 1.3. Define M by (1.4). Fix any & > 1. Then there is a density f satisfying
(1.5) such that the M-estimator based on (1.1) is inconsistent: for some ¢ > 0, almost surely,
for all sufficiently large n, the global minimum of (1.1) is not to be found in [—e, €].

Example 1.1 can be refined as follows. Define M by (1.2) and x, as in the example.
Select any number £ with 1 < & < 1/xo. There is a sequence of independent random
variables {X;}, having a common infinitely differentiable density f satisfying (1.5), and the
following asymptotics for the M-estimator.

a) For almost all sample sequences, for all sufficiency large n, the equation S,(8) = 0
has exactly three roots. Write M_, for the smallest root, M., for the middle root, and M.,
for the largest root. Then S, (-) has a local maximum at M,,,, and local minima at M..,; one
of the latter is the global minimum, i.e., the M-estimator of § = 0.

b) Almost surely, M_, - —y and M,, — 0 and M., — vy, where y > 0 depends on the
distribution of X. :

c) For almost all sample sequences, there are subsequences n.; along which Sps, (+)
has its unique global minimum at M.,; likewise, there are subsequences n_; along which
S»_;(+) has its unique global minimum at M_,. Thus, the M-estimator oscillates indefinitely
between —y and v, and fails of almost-sure consistency.

d) For each large n, with overwhelming probability, S, (-) has a unique minimum. With
probability almost ! this is at M., near y, and with probability almost % this is at M_,
near —y. Thus, the M-estimator fails of consistency even in probability.

Likewise for Example 1.2, except that S,(-) = 0 has two additional roots, at +2,
corresponding to endpoint maxima of S,(-).

For details, see Freedman and Diaconis (1981).

The following heuristic discussion may aid in understanding the examples. Because of
the strong law, S, (¢) is close to nh(t) defined in (1.6), and the value of ¢ that minimizes
S,(t) is close to the value of ¢ that minimizes A (t). For the M’s considered in the examples,
symmetric multimodal densities are constructed so that A(¢) takes on its minimum in two
distinct places and the M-estimator hops back and forth between these two points.

2. Positive results. The following results show that M-estimators are consistent if
either M is convex, or the underlying symmetric density is strongly unimodal in the sense
of being nonincreasing on [0, «), and hence nondecreasing on (—, 0]. Weak unimodality—
having a unique maximum at 0—is not enough, as the examples in Section 1 show.
Throughout the following discussion, it will be assumed that

(2.1) M is bounded below, continuous, symmetric about zero, nondecreasing on
[0, ®0), and not identically constant.

(2.2) X, X5, X;, - -, are independent with a common probability density f which is
symmetric about zero.

In Theorems 2.1 and 2.2, the following moment assumption is used:
(2.3) j M(x) f(x) dx < oo,
In some cases this can be weakened, as in Huber (1981, Section 6.2). The following

theorems will be proved in Section 3. Theorems 2.1 and 2.3 follow from general results in
Huber (1981, Section 6.2), but the direct proofs may be of interest.
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THEOREM 2.1. Assume (2.1) through (2.3). If M is strongly convex, then for each n,
Sn(t) = YT M(X; — t) has a unique minimum at T,, and T, converges to zero almost
surely.

THEOREM 2.2. Assume (2.1) through (2.3). Suppose f is strongly unimodal. Let m =
min, S,(¢). Fix e > 0. For almost all w there is an N (w) < o such that n > N entails S,(t)
>mfor|t]|>e.

In Theorem 2.1, the strong convexity of M guarantees the uniqueness of the maximum,
and the moment condition (2.2) guarantees consistency. Without (2.3), the M-estimator
can fail: for example, take M(x) = x* and fto be Cauchy. Unfortunately, neither theorem
covers the median as a location estimate for the Cauchy, since [ |x|/(1 + x%) dx = .
Theorem 2.3 covers this case and others.

THEOREM 2.3. Assume (2.1) through (2.3). Suppose M is*weakly convex everywhere
and strongly convex at zero, in the sense that M(0) < M(x) for all x # 0. Suppose that
M(x) = O(x) as x tends to infinity. Then, for almost all w, there is an N(w) such that for
all n > N the minimum in t of }.7-1 M(X; — t) is taken on over an interval I, containing
zero. The length of I, tends to zero as n tends to infinity. Thus the midpoint of I, is a
consistent estimate.

REMARK. The growth condition M(x) = O(x) seems crucial in Theorem 2.3. If M(x)
is strictly convex and of order x'** at infinity, there are symmetric, long tailed densities
such that the the M-estimate oscillates wildly as the sample size increases. For details, see
Freed;nan and Diaconis (1981).

3. Proofs.

LEMMA 3.1. Suppose g is bounded and Lipschitz, with bounded a.e. derivative g’.
Suppose X has an absolutely continuous distribution. Let G(t) = E{g(X — t)}. Then G
has a bounded continuous derivative G'(t) = E{g'(X — t)}.

The routine proof is omitted.

Proor oF LEMMA 1.1. Suppose (1.6) through (1.9), M’ is Lipschitz, and E{M"(X;)}
< 0. Recall that X; are independent with common symmetric density f. Now A(t) = E{M(X;
— t)} has two continuous derivatives by Lemma 3.1, and A”(0) = E{M(X;)} < 0. By
symmetry, A’(0) = 0. 0

LeEmMA 3.2. Let Xi, Xs, .-, be independent with common distribution function F.
Let F, be the empirical distribution function of X1, -+, X,,. Let B, = Vn(F, — F). Let g
be a bounded Lipschitz function, with Lipschitz constant L. There is a finite constant A,
and for almost all w an N = N, < », such that n > N, entails

a) |B.(t)| <A(loglogn)/? forall ¢,

b) 'fgdBn

Proor. Claim a) follows from the law of the iterated logarithm for the invariance
principle; see Chung (1949). Claim b) follows because

< AL(log log n)"2.
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ProOF oF PROPOSITION 1.1.  Suppose (1.6) through (1.10). Recall that X; are indepen-
dent with common symmetric density f. Define B, as in Lemma 3.2. Now

Sn(8) = nh(t) + i1 {(M(X; — t) — h(t)} = nh(t) + «/—ﬁf h(2)dB.(t).

But 4 is bounded Lipschitz by Lemma 3.1, so
| Sn(#) — nh(t) |< AL(n log log n)"2.

Suppose h(0) > h(ty). Choose € > 0 and « real so A(t) = a > h(t,) for |t| = ¢, so in that
interval,

S.(t) = na — AL(n log log n)'/*
while 172
Sn(to) = nh(ty) + AL(n log log n)'2. O

LeEMMA 3.3. Let g(x) = (1 — x2)/(1 + x%)% Then g(0) =1, g(1) =0, g(¥3) = %, g
is strictly decreasing on [0, V3], strictly increasing on [V3, ).

CONSTRUCTION FOR EXAMPLE 1.1. Recall that M(x) = log(1 + x?), so

(1-x?%)

(3-1) M”(x) =(1—+x2—)2

= g(x).

The right-hand side of (3.1) takes its minimum value of —% at x =++/3. Also, (1 — x?)/(1
+ x%)? = % when x = xx,, where xo = vv32 — 5 = 81. Fix x; and & with xo < x; < 1/k <
1. Let Z take the values +x;, +/3 with equal probabilities Y. Plainly E{M"(Z)} < 0, and
so E{k*M"(kZ/k)} < 0. Let W have density f satisfying (1.5), such that the distribution
W nearly coincides with that of kZ, so E{k"2M"”(W/k)} < 0. Then Lemma 1.1 applies,
with M replaced by M(x/k). U

LEMMA 34. Let g(z) =1 — 6z + 52% Then g(0) = 1, g(%) = 0, g(1) = 0; g is monotone
decreasing on [0, %] and monotone increasing on [%, 1]; g(35) = —%; g(-) = % has the
root %(3 — v8).

CONSTRUCTION FOR EXAMPLE 1.2. Let M(x) = —(1 — x2)® for | x| < 1, and M(x) = 0
for |x| > 1. Then
wion | +6(1 —x%)(1 —5x%) for [x|=1,
M(x)_{O for |x|>1.

As before, fix xo < x1 <1/ V5 < 1, and x; < 1/k < «/%; let Z take the four values *x;,
++% with equal probabilities %. The balance of the argument is the same. [

CONSTRUCTION FOR EXAMPLE 1.3. Let M(x) = —(1 — x%)*for |x| <1, and M(x) =0
for | x| > 1. Then

wis _ |4 —12x% for |x|<1,
M (x)‘{o for |x|>1.

Let Z = 0 with probability %, and Z = +z with probability % each, where z is just less than
1. Then E{M"(Z)} < 0. Fix k with 1/k < z. The balance of the argument is the same.

We turn now to the results in Section 2. Recall that the X; are independent with
common symmetric density f, and

h(t) = f M(x — t)f(x) dx =f M(t — x)f(x) dx
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because M is symmetric and bounded below. Clearly, A is well defined and symmetric
about zero. It may take the value +o for some ¢, even if 2(0) < . For example, suppose
f is normal, and M is this strictly convex function: M(x) = exp(x%/2 — |x|) for |x| =
2, with M defined in | x| < 2 to insure convexity.

The next two lemmas will show that 4 is increasing on [0, «) in the sense that ¢ < ¢,
and A(t1) < o imply A(t;) < A(t:). In particular, when (2.3) holds, 4 has a unique minimum
at zero.

LeEMMA 3.5. Assume (2.1). If M is strictly convex, then h is increasing on [0, »).
Conversely, if h has a unique minimum at zero for all symmetric densities with compact
support, then M is strictly convex.

ProoF. Consider a symmetric random variable with two-point support at +x, where
x> 0. Then E{M(X — t)} equals *
(3.2) Ye{M(x —t) + M(x + t)} = %{M(t — x) + M(t + x)}.
For strictly convex M, this is strictly monotone in ¢. Integration with respect to f(x) dx

over [0, ) completes the proof of monotonicity of 4. For the converse, suppose first that
M is not even weakly convex. Then we can find positive x and ¢ such that

B{M(x—t) + M(x +t)} < M(x).

The two-point distribution at £x can be smoothed to give a symmetric density f with
compact support such that A(¢) < A(0). Finally, suppose M is weakly convex but not strictly
convex. Then there are x > ¢ > 0 such that M is linear on [x — ¢, x + ¢] and on [—x — ¢,
—x + €]. Let f be a continuous symmetric density concentrated on

[-x — &/2, —x + /2] U [x — /2, x + &/2].
Then A is constant on [—e/2, ¢/2]. O

LEMMA 3.6. Assume (2.1). If f is a symmetric density which is strongly unimodal,
then h is increasing on [0, «).

ProoF. The set of strongly unimodal densities is a convex set. Khinchine’s theorem
shows that the extreme points of this set are the symmetric uniform densities, and each
strongly unimodal f is a unique integral average of extreme points; see page 158 of Feller
(1971). So, it is enough to do the case of f uniform on [—a, a]. Then

2ah(t) = f M(x) dx.

If t = a, monotonicity is clear. Say 0 < ¢t < a; take 8 with ¢ + § < a. Now

t+6—a

M(x) dx — j M(x) dx

t—a

t+é+a

2a{h(t + 8) — h(t)} = J'

t+a

a+t+8 a—t
= f M(x) dx — M(x) dx.

+t a—t—8

The right hand side is strictly positive because M is strictly increasing. O

The next lemma shows that for large n, any minimizing value of S,(¢) is close to zero;
hence M-estimators are consistent.
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LEMMA 3.7. Assume (2.1) through (2.3). Suppose that either M is strictly convex or f
is strongly unimodal. Then, for any & > 0 there is an N(w) < o such that for n > N, | t|
> ¢ implies S,.(t) > S,.(0).

Proor. It is convenient to argue separately for large and small values of ¢ It will first

be shown that there are a finite positive L and N; such that almost surely, n > N; and | ¢|
> L imply S.(¢) > S.(0). To see this, choose positive a < L so large that for some ¢ > 0,

(3.3) P(|Xi|=a)>1/1+c¢,
(3.4) M(L - a) > (1 + €)°h(0).

Clearly, (3.4) implies M(t — a) > (1 + €)?h(0) for all ¢ > L. Let »,(n) be the number of X;
with | X;| = a. The strong law and (3.3) imply that v,(n) > n/(1 + €) + o(n), almost surely.
Thus, for t = L,

n

(1+e¢)

Sn(t) = M(L — a)va(n) > h(t) + o(n).
But the strong law implies that S,(0) = nh(0) + o(n), almost surely. This completes the
argument for |¢| > L.

To finish the proof, consider ¢ € [§, L]. For fixed large % (to be chosen later),

k k
Sa(t) = Yiei M(X; — ) ix, < = nj M(x - t)f(x) dx+Vn | M@ —t) dB.(u).
-k -k
Lemma 3.4 implies that the first integral on the right is monotone in ¢, and so at least
as large as
k

n M(x — 8)f(x) dx > (1 + €)nh(0),

—k

for k suitably large and some ¢ > 0. For this fixed %, the second integral on the right
is almost surely O(vr log log n) uniformly for ¢ € [§, L], by Lemma 3.2.

PrOOF OF THEOREM 2.1. Under the hypotheses, S.(-) is a sum of strictly convex
functions and so strictly convex. It therefore has a unique minimizing value ¢,. Lemma 3.7
implies that 8, converges.to zero almost surely. [

ProoF oF THEOREM 2.2. This is a direct consequence of Lemma 3.7. [0

Let
(3.5) g(t) = j M'(x — t)f(x) dx.

LeEmMA 3.8. If M satisfies the condition of Theorem 2.3, then g in (3.5) is well-defined,
antisymmetric about 0, and nonincreasing in (—%, ©). Also, if 0 is in the support of f, then
g(@t)<O0fort>0.

PROOF. Only the last claim needs to be argued. Write du = f(x) dx and fix ¢ > 0. Then
£(t) equals

- ® t/2
J M'(x — t)u (dx) = J {M'(x —t) — M'(x + ¢t)}u (dx) +J M'(x — t)p (dx)
— t/2 t/2
t/2

= | M(x-t) (dx) = M (=%t)u[—%t, %t].

—t/2
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PrROOF OF THEOREM 2.3. The function S.(-) is continuous, weakly convex, and
bounded below, being a sum of such functions. Hence, it attains its minimum on an
interval, say I,. Almost surely, for each n, S, is differentiable except at countably many
points where it has left and right hand derivatives. Then S/(-) is nonincreasing and

ta
(3.6) Sn(t:) = J’ Sn(u) du + S.(t;) for & <t,.
t

1

Finally, S%.(¢) = Y%, M’(X; — t) = —ng(t) + o(n) almost everywhere by the strong law.
(The countable set of singularities for M’(X; — -) does not matter, because X; has a
continuous distribution.) In principle, the null set depends on ¢. Given ¢ > 0, it must be
shown that I, C (—e, ¢) for all sufficiently large n. From Lemma 3.8, g(¢) < 0, and so Sx(¢)
> 0 for all sufficiently large n and all ¢ = e. Now, (3.6) implies that the minimum of S,(-)
cannot occur for ¢ > ¢. A similar argument works for ¢ < —e. I
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