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MINIMAX ESTIMATION OF THE MEAN OF A NORMAL
DISTRIBUTION WHEN THE PARAMETER
SPACE IS RESTRICTED'

By P. J. BickEL
University of California, Berkeley

If X is a N(6, 1) random variable, let p(m) be the minimax risk for
estimation with quadratic loss subject to |#| < m. Then p(m) =1 — #%/m* +
o(m™?). We exhibit estimates which are asymptotically minimax to this order
as well as approximations to the least favorable prior distributions. The
approximate least favorable distributions (correct to order m ~2) have density

m™ cos’ (% s), | ] = m rather than the naively expected uniform density

on [—m, m]. We also show how our results extend to estimation of a vector
mean and give some explicit solutions.

1. Introduction If we want to estimate the completely unknown mean of a normal
distribution with known variance using quadratic loss, then the sample mean is, of course,
minimax. If, however, we have prior knowledge that the mean lies in a known interval, say
[—m, m], then the sample mean is inadmissible and it is well known that the minimax
estimate is Bayes with respect to a least favorable prior distribution concentrating on a
finite number of points. For m small (= 1.05) Casella and Strawderman (1980) show that
this distribution concentrates on the end points. As m increases, the number of points
increases, their location and the masses assigned to them vary in an as yet unknown
fashion so that as m — oo, the prior distributions approximate Lebesgue measure (condi-
tionally) and the minimax risk tends to the variance of the sample mean.

In Section 2, we ascertain a little more precisely what the behavior of the minimax risk
is for large m. We do this by rescaling the least favorable prior distributions to the interval
[—1, 1] and finding the limit of these rescaled distributions as the solution of the variational
problem of minimizing Fisher information among distributions concentrating on [—1, 1].
We show that this limit has density cos® (7/2) x, | x| = 1 and deduce that (for sample size
1, variance 1) the minimax risk is 1 — #2/m? + o(m™2) as m — .

The key idea in obtaining this result is an identity relating Bayes risk with respect to
any prior distribution to Fisher information. This identity is implicit in Brown (1971) and
is related to an identity of Stein (Hudson, 1978). This relation is also used in Bickel (1980)
and was independently discovered and used by Marazzi (1980) as well as Levit (1980).

In Section 3 we extend these results to estimation in p dimensions. We obtain the
expected qualitative break in the shape of the limits of the rescaled prior for p = 3 and,
parenthetically, can deduce the inadmissibility of the sample mean for p = 3.

2. The one dimensional case. Let X be a random N (6, 1) variable. Let 2 = {all
estimates of 6} and for 6 € 2, define

R(6,8) =E,(8 — 9)%

Received July, 1980; revised January, 1981.

! Research supported by Office of Naval Research Grant Number N00014 80 C 0163 and the
Adolph and Mary Sprague Miller Foundation.

AMS 1980 subject classifications: 62F10, 62C99.

Key words and phrases. Minimax, estimation, Fisher information, James-Stein estimate.

1301

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to /2
The Annals of Statistics. RIKGJY

®
www.jstor.org



1302 P. J. BICKEL

If G is a Bayes prior probability distribution on R let §(-, G) denote the Bayes estimate
and

r(G) = jR(0, 8(-, G))G(db)

denote its Bayes risk. The minimax risk for estimating 6, given that | 8| < m, is defined by
p(m) = min max{R (6, 8): |6|<=m,d € 2}.

It is well known by convexity and analyticity considerations that there is a unique
symmetric Bayes prior distribution G, concentrating on a finite number of points such
that 8(., G%) is unique minimax and GY, is least favorable. That is,

R(6,8(-, Gn)) = max{R(0,5(-, Gi)): |0| = m} = r(Gr) =p(m)

with G, probability 1.

The structure of G has been studied for small m by Casella and Strawderman (1980)
who showed that for |m| < 1.05, G5, assigns mass % each to +m. We proceed with our
study of G, for m large.

Let G, be the distribution on [—1, 1] with density

gi(s) = cosz(g S), [s|=1
= 0 otherwise,
and let G,, be the corresponding distribution scaled up to [—m, m] with density given by,

gn(s) =m7 gi(sm™).

Then { G} are approximately least favorable in the following sense.

THEOREM 2.1: Asm — o
(2.1) p(m) = r(Gn) + o(m™)
(2.2) r(Gn)=1- ;—z + o(m™).
Moreover, let GI™ be the distribution obtained by scaling G, down to [—1, 1], i.e.,
G{™(s) = Gn(ms)
then
(2.3) Gi" - G,
in the sense of weak convergence.

It is not true that § (-, G»,) are asymptotically minimax. In fact, lim sup,. R (m, 6(-, G))
> 1. However, asymptotically minimax estimates can be constructed as follows. Let

1

(2.4) \Z(x)=—§(x)=wtan<3x>,|x|<1.
& 2
Suppose {¥n} is a sequence of functions and that {a.,}, {bn}, {cn} are sequences of
positive numbers with the following properties:
(a) 1>an | 0, ma, > «©
(b) sup{|¢m(x) — ¥(x)|:|x|=1—a%} >0
(c) sup{|Ym(x) = ¢'(x)|:|x|<1—ak} >0
(@) for | x| =1 — aZ, 2| ¥m(x)| + Y2(x) < b + Cmx?
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(e) bn{l — ®(man)} — 0
() en{l — ®(mam)} — 0,
where ® is the standard normal c.d.f. Let
n=m(l — an)’},
and define
(%) =x — n Wn(xn™).

THEOREM 2.2. If properties (a) — (f) hold, the estimates {5,} are asymptotically
optimal and have asymptotically constant risk on [—m, m] in the sense that
2
R(8,8,) —1+—
m

(2.5) max{ 18] = m} =o(m™).

Estimates §,, can readily be constructed. For example, let
26  ¥mx)=¥(),|x|<1-an
=[Y(1—a?)+P'Q-aZ){x—(1—-ak)}]lsgnx |x|>1-a.
It is easy to see that we can then take b, ~ @, ¢ ~ @, and conditions (e), (f) reduce to
a2 {1 — ®(man)} — 0.
It is also possible to establish

COROLLARY 2.1. The estimates 8(-, G,) are optimal for n as above if
mag, — .

PrRELIMINARIES. The key to these theorems are two identities. The first is a special
case of (13.4) of Brown (1971). For any prior distribution G let f; be the density of the
marginal distribution of X, ¢ the standard normal density.

fo(x) =¢*G(x) = j ¢(x —0)G(dB).

(Here and in the sequel * denotes convolution.) Brown’s identity for the Bayes risk of G
is

© {fex))?

- fG(x)

2.7) r(G)=1- dx.

The second identity is due to Stein, see Hudson (1978). Let § be an estimate differentiable
in x and such that

Eg|8'(X)| < co.
Let Y(x) = x — 8(x).
Then Stein’s identity is
(2.8) R(6,8) =1~ Eo(2¢'(X) — ¢*(X)).

Stein’s identity is obtained by an integration by parts while Brown’s follows from Stein’s
by putting
fa(x)

8(x) =68(x,G) =x+ ()
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and integrating with respect to G. Brown’s identity can be written in terms of the more
familiar Fisher information defined (Huber, 1964) for any distribution F' by

©{f=)’

I(F) = )

dx

if F has an absolutely continuous density f, being infinite otherwise. Evidently (2.7) is just
r(G)=1-I1(®*G).
We need four properties of I(-) which may be found in Port and Stone (1974).

() IfH(x)= F(" ; "), all xand ¢ > 0, then I(H) = o 2I(F);

(ii) If F, —» F weakly, then I( F) < lim inf, I( Fy);
(iii) If H, — 8, (point mass at 0) weakly then I(F*H,) — I(F);
(iv) I(F1*F2) <= max{I(Fy), I(F2)}.
Finally, we require a special case of a theorem of Huber (1974).
LEMMA 2.1. The distribution G1 minimizes I( F') uniquely among all F concentrating
on [—1, 1]. Moreover,
(2.9) I(G) =7

This follows (after an obvious typographical correction) from Huber’s work since G: does
concentrate on [—1, 1] and is of the right form, i.e.,

(&) _1(281 (81| _-"’
2.10 ) _1l)zer (&) [ _~—7
@10 gi” 4l & & 4

We can now see where Theorem 2.1 comes from. By Brown’s identity (2.7) we have

p(m) = sup{r(G) : G concentrating on [-m, m]}
=1 — inf{I(®*G) : G concentrating on [-m, m]}
which by property (i) of I is then equal to
1 — m~2inf{I(®1/»*G) : G concentrating on [—1, 1]}

where @, is the N (0, %) c.d.f. By Lemma 2.1, the coefficient of m ~* should be approximately
I(G)) for m large. Here is a formal proof.

Proor. Since
r(Gn) =1—I(®*G,) =1 —m 2 I(®ym*G1)
(2.2) follows from property (iii) of I. Since G%, is least favorable
(2.11) p(m) = r(G%) =1 — [(®*G%) = 1 — m*[(Dym*Gi™).

Suppose (without loss of generality, since [—1, 1] is compact) that G{™ — G weakly. Then
so does @1, * G{™ and by property (ii) of I and (2.11) we must have

I(G) < lim inf,, m*{1 — p(m)}.
On the other hand, by property (iv) of I,
m?(1 — p(m)} = m*{1 — p(Gn)} = I(®1/n*G1) = I(G)).
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But by Lemma 2.1, I(G) = I(G,) with equality holding if and only if G = G;. Claims
(2.1) and (2.3) now follow from these inequalities. 0

The proof of Theorem 2.2 uses Stein’s identity in a similar way. By definition

R(6,8,) =1— n'zf {2%,(3) - \pfn(f)} 6(z - 0) dz.
. n n

The theorem is clearly equivalent to

f [{2‘“'(5) - ‘P<z)} - 72] ol 0) dz1:10] = m} — (D).
(o)

for | z| <m(l + a») = n(1 — aZ). If we apply properties (b), (c) and (d) we can bound the
sup in (2.12) by

(2.12) sup{

But by (2.10)

sup (emn 222+ b+ 1) d(2— 0) dz: |0 < m} + o(1)

|z|>m(1+a,,)

The estimates in properties (e) and (f) complete the proof.

)

ProOOF OF COROLLARY 2.1: We can write,

(2.13) 8(x,G,)=x+n"?

where A, is the density of ®;,, * G, i.e.
(2.14) h.(x) =f g1<x - %>¢(y) dy.

Then we verify conditions (b) — (e). First note that
| Ba(x) — g1(x)| < (aZm)7'g1(x)

if | x| =1— a, since gi(x) = (1 — | x|)? | x| = 1. Next represent

hn(x) = fgi<x - %) L.(x,y)¢(y) dy

7(x) = jgi’(x - %)In(x, Yo (y) dy — ngi(1 =){¢ (n(l + x)) +¢ (n(x — 1))},
where I,,(x, y) is the indicator of {n(x — 1) =y = n(x + 1)}.
By standard arguments we obtain, for universal C,, C,,
|hn(x) — gi(x)| = Ci{n™' + 1 — ®(mal)}a,’ gi(x)
|hi(x) — g7 (x)| < Co[m™ + mp(mal) + {1 — ®(ma2)}]arig(x)

if|x]=1-a?.
From these estimates it is easy to show that if ma$, — « then conditions (b) and (c) of
Theorem 2.2 hold for y,, = —A, /h,. Next note that §(x, G.) is the mean of a distribution



1306 P. J. BICKEL

concentrating on [—n, n] and (8/dx) 8(x, G.) is its variance. Hence, by (2.14)

hox)| _ Ri(x)  [ha@)’| _ ., s
= +1 S < +1).
Rty | =D i) B ) ST Y
Therefore condition (d) holds, and from these estimates it is easy to see that conditions
(e) and (f) are also satisfied if ma$ — . |

3. The p variate case. Suppose X is N,(d, I) and that we want to estimate § with
quadratic loss. Then, the risk of an estimate § is

R(9,8) = Es|| 6 - 4]

where | || is the Euclidean distance. Conserving our previous notation, we consider the
minimax risk of estimation given that || 8| < m, defined by p,(m) = min max {R (4, 8) :
0] =m, b€ 2}.

By invariance the minimax estimate is Bayes with respect to a unique spherically
symmetric least favorable prior distribution G5, concentrating (by analyticity considera-
tions) on a finite number of spherical shells. We can again approximate G, for large m.

Let J; be the Bessel function of the first kind of order ¢, see Erdelyi et al. (1953), and let
v: be its first positive zero. Let G, be the spherically symmetric distribution on the unit
sphere {#: | 8| = 1} with density given by

gwllxl) =G llx| 2l xllv), lxl=1,
=0, x| >1,
where
t =§ -1 if p is odd or divisible by 4

= - <§ - 1) if p is even and not divisible by 4
and ¢, normalizes the density. It is well known that <J; has positive zeros (ibid, page 59) and

by the standard representations (ibid, pages 2, 6) that g,,(0) > 0. Moreover, 81p(r) is twice
continuously differentiable on [0, 1] and

(3.1) 81,(0) = g1, (1) = 0.
s

Let G,,,,,(s) = G]p(ﬁ) B

The generalization of Theorem 2.1 is then as follows.

THEOREM 3.1. Asm — oo,

(3:2) pp(m) = r(Gmp) + o(m™*)

(3.3) r(Gmp) =p — 4yim™% + o(m™?);
and if G{P(s) = G (ms) then

(34) Gy —> Gy

weakly as m — o,

An analogue of Theorem 2.2 also holds. For simplicity we give the simplest example of
asymptotically optimal estimates. Let

&i(r) _ { Jilyer) (p—2)}
— 2Yt - s

r=0.

e Toyr) r
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aute) = {1 14 (L2L) 11

\I"mp(r)=‘7/p(r)y 057‘51—012

=9l —af) +Y,(1—ad){r— 1 —a?)}, r>1-a

where

and n = m(1 + a»). Then

4y7 _
(3.5) sup{’R(o, 8n) —p+%‘ ey <m} = o(m™)
if, for instahce, A ~m0<e<]l.

Nortks:

1) As m — o, Vx, 8,p(x) — ( 1- (Ill)—x_"gl)x, Stein’s (inadmissible) improvement for
P > 2. Minimaxity of Stein’s estimate follows.

2) These solutions have, for odd p, representations in terms of trigonometric and rational

functions (Whittaker and Watson, 1927, page 364). In particular, for p = 3,

gls(")=%rw, 0=sr=1
=0 otherwise,
and correspondingly
Yiz=m

which can be contrasted with the value y_;/, = Y% for p = 1.

These results are based on the general forms of Brown’s and Stein’s identities, which
we give in the following form. Let I(F') be the Fisher information for the p-variate location
problem as defined for instance in Port and Stone (1974). If F has a density f with
continuous partial derivatives

DAY
I(F) =f { = (——) (x)}f Y(x) dx.
RP 9x,

) =x—dx), Y= )

ad .
T%%(X)I<°°,j—l,--~,p.Then

Let

where E,

Brown’s identity: For any prior distribution G,

(3.6) r(G) = p — I(G*®).

Stein’s identity:
(3.7 R(0,8) =p - Ea{22f=1 %,- YX) — 25} (X)} .
The generalization of Lemma 2.1 needed is

LEMMA 3.1. The distribution Gy, uniquely minimizes I(F) among all spherically
symmetric F concentrating on the unit sphere and

(3.8) I(Gyp) = 447,
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Moreover, Vg, on (0, 1) satisfies the equation

-1
(3.9) u”’(r) + (Lr—)- u'(r) = —yiu(r),
or equivalently
” 7\ 2 ( ) ’
(3.10) 28 _ (.g_lﬁ) +oP— ) 8w _ —4v3.
8ip 81p r 8ip

We can prove this lemma as in Huber (1974) (see also Huber, 1977) by considering the
’ 2
’—{fT((:))—}- dr subject to [§ r?7'f(r) dr

= constant. Equation (3.10) is equivalent to the Euler equation for the associated Lagrange

problem of minimizing
1 1
L {0y _
rP 2 dr — 4y? | rPTYf(r) dr.
L f(r) A

Convexity of the functional guarantees that a smooth solution of the Euler equation which
satisfies the side conditions achieves the minimum. Unicity of a solution which is positive
on (0, 1) is argued as in Huber (1974). Relation (3.8) follows by integrating (3.9) with
respect to g and applying the identity
(p—1) &
” + L ’ = 2p= _— s

Gauss’ theorem (e.g., Courant, 1937, page 401-402) and (3.1).

Claim (3.5) and similar results follow as in the one dimensional case when we note that
if Y(x) = xw(|| x|)/|l x|, where w is a smooth scalar function, then Brown’s identity
becomes

equivalent variational problem of minimizing [§ r?~

(p—1)
(E1]

Generalizations in a variety of directions are possible. For example:

(1) to loss functions I(6, 8) = Z2_; A\,(8, — 6,)* or equivalently to the case where X is
N(6, D) with D diagonal, known. Unfortunately Euler’s equation now becomes a general
elliptic partial differential equation.

(2) to study of the minimax risk over other sequences of growing regions. In general, this
problem also seems very difficult. However, we note an interesting special case. The
minimax risk over {6 : max;|6,| < m} is p — p(#*/m?®) + o(m™?) and is obtainable by using
an asymptotically minimax estimate for each coordinate separately.

RO8) = p -Eo[z{w«uun + w(l =) - wZ(IIxIH}] -
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