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A COMPLETE CLASS THEOREM FOR STATISTICAL PROBLEMS
WITH FINITE SAMPLE SPACES’

By LAWRENCE D. BRowN

Cornell University

This paper contains a complete class theorem (Theorem 3.2) which
applies to most statistical estimation problems having a finite sample space.
This theorem also applies to many other statistical problems with finite

. sample spaces. The description of this complete class involves a stepwise
algorithm. At each step of the process it is necessary to construct the Bayes
procedures in a suitably modified version of the original problem. The com-
plete class is a minimal complete class if the loss function is strictly convex.

Some examples are given to illustrate the application of this complete
class theorem. Among these is a new result concerning the estimation of the
parameters of a multinomial distribution under a normalized quadratic loss
function. (See Example 4.5).

1. Notation, The Extended Problem, Examples.

1.1 GENERAL STATISTICAL DECISION PROBLEM. The general specification of a fixed
sample statistical problem, £, involves three measurable spaces, a family of distributions,
and a loss function. More specifically, there is the sample space, %, % .; the parameter
space ©, ABq; and the action space, </, #.;; the family of distributions, {Fy(-): 6 € ©®} on
%, % ., which is a (%4e measurable) Markov kernel of conditional probability measures
given f on % ,; and the loss function L: ©® X &/ X 2 — [0, =], assumed to be Bo X B, X
%, measurable. (Customarily the loss function is chosen to be independent of the
observation x € Z; but the theory to be developed here extends easily to situations where
the loss function depends also on x € &. Often when L is independent of x € % we will
simply write L = L(0, a).)

A decision procedure is a Markov kernel, §, of conditional probability measures given
x € % on A.. Let D denote the set of all procedures. We use the conditional probability
notation 6(- | x). Every decision procedure defines a risk function R(-, 8) by R (6, §) =
I L(6, a,x)é (da|x) Fy (dx). This leads to the usual definitions; for example, § is admissible
if (R(6,8’)<R(6,8) Vo€ ®)= (R(,5) =R(0,9)).

1.2 SPECIAL ASSUMPTIONS; THE SAMPLE SPACE. Assume throughout that % is a finite
set with %, the usual discrete o-field. Except where otherwise noted we let & C {z, 7 =0,
- .., m}, without any further loss of generality. (The exceptions will occur in some of the
examples where alternate specifications are more convenient.) In the remainder of this
section, except for Example 1.14, we actually take & = {i:i=0, ..., m}.

1.3 SPECIAL ASSUMPTIONS; THE PARAMETER SPACE AND FAMILY OF DISTRI-
BUTIONS. Assume 0O, % is a locally compact second countable space (Polish space) with
Borel o-field. Let ®% denote a suitable compactification, having properties set forth in
Assumption 1.4, described later, with Borel field Ze«.

Let » denote counting measure on %, so that f;(i) = (dF,)/(dv) (i) = Fyp({i}). Assume
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the functions f, (i) are continuous on ® for each i =0, ..., m. To avoid trivialities, assume
supgee fop(i) >0foralli =0, ..., m.

1.4 SPECIAL ASSUMPTIONS; THE ACTION SPACE AND LOSS FUNCTION. Assume ./ is
compact and metrizable. Assume L(-, -, +) is bounded and L(-, a, x) is continuous on ©
for each a € &, x € %. Assume further that L(-, a, x) has a continuous extension to ©*
for each a € &/, x € Z. This (unique) extension will also be denoted by the symbol
L(., -, -). Finally, assume that L(d, -, x) is also lower semicontinuous on ./ for each § €
0t xe x

1.5 THE EXTENDED PROBLEM. Let £ be a statistical problem as above. Let
E= {0 m:0€0, n€R™, fi(i)=m, i=0,...,m}CO*x([0,1]™*").

Let 2*, the extended problem, have ( Z, #4) and (&, #) as in 2 but have parameter
space ®* = E, where the closure is taken in the product topology on ®* x ([0, 1]™*!), and
B is the Borel o-field. Let f{.) (i) = Flon({x:}) =7, i =0, ..., m for (0, v) € ©* and
L*((8, m), a, x) = L(0, a, x) for (4, 7) € O*, a € o, x € Z. Let R* denote the risk function
in problem 2*,

It is straightforward to check that £2* is a well defined statistical problem satisfying
1.2-1.4. In particular, if § € © then there is a unique =, say #(#), such that (4, m) € ©*
(namely 7, = f3(i),i =0, ---, m), and fl. (i) = f;(i). However, if § € ®* — O then there
may be many values of 7 such that (4, 7) € ©*.

REMARK. In some settings ®* is isomorphic to ®*. This happens if and only if for
each 6, € O* the limg_q, f5(i) exists, i = 0, - - -, m. Another equivalent condition is that to
each 6 € ©* there exists a unique = such that (6, 7) € ©*. See Examples 1.11 and 1.12 for
some settings where this holds. If this is the case, then it suffices to take ©* as the
parameter space for ©®*, and fy (:) = limg_.q f5(-) for § € Ok etc.

The following propositions describe the three important properties of this extension
process.

1.6 PropPosITION. Let 8 by any procedure in problem 2. Then § is also a procedure
in problem 2*, and conversely. Furthermore R*(., 8) is a continuous function on ©*.
Hence, R*(-, §) on ©* is the unique continuous extension of R(-, 8) on E to the
compactification ®* of E.

Proor. The continuity of R*(., §) follows from the continuity of the maps (8, =) —
fi6,m (1) and the continuity of L(-, a, x) on ®*, The remainder of the proposition is also
easy to check. [

REMARK. In view of Proposition 1.6, we will simply write R(-, -) in place of R*(-, -).

1.7 PROPOSITION. A procedure § is admissible in problem 2 if and only if it is
admissible in problem Z*.

PROOF. As a consequence of Proposition 1.6, R (6, §’) = R(0, ) for all § € O if and
only if R ((6, =), 8’) = R((8, w), 8) for all (f, ) € ®*; and strict inequality holds for some
@ in the first expresssion if and only if it holds for some (8, 7) in the second. The proposition
then follows. O

1.8 BAYES PROCEDURES. Let P be a (prior) probability distribution on 0, %e. A
Bayes procedure for P is a procedure 8 such that

JR 6,0)P (do) = inf{j R(,6")P (df): 6’ € D} .
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Given P, let
S@E) =Sp(i) = {aE of: J L@, a, i)f;(i)P (df)

=infyey J L@, a,i)fs(i)P (d0)}.

It is easily seen that a procedure § is Bayes for P if and only if
8SpG) i) =1, i=0,--e,m.

Note that S(i) # ¢ because of the lower semicontinuity of L (6, -, x) (which implies the
lower semicontinuity of [ L (8, -, i) f;({)P(df) and the compactness of /. Hence for every
prior P there exists at least one Bayes procedure.

If Sp(i) consists of exactly one point for i = 0, --., m then the Bayes procedure for P
is uniquely determined. Furthermore, it must then be admissible since any uniquely
determined Bayes procedure is admissible.

A set of conditions which will guarantee that Sp(i) always consists of exactly one
point—and hence that the corresponding Bayes procedure is admissible—is that .o/ be a
convex subset of Euclidean space, and that L(d, -, x) be strictly convex on .« for every 6
€ 0, x € Zand that [ f5({)P (df) >0 for every i =0, - . -, m. (To show this, apply Jensen’s
inequality.)

1.9 PROPOSITION. A procedure 8 is admissible in problem 2* only if there exists some
prior distribution, P, on ©* such that § is Bayes with respect to P. (In other words, the
Bayes procedures form a complete class in problem #*.)

Proor. This is a well-known decision theoretic result. Basically, the proof consists of
two major steps. The first is to define ' = {r: ®* — [0, »]: 35 € D with R(4, 8) =
r(6)V6€ ©*} and to show that I is closed (hence compact) in the topology of pointwise
convergence. The second major step involves defining I'= {r: r € T, r continuous and
bounded} ; checking that I is closed and convex in the topology of uniform convergence of
continuous functions of the compact set, ®*; and invoking the appropriate supporting
hyperplane theorem. The complete result is proved in Wald (1950) for the case where L is
independent of x € Z. A more contemporary proof of the first major step is contained in
LeCam (1955), again for the case where L = L(4, a). These proofs can be adapted to the
case where L depends on x € & alternately one may invoke the more general closure
theorem in Brown (1977) to complete the proof for the case where L depends on x € &.
g

1.10 ExamMPLE. Even in many simple and statistically natural settings, the converse of
Proposition 1.9 is not valid. That is, there may exist Bayes procedures which are not
admissible. Consider the well studied problem of estimating the mean of a binomial

distribution with squared error loss. Here ® = [0, m] = &/ f5(i) = (’?) @/m)"(1—0/m)™",

and L(6, a) = (8 — a)®. Consider, for example, the prior P which gives mass one to the
point § = 0. Then Sp(0) = 0 but Sp(¢) = [0, m] for i = 1 since [ f({)P (df) = 0 for : = 1.
Hence any procedure which makes the estimate 0 when i = 0 is a Bayes procedure. Many
such procedures are far from being admissible. For this reason the complete class charac-
terization of Proposition 1.9 is not satisfactory even in this familiar problem. Johnson
(1971) describes the minimal complete class for this problem. (Johnson’s complete class is
described in Example 4.1.) Our Theorem 3.2 considerably generalized Johnson’s results.

The following examples may help clarify the concepts discussed so far. The first two are
successive generalizations of the preceding binomial example.

1.11 EXAMPLE; ONE PARAMETER EXPONENTIAL FAMILY. Suppose

fo(i) = h(i) exp@Q(6)T (i) — R(8)
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where—mainly for convenience—@ and T are increasing real valued functions, Q is
continuous and /4 > 0. The “natural parametrization” has @ (4) = §, and © = (—o0, ) is the
“natural parameter space.” However this is sometimes inconvenient in applications, for
then ©% = [—o, »]. A more convenient choice is usually ® = (7'(0), T'(m)) with

3R(6) R'()

Q) Q)

In such a situation, with the parametrization (1.1), the remark in Definition 1.5 is operative.
Thus to define problem 2*, it suffices to let @* = @* = [T(0), T(m)] and

. fro@ =1 if and only if i = 0,
and frm@) =1 if and only if { = m.

(1.1) 0=E,(T()) =

1.12 EXAMPLE MONOTONE LIKELIHOOD RATIO. Suppose f;(i + 1)/f;(i) is a nondecreas-
ing extended real-valued function of §, { = 0, ..., m. (Thus the problem has the MLR
property.) Assumption 1.3 implies that the ratios f;(i + 1)/f;(i) are continuous in 6. A
convenient parametrization is usually to have

(1.2) 0= E;@).

‘For convenience, assume (1.2) is the case and ® = (a, b) C [0, m]. Again the remark in
Definition 1.5 is operative and it suffices to let * = ®* = [q, b] with

fa@) =limga fo(@),  fo(i) =limy, s (i) i=0, .-, m

Note that here, as distinguished from the preceding example, it need not be the case that
F, and F, are trivial distributions, concentrated on one point. However, it will be the case
that F,(F:) will have as support a set of the form 0 = i = m,(m, = i = m).

Note that in the preceding examples we have—for convenience of exposition—chosen
© to be an interval. However, the theory to be developed applies equally well if © is
actually some (measurable) subset of the intervals defined above. For instance, in Example
1.10, one might be given a priori that § € (0, %) U (%, 1). This set could be chosen as 0,
then ©* = [0, 4] U [%, 1], etc.

1.13 REMARK; LOSS FUNCTIONS. The considerations of this paper are primarily appro-
priate to estimation problems. Thus, in particular, when ® = &7 C R, loss functions of the
type L(6, a) = £(0 — a) with ¢bowl-shaped and #(0) = 0 are suitable choices, though of
course the theory is amenable to many other loss functions.

For some aspects of the theory it is required that Sp(i) contain just one point whenever
[ fo(i)P(df) > 0. This will be the case whenever .« is convex and L (0, - , X) is strictly convex
for all € ©, x € Z. (Actually, in the later applications, this strict convexity is required for
all § € @, x € Z. See paragraphs preceding Theorem 2.4).

The theory to be developed is not suited to. certain classical testing problems. In these
#={0,1}; ® =0, U O, and L(f, a) = 0 if § € ©,, and = 1 otherwise. However, if &, N
0, # ¢ (for example if 8 = (0, %4], ®; = (%, 1)) then this loss function does not satisfy the
continuity conditions of Assumption 1.4; and the later considerations of this paper do not
apply. Nor will it benefit to artificially separate ®, and ©,, as is done for a sequential
problem in Brown, Cohen, Strawderman (1980); the reason this will not benefit is discussed
there. On the other hand, if © N ©, = ¢, then the results of this paper may apply. Similar
comments apply to certain classical multiple decision formulations.

We conclude with a simple example further illustrating the construction of the extended
problem.

1.14 EXaAMPLE. Suppose & = {(1,0) U (0, 1) U (1, 1)} C R ® = (0, 1) X (0, 1), and
Fy({x}) = fo(x) = (61 + 62 — 6:0,) 'TIO7(1 — 6,)' ™.
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(Note that this is a simple two parameter exponential family. The significance of this
family is further explained in Example 4.2.) Then

lim infy 0 f5((1, 0)) = 0 < 1 = lim supg.o fo5((1, 0)).

Hence the special remark in Definition 1.5 does not apply; and ©* cannot be defined as
©* = [0, 1] x [0, 1]. Instead, if we let ; correspond to f5((0, 1)), 7 to fs((1, 0)) and =3 to
fo((1, 1)), then ©* C ©* x ([0, 17°) is the set defined as (1.3)

0* = {(4, n): 0 € O 6 (0,0),
m o= (01 + 6 — 6:0:) (1 — 6,0,
7= (0 + 0> — 6:6:)7"6:(1 — 65),
73 = (61 + 0> — 6,6:)7'6,05; or

0=1(0,0),m=1—m,
0=m=1m=0)

and fign((0, 1)) = 1, fiom((1, 0)) = w2, fiom((1, 1)) = ms.

2. Sequences of Priors.

2.1 RESTRICTED PROBLEMS. Let 2be a statistical problem as defined in Section 1. Let
4’ C &. Then the restricted problem, 2’ = 2(Z”), of Zto 2’ is defined to have sample
space 2, to have parameter space @ = O(2”) = {§ € ©: Yic 1 f5(i) > 0}, to have

2.1 f50) = fo) /Xue2 fo()) for € @', i€ 27,

and to have .« as in problem £, and loss L’(6, a, x) = L(0, a, x), § € ©’, a € «. Note that
(2.1) merely defines the conditional probability function given i € 2’ C Z. It is easily
checked that 2’ itself satisfies the assumptions of Section 1. Note that if &’ # ¢ then ©’
# ¢ since we have assumed supgeo fo(i) > 0,1 =0, .--, m.

If 2( &), is the notation for the restriction of 2to 2, then we use the symbol 2*(Z”)
to denote the extension of the problem 2(%”). Any procedure 8§ in problem £ can also be
considered as a procedure in problems 2(2”) and 2*(2”) by taking the restriction of
8 (- | x) to the set {x € Z"}.

2.2 ADAPTED AND FULL SEQUENCES OF PRIORS. This definition involves a related

sequence of priors and sample spaces. Let = 21D %D --- D %;# ¢, and let P, be a
prior distribution in problem 2*(%;) (i.e., a distribution on ©,* = ©*( %)) such that

(22) %4-1 = {x S %: J fdij)(x)Pj(d¢) = 0}, J= 11 ttty -1
o !

Here, f,” denotes the probability function in problem 2*( ;). Note that Z..& %. Such a
sequence will be called adapted. An adapted sequence of length ¢with

j fO(x)PAdp) >0Vx E X,
o

will be called a full sequence.

2.3 TorALLY BAYES PROCEDURES. Let {P,;:j =1, --., ¢} be a full sequence of priors
(related to a sequence 21D --- D %). Then a procedure § is called totally Bayes relative
to {P;} if 8§ is Bayes relative to P, in problem 2*(%)) for all j = 1, --., £ This condition
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may be rephrased as
(2.2) 8Sp(x)|x) =1VXE & — Zs, j=1,---,4

(By convention %1 = ¢.) Let Sx) = Sp (x), x € %j — %41, and (2.2) can be rewritten as
8(S(x) | x) = 1.

If S(x) consists of just one point for each x € 2 then the totally Bayes procedure is said
to be uniquely determined. Note that if </ is a convex subset of Euclidean space and
L(8, -, x) is strictly convex for each § € ©%, x € %, then any totally Bayes procedure is
uniquely determined as noted in Remark 1.13. Such uniquely determined totally Bayes
procedures are admissible, as the following theorem shows.

2.4 THEOREM. If & is a uniquely determined totally Bayes procedure, then § is
admissible.

ProOOF. Let § be a uniquely determined totally Bayes procedure and suppose R(6, )
= R(8, d) for all § € ©. It will be shown (by induction onj =1, --., ¢) that (. |x) =
3(- |x) for x € & — 1.

First, suppose x € 21 — 2. Then § is Bayes for P; since R(6, 3) = R(4, 8) implies
I RP(g, 8)Pi(dyp) = [ R (g, 8)P:(dgp) by Proposition 1.6 and the remark following it,
where R® denotfes the risk function in Problem 2*(%;). It follows from the unicity
assumption that 6(. | x) = 8(- | x) forx € 21 — Z>.

Now, suppose that x € %5 — %41 for some J = 2, ..., £; and that the induction
hypothesis is true for all j = J — 1. Because of the induction hypothesis, for § € 0,

0=R(6,6) — R(,8) = Yo, f L, a, )4 (da|x) — §(da|x))fi(x)

o

=C' ) era,J L(6, a, x)(8(da| x) — 8(da| x))fi” (x)

o
— C(J)(o)(R(J)((ﬂ, W};J}), 8) - R(J}((o, ’ﬂ’o(‘”), s))

where C'7(0) = (Y ez, fi(x))™* (and -0 = 0), and 74’ is the point with coordinates
{(f{7'x): x € %y). It follows from Proposition 1.6 that R?((6, m), §) = R“’((8, =), §) for all
@, m eE. Henceﬁ is Bayes for prior P, in problem 2*(%;). It follows from the unicity
assumption that 8(-|x) = 8(-, x) for x € % — Z.1. The theorem now follows by
induction. 0O

3. Complete Class Theorems. The first basic complete class theorem concerns the
collection of all restrictions of 2.

3.1 THEOREM. Let 8 be an admissible procedure in problem ?. Let &' C %. Then § is
admissible in problem 2?(Z’) and § is Bayes in problem ?*(%”).

Consequently, the collection of all procedures which are Bayes for every problem
PXX') X' C X, forms a complete class. (Let %, denote this complete class.)

ProoF. Let § be a procedure in problem Zand let 2’ C %. Suppose § is not admissible
in problem 2( Z”). Then there is procedure 8’ in 2(%”) sucl} that R'(6, §') = R’(4, ) for all
0 € ©(Z") with strict inequality for some § € © (Z”). Let 8 be the procedure defined by

5 |x)=8(|x)xE X
8- |x) x& &
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Then R@,8) = Qrez foi(x)R' (0, &) + Yega- f L8, a, x)d(x, da)fs(x)

= Qe fo(x))R' (6, 8) + Yrea f L9, a, x)5(da|x)fs(x)

= R(9, §)

with strict inequality for some ¢ € (%) C 0. It follows that 8 is not admissible. This
proves—by contraposition—the first assertion of the theorem. The remaining assertions
follow from Propositions 1.7 and 1.9. 0O

The preceding theorem provides a reasonably economical complete class theorem since,
as will be seen, %, is often a minimal complete class. However, the description provided by
the theorem is unnecessarily inefficient. In order to verify that § € % it is necessary to
check that 8 is Bayes for every problem 2*( Z’). In general there are a relatively large
number (2™*! — 1) of such problems.

The following complete class theorem provides a description of %; which can be verified
much more efficiently.

3.2 THEOREM. A procedure is in % if and only if it is totally Bayes. Consequently,
the set of totally Bayes procedures is a complete class.

If every totally Bayes procedure is uniquely determined, then this class is a minimal
complete class.

PrOOF. Suppose 8§ € €. Then § is Bayes for some prior, P;, in problem 2*( £). Let
Z> = {x € 21 [or(4y s (x)P1(df) = 0}. Then § is also Bayes for some prior P; in problem
P*( X>), etc. In this fashion one inductively constructs a full sequence Py, Ps, --- , P, such
that § is totally Bayes with respect to this sequence. Thus the collection of totally Bayes
procedures contains the complete class of Theorem 3.1.

Conversely, suppose § is totally Bayes relative to a full sequence {P;}. Let £’ C Z. Let

3.1) J= min{j: Yeca f fsM(x)P(de) > 0}.
o7

Note that P;- is a prior distribution on the parameter space, © }, of problem 2*(%y). Let
®'* denote the parameter space of problem 2*(2’). Observe that 2y D %’ because of
3.1).

Let U = {(6, ) € ©}: Y;ea m > 0}. Define the map m:U — ©* by m(f, =) = (4, #*)
where 7= m;x4(1)/(} e« 7). Define the prior P’ in problem 2*( %) as follows: Let @ be
the measure defined on ®F by Q'(d(d, m) = (¥ ex’ m)P;(d(f, m). (Note that @ is
concentrated on U and @ # 0.). Let P'(4) = kQ'(m '(A)) where % is the appropriate
normalizing constant.

Now, the posterior distribution of 8 in problem 2*(%;:) under P,  given x € %" is the
same as that in problem 2*( %) under P’ given x € &’ since

j mej'(d(ﬂ, W))=f J'(m/(Zjeg,-f TN jeqa T)P;(d(B, 7))
€A Jr oA Jn

=J Im*Q'(d(o, 7))
€A I

=k f f m* P’ (d(8, 7*))
oA Jnt
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for all i € 2. This completes the proof of the first assertion of the theorem.
The second assertion then follows from Theorem 2.4. O

3.3 REMARK; OTHER STEPWISE BAYES ALGORITHMS. The preceding complete class
theorem involves the construction of admissible procedures via a stepwise algorithm. At
each step a Bayes procedure is constructed for a suitably defined problem. As previously
noted, such an algorithm was described in Johnson (1971) for some important special
problems. This algorithm is generalized in Example 4.1 in the next section.

Stepwise Bayes procedures have also been utilized by Wald and Wolfowitz (1951) and
by Hsuan (1979) in order to describe the (minimal) complete class when the parameter
space is finite. Our results specialize to theirs when both parameter and sample space are
finite. Otherwise, of course, our results do not overlap theirs.

Our stepwise algorithm (= “totally Bayes procedures”) is somewhat more complex than
that in the Wald-Wolfowitz-Hsuan construction. In their case the sample space and
parameter space at each stage are always a suitable restriction of those in the original
problem, and the family of distributions consists of the (well defined) conditional distri-
butions given this restriction. In our algorithm the sample space at a given stage is also a
restriction to the original sample space, but the parameter space may involve an extension
as well as a restriction of the original parameter space, and the family of distributions may
also have to be suitably extended.

4. Examples.

4.1 ONE PARAMETER EXPONENTIAL FAMILY. Consider the setting of Example 1.11 with
® = (T'(0), T(m)) as in (1.1). Suppose that L(4, -, x) assumes its minimum on the set M(6)
for § = T'(0) and for § = T'(m). Then Theorem 3.2 and the remarks in Example 1.11 can be
applied to yield that the procedures of the following form comprise a complete class:

There are constants —1 = m < i = m + 1 and a non-negative measure V (not necessarily
finite) on ©* = [T'(0), T'(m)] with Ym<i<r [or fo(i) V(dB) < o such that

S(M(T(0)),i) =1 0si=m
4.1) SM(T(m)),i)=1 m
§(SG), 1) =1 m<i<m

where

)
S(@) = {a: f L8, a, i) fs(i) V(dB) = inff L@, o, i) (1) V(dl):a € ,}2{} .
ek

ek

(In the notation of preceding sections S(i) = Sp(i) where P(df) = (T nei<rfs(i)) " V(d6).)

Suppose #/ is a convex subset of Euclidean space and L (6, -, x) is strictly convex. Then
the preceding complete class is a minimal complete class. Johnson (1971) first described
this minimal complete class in the case of the Binomial distribution with squared error
loss, L (8, a) = (6 — a)’. In that case, of course, M(T'(0)) = {0} and M(T(m)) = {m} in
(4.1).

If Fy is not an exponential family, but instead has monotone likelihood ratio, then
Theorem 3.2 leads to a characterization very similar to (4.1), but not necessarily identical
with it. (In particular, not all the procedures of (4.1) need be in the complete class.) The
remarks in Example 1.12 should make it clear how to derive this class.

To see that %, need not always be a minimal complete class, consider the binomial
problem with m = 2 and L (6, a) = | § — a|. Consider the simple Bayes procedure for prior
P with P({*4}) = P({%4})) = %. Then S(1) = [%, %] and §; is a Bayes procedure where
81({*410) = 1 = 8:({*%}|2) and 8:({*6} | 1) = % = 8:({*%} | 1). Hence 8, € %,. However &, is



FINITE SAMPLE SPACE 1297

not admissible since R (6, 8;) = R (6, §,) with inequality for § € (%, %) where 8:({(i + 1)/2}

|i) = 1. The reader may have already noted that in this example certain randomized
procedures may be Bayes or totally Bayes but can never be admissible. However, of course,
there do exist estimation problems in which randomized estimators are admissible. Con-
sider the preceding binomial problem, but with L (8, a) = |8 — a|"*. Then the procedure
8, is Bayes (for prior P;) and is also admissible—in fact no other procedure is even equally
good; that is, R(6, §) = R(d, 8:) V 6 € O implies § = 4,.

4.2 TWO INDEPENDENT BERNOULLI VARIABLES—A TWO PARAMETER EXPONENTIAL
FAMILY. The description of %, in Example 4.1 is greatly simplified by the fact that ©@* =
0" in every possible subproblem 2( &;). Even in the simplest multiparameter exponential
families this will not generally be true. Consider the case of two independent Bernoulli
variables:

4.2) fi6,60 (%1, x2) = H; 07(1 —0)™;6,€ (0,1),x,=0,1,i=1,2.

To be specific, take o = @ = [0, 11> and L(6, a) = || § — a||>. If P1{(0, 0)} = 1 then % =
{(1, 0), (0, 1), (1, 1)} C Z. Problem 2*( &) is described in Example 1.14. Note especially
that ©@*( 4>) is described in (1.3) and ©*( &3) # ©*.

4.3 EXAMPLE 4.2 CONTINUED; ORDERED PARAMETER SPACES. When O%# ©* asin the
preceding example, there can be some rather unusual admissible procedures. Let f; be as
in (4.2) but let

O={(0,6)0=60=0=1}.

This is an example of an ordered parameter space. Consider the non-randomized procedure

85((0,0)[(0,0)) = 1,
85((%, )| (0, 1)) =1,
85((%, %) | (1, 0)) = 1,
83((%, %) (1, 1) =1

It can be shown that §; cannot be unique Bayes. Rather surprisingly, it is unique totally
Bayes, and, hence, admissible. The requisite full sequence of priors is Pi, P, with P1({(0,
0)}) =1 and

Po({ (%, %) X (%, %, %)}) = %,
P5({(0,0) X (1,0,0)}) = %.

(Note that 8; has another somewhat peculiar property—that 83(- | (1, 0)) = 83(- | (1, 1)) but
83(+ | (0, 0) % 85(- | (0, 1)). The fact that 8(- | (1,0)) = 8(- | (1, 1)) is, however, not necessary
in order for a procedure similar to 85 to be totally Bayes.)

The problem of estimating ordered binomial parameters (under squared error loss) was
considered in Sackrowitz and Strawderman (1974). They showed that the maximum
likelihood estimator for such a problem is inadmissible, except for a few special cases
where it is admissible. They used essentially Theorem 3.1 to prove inadmissibility; and
Theorem 3.2 (with £= 2 and ©®* = @*) to prove admissibility in the exceptional cases.

4.4 MULTINOMIAL DISTRIBUTION, SQUARED ERROR LOSS. Another important multipar-
ameter exponential family is the multinomial distribution, with

folx) = (N ) 1T, 67,

X

Z = {(x1, + -+, x):x; non negative integer,i =1, --- , r; Y- x, = N}
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O={b,---,0):0<6,i=1-.-,r; 30, =1}.

Suppose it is desired to estimate § € @ by a € &/ = @* with L (6, a) = |0 — a||* = ¥’ (6:
— a;)®. The maximum likelihood estimator, 85, has 8:({x/N} |x) = 1. This estimator is
unique totally Bayes, and hence admissible. The requisite full sequence of priors is as
follows: In each case ®* = ®* Each P, i = 1, ..., /= r is symmetric with respect to
permutations of the coordinates. The spaces Z; are described as 2; = {x € %" at least j
coordinates of x are nonzero}. Pi(©,) = 1 where ©; = {§ € ©* exactly j of the coordinates
0y, -- -, 0. are nonzero}. P, gives mass 1/r to each of the r unit vectors. The density of P;
with respect to Lebesgue measure over ©; is p; where

43)  pi®6,---,8,0,---,0) =K CO ([’ 6)7' with C@O) = Yres, filx).

(The term C(6) is required since [’ (x) = C'(8)fs(x) for x € Z,.) This admissibility result
was stated in Johnson (1971). A complete, and short, proof is given in Alam (1979). The
proof we have given above can be easily generalized to treat situations involving other
suitable loss functions, or to produce different admissible estimators by altering the
sequence described in (4.3). (A rather similar argument can be used to show that the
maximum likelihood estimate of several independent binomial means is also admissible
under squared error loss when the parameter space is the natural parameter space.) It is
pertinent to the next example to note that the above results are equally valid if o« = [0, 1]".

4.5 MULTINOMIAL DISTRIBUTION, A NORMALIZED QUADRATIC LOSS. Let {f;} be as in
(4.4); but consider the loss function

L6, a) = Zf=1 0 — ai)z/oi.

This loss function is discussed and motivated in Olkin and Sobel (1979). The maximum
likelihood estimator, d;, of the previous section has a constant risk function.
Now, suppose & = [0, 1]" = {(ai, -+, @,): 0 = a; = 1}. To avoid trivialities, assume

Nzr+1LetT={a=(a, -, a) €« min{a} >0, Yi-1 a; = 1}. Then, no estimator
having Y.cq 8(T — {a}|x) > 0 for every a € & can be admissible. In particular, 8, is
inadmissible. This last assertion was proved by Alam (1978) who exhibited an estimator
with smaller risk than ..

Proor. The loss function L; does not satisfy Assumption 1.4 since L;(-, -) is not
bounded. Before the theory of Section 3 can be applied, it is necessary to reformulate the
problem. To begin this reformulation, observe that admissibility under loss L, is equivalent
to admissibility under loss L, where

Ly(6, @) = {Ti=1(6: — a)?*/6:}/ (Ti-1 671).

The loss L(-, -) is bounded, but still does not clearly satisfy Assumption 1.4 since it cannot
be continuously extended to the obvious compactification of ®, which is

0'=(0:0=0,i=1,-..,r; 36 =1).
This difficulty can be rectified by a reparametrization. Let
A= A(0) = (1/6)/(F5=1 1/8),i=1, -+, T,
so that
0, =6:\) = 1/N) /(=1 1/A), i =1, -+, 1.

Consider the problem over the parameter space A = {\: (\) € 8} = (A: 0 < A; i=1,
<+« , r; 3\; = 1}. The loss function equivalent to L; is

Ls(A, @) = [3=1{6:0) — a}2/0:M)]1/ (i 67N}
=1-2Y a)/Yj= A7+ Y-t Aia?.
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Now, Lj is bounded and has an obvious extension to A* = (A: 0= A, i=1, -.-, r;
3\ = 1}; namely

Ls(\, a) = Y1 Aa? ifAE A*— A,

To complete the definition of the equivalent problem, we naturally take the probability
function under A to be fyn). Admissibility of a procedure in the original problem is
equivalent to admissibility in the reformulated problem; and for the remainder of this
proof we consider only the reformulated problem.

Suppose Y.c28(T — {a} | x) > 0 for every a € </ Then there must exist points a® € T
and x? € %, i =1, 2, with a® # a® and o € Supp 8(- |x?), i =1, 2. If x = x® then §
is not a nonrandomized estimator, and hence must be inadmissible since Lj(A, -) is
strictly convex for A € A (and convex for A € A*¥). Suppose x" # x® and consider the
extended subproblem 2* = 2*({x?, x?}). #* has parameter space A* C A* X {(m, m2):
a1+ m =1} and fi . (x?) = m, i = 1, 2. If A € A then (A, 7) € A* if and only if

m = mlA) = foon(x?) /(31 fon ().

By Theorem 3.1, if 8 is admissible then 8 must be Bayes for some prior in problem #*. So,
let P* be a prior distribution on A*. The proof will be complete when we show that §
cannot be Bayes with respect to P*.

There are three possibilities:

(4.4) Supp P*C {(A\, m):AE A* — A}, or
(4.5) Supp P* N {(A, m):A € A} = (X', #(X")), or
(4.6) Supp P* N {(A, 7):\ € A} contains at least two points.

Observe that a® € Sp+(x?) if and only if ¢’ minimizes

f Lo\, @)mP* O\, )
and thus if and only if

ay = J , Bra M) TP, 1)/ f , AP (d(, )
A A
(4.7) = J CAR) " 'mP* (A, m)/ f A;mP*(d(\, m)
AEA A*

§f EAR)'mP*(d(, W))/f AjmP*(d(, 7).
AeA AeA

Here the second equality involves only the fact that (¥ Az")™" = 0 for A € A*. (If the
denominator in (4.7) is zero, so will be the numerator, and a {? can take any value in [0, 1].)
Suppose (4.4). There must be some index j such that [+ A jmP*(d(\, 7)) > 0. For this
index a { = 0 because of (4.4) and (4.7). Hence a'’ # o and & cannot be Bayes in problem
P* for a prior satisfying (4.4).
Suppose (4.5). Then

(4.8) a = CNHTY/W) =6,(\)

since [rea(EAC")'mP* (A, m) = ENT)TPH({(N, 7(\)}) and fiead jmP*(dQ, 7)) =
NP*({(N, m(\"))}). But, since o # a® and Zaf’ = Zaf? = 1 = Z(\’) there must exist
indices i, j such that « {’ > 8,;(\). For such indices a ’ < a /. Hence & cannot be Bayes for
a prior satisfying (4.5).
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Suppose (4.6). Let @ be the distribution on {(A, 7) = A*:A € A} defined by

QU(A, m) = EA)'mP*(d(, W))f GARY) ' mP*(d(, 7).
AEA

Then Supp @ contains at least two points, and

-1
4.9) e = (f A EAH QUM w))) = j A7 EADTQAM, m)
AEA AEA

by Jensen’s inequality. Furthermore, there is strict inequality in the second inequality of
(4.9) for some indicesj =1, - - - , 7. (Actually, this is true for any index j such that Supp @
contains at least two points having different A ; coordinates.) Hence

T al) < j Bt A7 (St AT) QU m) = 1.

It follows that a & T hence, again, " # «¥. Hence 8 cannot be Bayes for a prior
satisfying (4.6); or, indeed, for any prior P* in problem 2*. As previously noted, this proves
that 8 is not admissible. 0O

It should be remarked that if one considers the more natural action space &’ =
{(a;, -++,a):@az=0,i=1,...,r; Ya; =1} then é, is an admissible estimator. This result
was proved in the paper of Olkin and Sobel (1979) by means of an argument involving the
Cramer-Rao inequality. It can also be proven by verifying that §, is unique Bayes under
loss L, and action space &/’ for the uniform prior over 0. See Ighodaro (1980).

The multinomial problem with an entropy loss function is considered in Ighodaro,
Santner, and Brown (1980). This loss function is unbounded in a more fundamental way
than the loss function in the preceding example; and the methods of Section 3 need some
alterations in order to yield a description of the minimal complete class.
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