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ROBUSTNESS OF MULTIVARIATE TESTS

By TAKEAKI KARIYA!

University of Pittsburgh and Hitotsubashi University

This paper gives necessary and sufficient conditions for the null distri-
bution of a test statistic to remain the same in the class of left ¢(n)-invariant
distributions and in the class of elliptically symmetric distributions. Secondly,
it is shown that in certain special cases, the usual MANOVA tests are still
uniformly most powerful invariant in a class of left (¢/(n)-invariant distributions
including elliptically symmetric distributions.

1. Introduction. Dempster (1969), Dawid (1977) and Eaton (1979) considered the
invariance of distributions of some matrix variates under orthogonal transformations.
Applications of these results to certain multivariate tests yield the invariance or uniqueness
of the null distributions of the tests among certain classes of distributions including
elliptically symmetric distributions. On the other hand, in a class of elliptically symmetric
distributions, Chmielewski (1980) showed the uniqueness of the null distributions of some
invariant tests for equality of scale matrices, for sphericity, etc. However, as far as the
distributions of multivariate test statistics are concerned, simple conditions for the unique-
ness (or invariance) in those classes can be obtained. This paper gives such conditions and
applies them to some multivariate tests. These results help us to check whether the critical
point of a test derived under normality is stable against the departure from normality to
aleft @(n)-invariant distribution or an elliptically symmetric distribution. We remark that
the uniqueness is essentially dependent on the uniqueness of the uniform distribution on
a Stiefel manifold.

In the latter part of this paper, a robustness property of the usual MANOVA tests is
studied. As is well known, in certain special cases, the likelihood ratio test, Roy’s test,
Lawley-Hotelling’s test and Pillai’s test are identical and under normality they are UMPI
(uniformly most powerful invariant). Here it is shown that these tests are still UMPI in a
class of left (¢)(n)-invariant distributions including elliptically symmetric distributions. The
argument is rather similar to Kariya (1981) where the robustness of Hotelling’s T™-test is
considered. However, the class of distributions treated in this paper is broader, and as a
special case, also for the Hotelling T-problem, a stronger result is obtained.

2. Main Results. Let 0(n) and ¥(p) denote the set of n X n orthogonal matrices
and the set of p X p positive definite matrices respectively. For an n X p random matrix X,
let #(X) denote the distribution of X. We shall call X left ¢(n)-invariant about M if
LPRX - M)} = XX — M) for all @ € O(n). Also, we shall call X elliptically symmetric
about M with scale matrix £ € ¥ (p) if L(gy) = £L(y) for all g € O(np), where y =
(¥1, - -+, ¥n), yiisthe ithrow of Y = (X — M)Z""% Let 2 = {X:n X p|rank(X) = p} and
throughout the paper n = p is assumed. Further, let %, (M) and %% (M, I, ® ) denote
respectively the class of np-dimensional left ((n)-invariant distributions about M such
that P (X — M € %) =1 and the class of np-dimensional elliptically symmetric distributions
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about M with scale matrix 2 € & (p) such that P(X — M € %) = 1. Clearly
FeM, I, 8 3) C F1L.(M) forall M:nXp and X € %(p).
If X)€ 7:(M, I, ® 2) has a density, it is expressed as

(2.1) fX|M,2) = |2 (tr 27X — M) (X — M),
where ¢:[0, ©) — [0, ©), and if £(X) € F(M) has a density, it is expressed as
(2.2) fX|M) =¢((X - M)(X - M)),

where ¢: %(p) — [0, ). A left O(n)-invariant distribution which is not elliptically
symmetric is the matrix variate ¢-distribution, whose density is given by

(2.3) foX) =c|I, + (X = M)(X — M) |~ ™72

where c is a normalizing constant. Frazer and Ng (1980) treated a multivariate regression
model with this distribution for the error term.
In most multivariate hypothesis testing problems, #(X) is assumed to be normal:

(2.4) LX)=NM,Q) M:nXp, Q€& F(np).

Here E (X) = M and Cov(x) = Q, where x = (xy, - -+, x»,)’ and x, is the ith row of X. After
transformation, many null hypotheses can be stated as

(2.5) H:(M,Z) € 0y X Ao,

where in (24), =1, 2, € ¥(p), and Oy X Ag C R™ X ¥(p). It is noted that when
Q =1, in (2.4), the rows of X are independent with common covariance matrix . Here
we assume

(2.6) 0 € 0O, or O contains 0 in R".

Usually, this assumption is satisfied; if necessary, replace X by X — M, and O, by ©, — M,,
where M, is a fixed point in ©,. Typical problems of the form (2.5) with (2.6) are the
MANOVA, GMANOVA problems, the problems of testing independence or equality of
covariance matrices or sphericity. In these problems, except for some special cases, there
exist no UMP (uniformly most powerful) tests and usually many tests are proposed in
each problem. A feature that these tests have in common is similarity, which is often
implied by invariance. In fact, under the null hypotheses in invariant problems, the groups
leaving the problems invariant often act transitively on the parameter space ®, X A, so
that the null distributions of these tests do not depend on (M, £) € ©, X Ao, and the tests
become similar. Now, let us consider the uniqueness of the null distributions in %#; and
F&, where

(2.7) F=U{F(M)|M €< 0.}
and
(2.8) Fe=U{FM, [,OZ)|(M,Z) € O X Ao).

Let ={Z€ % |Z'Z=1,}. Let G/ p) denote the set of p X p nonsingular matrices and
let GU(p) (or GT(p)) denote the set of p X p nonsingular upper (or lower) triangular
matrices with positive diagonal elements.

LeEmMa 1. (Eaton, 1979, Proposition 7.4) Suppose X € ¥ is a random matrix with a
left O(n)-invariant distribution about 0, i.e., L(X) € %, (0), and write X = ZA where Z
€ Zand A € #(p). Then Z and A are independent, and Z has the unique uniform
distribution on the Stiefel manifold %.

Below, ¢(X) denotes a test statistic for the problem (2.5) with (2.6).
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THEOREM 1. A necessary and sufficient condition for #(t(X)) to remain the same for
all #(X) € % is that when ¥(X) = N(M, I, ® X), the following conditions (i) and (i)
hold:

(i) L{¢(X — M)} = LX)} for all M € O and all £ € ¥(p).

(i) L{t(X)} = 2L{t(2)} for M =0 and all £ € ¥ (p), where X = ZA with Z €

Zand A € ¥(p).

Proor. (Sufficiency) Assume (i) and (ii) under £ (X) = N(M, I, ® Z), where M € 0.
Let Y = X — M. Since A(Y) = N(0, I, ® X), from (i) and (ii), L{t(X)} = L{(Y)} =
L(t(Z)}, where Y = ZA with Z € % and A € ¥(p). But by Lemma 1, & (Z) does not
depend on £(Y) provided Y is left @(n)-invariant or £(Y) € %.(0). Since £(Y) € #.(0)
is equivalent to #(X) € (M) with M € 0, this implies £{¢(X)} = #{t(Z)} for all
LX) € 7.

(Necessity) Since 0 € O, by (2.6), #.(0) C .. Since X(X — M) € #.(0) for all M €
0y, the uniqueness of £{¢(X)} in % implies (i). On the other hand, since ¥ (X) € %.(0)
implies #(XC) € #.(0) for any C € G£(p), the uniqueness also implies Z{¢t(XC)} =
ZL{t(X)} for all C € G4 (p) and L(X) € . Since /= {N(0, [, ®Z)|Z € Ap)} C Z1,
in particular

(2.9) L{t(ZAC)} = L(t(ZA)} forall C€ G4A(p) and ZL(X)E A,

where by Lemma 1, X = ZA with Z € % and A € ¥(p), and #L(Z) is the uniform
distribution over %. Since A?> = A’Z'ZA = X'X and L(X'X) = W,(Z, n) under #(X) =
N(0, I, ®3), A%is a complete statistic for { W,(Z, n) | = € ¥(p)} where W, (Z, n) denotes
the Wishart distribution with mean nZ and degrees of freedom n. Further, since A is the
unique root of A% A is a complete statistic. Therefore, together with the independence of
Z and A and the completeness of A4, (2.9) implies that fur any Borel set B C R' and for any
C € G4 p) .

(2.10) EqIz{t(ZAC)}] = EXIz {t(ZA)}] ae. (A),

where P{t(ZA) € B} = ESE?[Iz{t(ZA)}] is used. Here I(-) is the indicator function of
B, and EZ and E% denote the expectations under #(Z) and .#(A) respectively. Taking C
=A"'in (2.10) yields EZ[Iz {t(Z)} 1= E“[Iz {t(ZA)}] a.e. (A), and so taking the expectation
with respect to A produces (ii). This completes the proof.

We remark that in the conditions (i) and (ii) of Theorem 1, the part “all £ € ¥ (p)” can
be replaced by “all £ € S” where S is a nonempty open subset of ¥ (p). In fact, in the
proof of the necessity, even if &(p) is replaced by a nonempty open subset of &(p), the
argument holds as it stands.

CoROLLARY 1.1. The null distribution of t(X) is unique in % if the following
conditions (i)’ and (1)’ hold:
1) t(X - M) =t(X) for all M € 0,.
(ii)" t(XC) = t(X) for all C € P(p), or for all C € GU(p) or for all
C e GT(p).

Proor. Clearly (i)’ implies (i) and from Lemma 1, (ii) is implied by the fact that ¢(XC)
= t(X) for all C € ¥(p). On the other hand, by the Gram-Schmidt orthogonalization, X
=ZT where Z € &% and T € GU(p) (or T € GT(p) when the orthogonalization process
starts from the last column of X). Further, when £(X) = N(0, I, ® £), #(Z) is the unique
uniform distribution over Z; see Nachbin (1967), or Eaton (1979, Proposition 7.3). Hence,
taking C = T~ ' in t(ZTC) = t(ZT) yields ¢(Z) = t(X), implying (ii). This completes the
proof.

CoRrRoOLLARY 1.2. If (i)’ and (i)’ hold, £{t(X)} is unique in the class Fx.
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Proor. This is obvious from % C %;.

To apply Corollary 1.1 to a specific test, conditions (i)’ and (i)’ need to be verified.
Usually (i)’ is satisfied, but (i)’ is not in most problems. In invariant problems, if the
groups leaving the problems invariant contain as a subgroup & (p) or GU(p) or GT(p)
acting on X by X — XC, then the condition (ii)’ is clearly satisfied. The MANOVA and
GMANOVA problems are typical examples which satisfy (ii)".

Next, we consider the uniqueness of the null distribution of a test ¢(X) in %. Let
Y={U€E X|tr U'U=1} and | X| = (tr X'X)"

THEOREM 2. A necessary and sufficient condition for #(t(X)) to remain the same for
all #(X) € Fx is that when L(X) = N(M, I, ), the following conditions (iii) and (iv)
hold:

(i) L{t((X — M)Z7?)} = L{t(X)) forall (M,Z) € 0y X Ay.
(iv) Z{t(X)} = L{¢(X/|1 X)) forM=0 and X =d°l,0>>0.

Proor. (Sufficiency) Let Y = (X — M) =2 where (M, ) € ©y X A,. Then from (iii)
and (iv), ZL{t(X)} = L{t(Y)} = L{e(Y/|Y|)} since LAY) = N, I. ® I,). But
L(Y/|| Y||) is the unique uniform distribution over % provided £(Y) € %(0, I, ® I,) or
equivalently #(X) € (M, I, ® £) with (M, ) € 0, X Ao; see, e.g., Kariya and Eaton
(1977). Hence, #{t(X)} remains the same for all #(X) € Zz.

(Necessity) Completely analogous to the proof of the necessity part of Theorem 1.

COROLLARY 2.1. The (null) distribution of t(X) is unique in Fz if the following
conditions (iii)’ and (iv)’ hold:
(iii)" t((X — M)Z7'2) = t(X) forall (M,X2) € ©, X Ao.
(iv)’ t(aX) = t(X) forall a«>0.
PRroOF. Similar to the proof of Corollary 1.1.
We remark that the above results are extendable to the nonnull case provided the

assumption and conditions are correspondingly modified. For example, if an alternative
hypothesis is of the form (2.5) and it satisfies (2.6), the above results hold exactly.

3. Applications

1. MANOVA problem. A canonical form of the model is given by
3.1) X = (X4, X5, X5) ~ N(M1, M3,0), [,®Z)

where X,is n; X p(i =1, 2, 3) and n; + ns + n3 = n. And the problem is to test H: M, =0
vs K: M, # 0. The LRT (likelihood ratio test), Roy’s test, Lawley-Hotelling’s test and
Pillai’s test are functions of X2(X5Xs) "X% where n; = p. To see that these tests satisfy the
conditions (i)’ and (ii)’ in Corollary 1.1, let @, = {(M1, 0, 0)’ | M1: n X p} and Ao = L(p).
Clearly, 0 € ©,, and (i)’ and (ii)’ are satisfied since these tests do not depend on X; and
since they are invariant under X — XC with C € G#(p). Therefore, the null distributions
of these tests remain the same as far as #(X) € % . Based on Dempster (1969), Dawid
(1977) showed this directly.

2. GMANOVA problem. (See Kariya, 1978). A canonical form of the model is ex-
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pressed as £(X) = N(M, I, ® Z)with
P P2 D3

Xu X Xis ni My M O
X=| Xo1 Xoo Xos na, M= My My O

X X2 Xss ns 0 0 0

and the problem is to test H: M1, = 0 vs K: M1, # 0. The LBI (locally best invariant) test
as well as the LRT, Roy’s test, Lawley-Hotelling’s test and Pillai’s test do not depend on
(X11, X21, X22) and so (2.6) and (i)’ are satisfied. Further, the group leaving the problem
invariant contains as a subgroup GT (p), which acts on X by X — XC where C € GT (p).
Therefore, (ii)’ is satisfied and these tests have the unique null distributions in % . In this
example, it seems complicated to express each test as a function of Z where X = ZT with
Z € & and T € GT(p). It is noted that the MANOVA problem is a special case of the
GMANOVA problem.

3. Tests of independence. In the model

Zn i
X=(X,Xo)~N|ex, ,®
DI

where X;isnXp, (i=1,2),e=(1,---,1)isn X 1 and u € R?, the problem is to test
21, = 0. Invariant tests are functions of S7/'S12S2; S21 where S = g; g;: is the sample
covariance matrix. Since #(S) does not depend on g, condition (i) in Theorem 1 is satisfied.
On the other hand, (ii) is not satisfied unless a test is trivial. To see this, suppose a test
statistic ¢(X) satisfies (ii). Then, #{¢(X)} remains the same not only for all u € R? but
also for all = € A p). Since =15 = 0 vs ;5 # 0 is tested, this implies that the power of the
test is equal to the significance level. Therefore, the LRT, Roy’s test, Lawley-Hotelling’s
test and Pillai’s test do not have unique null distributions in 4. However, as is easily
checked, the conditions (iii)’ and (iv)’ are satisfied for invariant tests including these tests.
Hence, invariant tests have unique null distributions in Z%.

4. Tests for equality of covariance matrices. Let X/s be independent normal random
matrices: X; ~ N(ep', I, ® 3,) where X;isn, X p,e; = (1, ---,1) ER™, pwE€R?, Z; €
Ap)and i =1, ..., k. The problem here is to test H: £, = £, = ... = X;. This null
hypothesis is of the form (2.5) with (2.6) where £ = X,. In fact, X = (X1, ---, X}) ~
N(ep', I, ® Z) under H, where e = (e;, -+, ex)’ and n; + .-+ + n, = n. Clearly this
problem is invariant under the group of transformations X; — p,X,C + e,a’, where p, €
O(n;), C € G¢(p) and a € R”, and the group contains as a subgroup G¢(p) acting on X by
X — XC. Therefore, the condition (i)’ as well as (i)’ are satisfied and so the null
distributions of invariant tests are unique in 4 . This fact was pointed out by Chmielewski
(1980) after the uniqueness in % was directly shown.

Many other testing problems are treated in many textbooks as well as in Kiefer and
Schwartz (1965) and Krishnaiah (1978), and for each problem, as demonstrated above, by
checking the conditions for the uniqueness in % or 4, it is found out whether a given test
has the unique null distribution in %z or %.. We remark that, as we have seen in the
problem of testing independence, if a problem concerns the structure of covariance matrix
2 in the model N(M, I, ® X), the condition (ii) in Theorem 1 is not satisfied. In other
words, unless a null hypothesis on £ contains a nonempty open set of #( p), the condition
(i) is not satisfied. On the other hand, almost all similar test we see in applications satisfy
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the conditions (iii)’ and (iv)’ in Corollary 2.1. Needless to say, the above results contain
univariate cases. Finally, it is remarked that our formulation does not treat a testing
problem on a hypothesis of the form (M, X) € A where A is a subset of R™ X #(p) but it
cannot be expressed as A = @, X A for any @y C R and Ay C A p).

4. Robustness property of the MANOVA tests. As is well known, when
min(ns, p) = 1, the four tests in the MANOVA problem stated in Section 3 become
identical and under normality they are the UMPI (uniformly most powerful invariant). If
p = 1, the problem is in fact the ANOVA problem, while if n; = 0 and n, = 1, the problem
is the Hotelling T?-problem. In this section, in the case of min(n,, p) = 1, a robustness
property of the tests is studied. The arguments below are rather similar to Kariya (1981)
where the robustness of Hotelling’s T?-test is considered. However, the framework here is
more general and even for the Hotelling 7%-problem a stronger result is obtained. Let 2 be
the class of functions from the set of p X p matrices into [0, ») such that for ¢ € 2, g is
convex on & (n),

(4.1) J g X'X)dX=1 (X:n X p)
R

and

(4.2) q(BV) = q(VB)

for all V € & (p) and B € G¢(p), where ¥ ( p) denotes the set of p X p nonnegative definite
matrices and dX is Lebesgue measure on R™. Further, let

4.3) FM,3) = {fIf(X|M,Z) =|Z|*¢(Z (X — M) (X — M)) for some g E 2},

where M € R™ and 2 € “(p). This is a subclass of densities of left ¢(n)-invariant
distributions about M on R™ (see (2.2)), and contains the class of elliptically symmetric
densities of the form (2.1) with ¢ convex. In fact, if ¢ in (2.1) is convex on [0, «), then
¢(tr(-)) is convex on ¥ ( p), and any density of the form (2.1) with M = 0 and X = I satisfies
(4.2) as well as (4.1). In particular, (4.3) contains the density of N(M, I, ® Z). An example
of a density in (M, =) which is not elliptically symmetric is the density of matrix variate
t-distribution generated by fo(X) in (2.3), namely

(44) f(X|M, =) = |Z|2f((X = M)Z ") = c| S| 2|1 + 2N X - M) (X = M)|~"*"",

To see that go(V) = c|I + V| ™™/ is convex, it suffices to note that go(X’X) is the
density of a convex mixture of N (0, I) (see Johnson and Kotz, 1972, page 151) and that the
density of N(0, I) is convex in X’X. But if p = 1, #(M, X) coincides with the class of
elliptical densities of the form (2.1) with ¢ convex.

Now let 4 be the density of an n X p random matrix X and consider the testing problem

45) H:-heEF(M,Z),M;,=0,2 € S (p) versus K:he #F(M,Z), M, # 0,2 € ¥(p),

where X = (X1, X5, X3)’ and M = (M1, M3, 0)’ are partitioned as in (3.1); i.e., X, is n, X p,
M,isn; X p(i=1,2,3;j=1,2), and n; = p is assumed. This is the MANOVA problem
when X has a density 2 in #(M, X). Write h € #(M, Z) as

(4.6)  h(X|M,Z)=|Z|7qE7{(Xi — M) (Xi — M) + (Xz — M3)' (X2 — Ma) + X5X5}),

for some g € 2. Then using (4.2), it is easy to see that the problem (4.5) is ieft invariant
under group ¥ = 0(n;) X O(ng) X O(ns) X G4 p) XR™ acting on X and (M., M,, ) as

gX = (Q]X]A, + F, Q2X2A,, Q3X3A/)
(4.7) and
g(M,, M,,3) =(Q:M,A’ + F, Q2 M;A’, AZA’),
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where g = (@1, @2, @s, A, F) € 4. When min(n,, p) = 1, a maximal invariant and a
maximal invariant parameter under this group are

(4.8) T = tr Xo(X5X5) 7' X% and 8§ =tr MxZ 7'M}
respectively. To obtain a~formal expression of the distribution of T, we first consider the
marginal distribution of X = (X3, X3)".

LeEMMA 4.1. When h is of the form (4.6), the marginal density of X = (X4, X})' is
given by
49)  A(X|Ms, Z) = | 2|72 (272X, — M) (X — My) + X5X3) 57V,

where 272 € #(p) and §(V) = [gm» q(Y'Y + V) dY. Further, § is convex on & (p), and
independent of (M1, M, ), and it satisfies

(4.10) G(RVR') = §(V) forany VEZ(p), and RE€E 0O(p).

Proor. In (4.6), using (4.2), transforming X; into Y = (X; — M;)Z~"2 and integrating
it with respect to Y yields (4.9). From the procedure, § turns out to be independent of (M,
M, Z) and the convexity of § follows from the convexity of q. Further, by (4.2),

Gg(RVR') = Jq(R{R'Y’YR + V}R')dY = Jq(R’Y’YR + V)dY =g(Vv)
since the Jacobian of transformation Y — YR is 1. This completes the proof.

Next, since T is also a maximal invariant under group % = 0(ny) X 0(ns) X G4(p)
acting on X as gX = (R.X,A’, R;X3A’), applying Wijsman’s (1967) theorem and arguing
as in Kariya (1981), we obtain

LEMMA 4.2. Let W = w(X) be a maximal invariant under % and le£ Py be the
distribution induced by W under 8. Then when min(n., p) = 1, the density hw of W with
respect to Py’ evaluated at W = w(X) is given by

hw(w(X)|8) =

J G{AA’ + See’ — v8"*ri1(are’ + eal)}|AA’|"? dA dy(R)
(4.11) G¢(p) X 0(ny)

f G(AA")|AA’|** dA
G¢(p)

where v=(T/1+T)"*, k=ns+ns—p,e= (1,0, ---,0) € R”, a, is the ith column of
A, ry is the (i, j) element of R and dv(R) is the invariant probability measure over O(ns).

PROOF. As in Lemma 3.1 of Kariya (1981), applying Wijsman’s (1967) Theorem, Aw is
given by N;/N,, where

Ns= J’ G{ZVHRX,A’ — M) (RX,A’ — M) Z~V?
(ny) X G¢(p)

(4.12)
+ STPAXLXAS TR AAY |2 di(A) dy (R)

where du(A) = dA/|AA’|”%. Since p is left and right invariant, replacing A by
324 (X3X3)" "% leaves the integral the same; therefore

(4.13) Ns =J’ c1§(Au'uA’ — Au'R'y —qRuA’ + m +AA’) |AA'|k/2 dA dv(R)
@ (ng) X GA(p)
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where (X5X3) 7Y% € A p), c1 =| X5X3| "2 y = Xo(X5Xs) "2 and 5 = =72M}. Suppose
ne =1 and let U, and U, be p X p orthogonal matrices with o’ (yn’)™/? and u(u'u)""? as
their first rows respectively. Then replacing A by U7 AU, and using (4.10) yields

N; = J a§(Uta1aiU.T — UiaR'y'TY? — nRa, U, TV

+m’ + ULAA’Uy) | AA’|*? dA dv(R)

= Jclci{(l + Thaai + Y% a;ai

+ 8ee’ — T?6'°R(are’ + eat)}| AA’|* dA dv(R),

where T = uu’ = X2(X3X3)"'X% and 6§ = v'n = M,Z"'Mj}. Finally transforming a; into
a,/(1 + T)'? and taking the ratio of N5 and N, produce (4.11). Next, suppose p = 1 and let
V. and V; be n, X n, orthogonal matrices with 5’(mm’) ™2 and u(u'u)"? as their first
columns respectively. Then replacing R in (4.13) by ViRV yields

Ny = jclq(AzT + A%+ 8 — 2Aru 82TV | AA’ |*2 dA dv(R),

where T = u'u = X5X,/X5X;. Hence, transforming A into A/(1 + T)"? produces (4.11).
This completes the proof.

Now we shall prove our main result.

THEOREM 4.1. When min(nz, p) = 1, the test with critical region T = tr Xo(X5X3) "' X%
> ¢ is UMPI for problem (4.5), and the null distribution of T under h € #(M, ) with M,
= 0 is the same as that under ¥(X) = N(0, I, ® I,,). That is, under H, #{(ns + ns —p)T/
p} =F(p, na+ n3g —p) if no =1 and L(n3sT/ns) = F(ne, n3) if p = 1, where F(a, B)
denotes the F-distribution with degrees of freedom a and B.

ProoF. The latter part follows from the argument in Section 3. To show the first part,
let H(v) be the numerator of (4.11). Then transforming A into —A leaves it the same and
so H(—v) = H(v). Hence, using the convexity of § on & (n), for % < a < 1, we obtain

H(v) =aH(@) + (1 - a)H(—v) =2 H((2a — 1)v).

This implies that H (v) is a nondecreasing function of v € [0, 1]. Therefore, by applying the
Neyman-Pearson Lemma to Zw in (4.11), a MP test is given by critical region v > c or T
> c¢. Since this region does not depend on 8 and A, the test is UMPI, which completes the
proof.

By this theorem, when min(ns, p) = 1, the four tests in the MANOVA problem
considered under normality are UMPI in the class #(M, 2).

Even if n; = 0 and n, = 1, #(M, ) contains such left ¢ (n)-invariant densities as the

. matrix variate ¢-distribution in (4.4) as well as all the elliptically symmetric densities of the

form (2.1) with ¢ convex. Therefore, the following corollary is stronger than the result in
Kariya (1981).

COROLLARY 4.1. The Hotelling T*-test is UMPI for problem (4.5) where n; = 0 and
n; = 1.

Letting p = 1 in Theorem 4.1, we obtain

COROLLARY 4.2. The usual F-test in the ANOVA problem is UMPI in the class of
elliptically symmetric densities of (2.1) with ¢ convex.
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It is noted that when p = 1, #(M, X) is nothing but the class of elliptically symmetric
densities of the form (2.1) with ¢ convex.

5. Acknowledgement. The author is very grateful to an associate editor for some
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REFERENCES

ANDERsSON, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.

CHMIELEWSKI, M. A. (1980). Invariant scale matrix hypothesis tests under elliptical symmetry. J.
Multivariate Anal. 10 343-350.

Dawibp, A. P. (1977). Spherical matrix distributions and a multivariate model. J. Roy. Statist. Soc. B

39 254-261.

DEMPSTER, A. P. (1969). Elements of Continuous Multivariate Analysis. Addison Wesley, Reading,
Mass.

EaTon, M. L. (1979). Selected topics in multivariate statistical analysis. Chapter 7. Unpublished
manuscript.

FRraser, D. A. S. and Ng, K. W. (1980). Multivariate regression analysis with spherical error.
Multivariate Analysis 5 (P. R. Krishnaiah, ed.) 369-386. North-Holland, New York.

JENSEN, D. R. (1979). Linear models without moments. Biometrika 66 611-617.

JoHNSON, N. L. and Kortz, S. (1972). Distributions in Statistics: Continuous Multivariate Distribu-
tions. Wiley, New York.

KaRri1va, T. (1978). The general MANOVA problem. Ann. Statist. 6 200-214.

KaR1va, T. (1981). A robustness property of Hotelling’s T*-problem. Ann. Statist. 9 210-214.

KaRr1va, T. and EaTON, M. L. (1977). Robust tests for spherical symmetry. Ann. Statist. 5 206-215.

KIEFER, J. and ScHWARTZ, R. (1965). Admissible Bayes character of T%-, R%-, and other fully invariant
tests for classical multivariate normal problems. Ann. Math. Statist. 36 747-770.

KRrisHNAIAH, P. R. (1978). Some recent developments on real multivariate distributions. Develop-
ments in Statistics, Vol. 1 135-169. Academic Press, New York.

LEnMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

NACHBIN, L. (1965). The Haar Integral. Van Nostrand, New York.

WissmaN, R. A. (1967). Cross-sections of orbits and their applications to densities of maximal
invariants. Fifth Berk. Symp. Math. Statist. Prob. 1 389-400.

DEPARTMENT OF MATHEMATICS AND STATISTICS INSTITUTE OF EcoNomic RESEARCH
UNIVERSITY OF PITTSBURGH HitoTsuBASHI UNIVERSITY
PITTSBURGH, PA 15260 KunNiracHI-sHI, TokYO 186

JAPAN



