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WEAK CONVERGENCE AND EFFICIENT DENSITY ESTIMATION
AT A POINT

By A. M. KRIEGER AND J. PICKANDS, III

University of Pennsylvania

We consider estimators for a multivariate probability density at a point.
Efficient choices require knowledge of the density and its second derivatives
although these are not known. We use consistent, but not necessarily efficient,
estimators for these and use them to replace the unknown values in the
choices for an efficient estimator. Our second stage estimators and the unat-
tainable efficient choices are asymptotically equivalent. This follows because
we show that an entire class of estimators converges weakly to a limiting
stochastic process. We find asymptotically efficient estimators of kernel type.

1. Introduction. Given a sequence of independent and identically distributed k-
dimensional random vectors with probability density function f(x), we consider the
problem of estimating f(x) at a point x. We take x = 0 without loss of generality. Many
authors have studied the properties of estimators of the kernel type introduced by
Rosenblatt (1956) and Parzen (1962). Necessary and sufficient conditions for consistency
and asymptotic normality were given by Parzen (1962). Conditions for weak and strong
consistency of these estimators were studied by Nadaraya (1965), Bhattacharya (1967),
Schuster (1969), and most recently by Silverman (1978) among others. Cacoullos (1966)
extended Parzen’s work to the multivariate case. Optimum rates of convergence have been
considered by Farrell (1972) and later by Sacks and Ylvisaker (1981). The latter authors
treated rates of convergence in terms of minimaxity within classes specified by bounds on
the density and its derivatives over a region.

We find asymptotically efficient estimator sequences from among this class. In the
second section, we consider a specific kernel function and find the estimator which is
asymptotically efficient in the mean squared error sense among all of those which use this
function. Unfortunately, this estimator is a function of f = f(0) and f/ = &f/8x?|.=0,
t=1,2, ..., k. We find consistent estimators for f and f/ in Section 3 and substitute
them for f and £/} in the asymptotically efficient estimator. The proof that this sequence
of two-stage estimators is asymptotically efficient makes use of weak convergence by the
method of embedding used in Breiman (1968, pages 278-281). We extend our discussion to
all estimators of kernel type in Section 4.

Bickel and Rosenblatt (1973) used weak convergence methods. Their stochastic proc-
esses had as argument the point at which the density is being estimated. In ours, the
argument is a parameter of the estimation procedure, in particular the window width.
Similar results involving bivariate density estimation were given by Rosenblatt (1975). He
also used the technique of Poissonization of the sample size as we do in the present paper.

We are grateful to a referee for suggestions which led to a substantial improvement in
this paper. We also thank the editor for allowing us to see a pre-publication copy of Sacks
and Ylvisaker (1981).

2. Discussion of the results. We want to estimate a k-dimensional density function
at a point x, which we take, without loss of generality, to be 0. We consider estimators of
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the form
2.1) fr = N(8,)/{(nAx(8.)} = N(8,)/(nCi8%),

where n is the sample size, N(8.) is the number of observations that lie in the sphere of
radius §,, about 0, Ax(8,.) is the volume of the k-dimensional sphere of radius &, §md Cris
the volume of the unit k-dimensional sphere (see Appendix A). Equivalently f, can be
written more conveniently in terms of the volume v, = Ci6%,

(2.1a) fo = M(v,)/nvn,
where M(v,) is the number of observations that lie in the 2-dimensional sphere of volume
Un, 1.e., M(v,) = N(6,).

In addition, we assume that the density function in the neighborhood of 0 is of the form

2.2) f(x) = f(0) + {£(0)} "x + % x"£(0)x + o(xX"x) as x— 0
where the vector £'(0) =(a—f, ,i) , the matrix £”(0) ={ Ff ;i=1,..4, R,
dx; axy, o 3x;0x, o

J =1, ---, k¢, and T denotes transposition. For brevity of notation we will eliminate
reference to 0 and take f, f’, and f” to be evaluated at 0. Then

(2.3) E(}x) = H(va)/vn,

where fn is given by (2.1a) and H(v,) is the probability that a given observation lies within

the sphere centered at 0 and having volume v,. But

H(v,) = f f(x) dx
(2.4) Ix1=6

1
= J’ fdx + J’ f"x dx + 5[ xf"x dx{1 + o(1)} as v, — 0.
Ix|=8, [x|=8,

I1x|<8,

Since [ix|<s, x: dx = 0 for all i, [ix)=5, x:x; dx = 0 for all i  j and, by Lemma A.2 of
Appendix A,

f x?dx = Cp82/(k + 2) = Cr8%62/(k + 2)
o = U0/ Cr)?*/(k + 2) = v 2%/ (R + 2)CY*,
it follows that
(25)  H(va) = fo. + v  TE f1/(2(k + 2)CY*} + o(0¥*?*)  as v, — 0.
By substituting (2.5) into (2.3) we see that
(2.6) E(fa) = f+ (a/Co)”* Tk F1/{2(k + 2} + 0(0¥*) a8 v, — 0

and so E( f,,) — fasv,— 0 independently of the sample size n.
The variance of the estimator £, is computed using the binomial distribution. Thus

2.7) var(f,) = nH(va){1 — H(va)} /n*v2 ~ H(v.)/(nv?)  as v, — 0.
We mean by this that lim,_.. Var( f,.) /{H(v,)/nv:} = 1. Substituting (2.5) into (2.7),
Var(f,) ~ (f/nv,) + [Tk F1) (0a/ Ce)?*/ {2n0a(k + 2)}](1 + 0(1)) ~ (f/nv,)

as v, — 0.

(2.8)

For mean square consistency in general it is necessary and sufficient that

(2.9) lim, ... v, =0 and lim,_.. nv, = .
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In order to obtain mean square error efficiency we want to find v, that minimizes
(2.10) MSE(v.) = E(f, — f)* = Var(f,) + {(E(f.) — }*.
Substituting (2.6) and (2.8) into (2.10) we see that
(2.11) MSE(v,) ~ (f/nva) + [(v./Ce)*(Ther f5)?/{4(k + 2)*}] = MSE*(v,)
as v, — 0. To find the value of v, that minimizes MSE*(v,) for each n we differentiate
MSE*(v,) with respect to v, and set the derivative equal to zero. Then
(2.12) —(f/v3) + [(Wa/ Co) ™A (Ther f10)?/ {RCi(k + 2)*}] = 0.

Multiplying through by (v./C:)? we can write f/nCi = (vn./Cr)***/*A/C}, where A =
(Shy FI)?/ k(R + 2)2). So (0s/Ch) = (fCi/nACE* and v, = CY*(f/nA)"* In
other words MSE*(v,,) is minimized when

(2.13) U = t*n R R
where
(2.14) £ = CY (& + 2PKf/ (Tl fi P40,
For every t € (0, ») define the estimators
(2.15) fi(t) = M(v,) /nvn,
where
U = tn~H/*H,

Recall (2.1a). Here n is the sample size and M(v,) is the number of observations that lie
within the sphere with volume v,. By (2.11),

MSE*(v,) = (f/tn***) + n=/*+9(¢/C,)**B,
where B = (3%, f1)?/{4(k + 2)?}. That is
nYEOMSE*(va) = (f/8) + (¢/Ce)*(Tier fi )/ {4k + 2)°)
= lim,_. n***Y"MSE(v,,)

by (2.11). The minimum should occur at ¢ = ¢*, given by (2.14). We verify that it does.
Differentiating (2.16) with respect to ¢ gives

_f/t2 + 0;4/kt_(k_4)/kA,

(2.16)

where
A= Shi i k(R + 2)% t* 9% = fCY* /A and t* =t = CY* Y (f/AM*,
This is the same as (2.14). )
We would like to use the estimators f,(¢* ) where ¢* is given by (2.14). Unfortunately ¢*
depends upon the unknowns f and Y . f. So we consider an estimator of the form
f.(£*) where £* is a consistent estimator for ¢*. That is £* — t* in probability as n — . We

will show that our estimator Fu*) is asymptotically equivalent to the unattainable
estimator fn(t in the sense that

2.17) n¥* O f %) = fE*) -0
in probability as n — .

3. Main results. To prove (2.17) we treat fn(t), after suitable normalization, as a
stochastic process. Let

(3.1) Ya(t) = n¥* 9 (f.(6) — )} = Y1) + Y2(8),

where
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YO(t) = n¥* [ f(t) — E{fu(0)}]
and
Y2(t) = n¥*O[E{(f.(t)} - f1,

o0<a=t=pf <, aand f arbitrarily chosen.
It is easy to see that Y?(¢) is non-random. Furthermore, from (2.6)

(3.2) lim, .. Y2(t) = Y?@) = (t/Co)¥* Y, f1/{(2(k + 2)}
uniformly for ¢ € [a, B].

We will show that
(3.3) YO(t) = YO = fAW() /t

as n — o where W(t) is the standard Brownian motion and = means weak convergence
in L, norm; ie., x,(¢) = x(¢) means ¢{x.(t)} — ¢{x(¢)} in law for any L.. continuous
functional ¢. This implies, but is not implied by, convergence of finite dimensional
distributions. From (3.3) it will follow, by (3.2), that

(3.4) Ya(t) = Y(8) = {f°W(e)/t} + (¢/Ce)* Tk fi/{2(k + 2)}

as n — . If we can show that (3.3) holds we have our main result, since we will show that
EY?*(t) is mmumzed at t = ¢*, where ¢* is given by (2.14). By weak convergence it will
follow that n®***{ fu(£*) — £.(t*)] > 0 in probability as n — . Recall that we expect to
find £* such that £* — ¢* in probability as n — oo,

Proving (3.3) is most easily accomplished by means of Breiman’s (1968) method of
embedding. We assume that the sample size n has a Poisson distribution with mean A and
consider the stochastic process

(3.5) Y(t) = N * 9 A(e) — E{A)}]
forall A and ¢, 0 < A, ¢ < o, where

A®) = M(v)/Av

and v = v(t) = ENH R,

Here, M(v) is the number of points within a sphere of volume v. Notice that M(v) is a
homogeneous one-dimensional Poisson process with intensity 1 when the argument is
EM(v), which is nondecreasing as v increases.

In order to show that Y{"(¢) converges to Y"() as A — o we need the following lemma
and theorem. Here and hereafter a v b is the larger of @ and b and a A b is the smaller.

LEmMMA 3.1, Let Xi, ---, X, be 1i.d. non-negative random variables with finite third
moment, then

vEl=1 Xl/fll 172 -0

in probability as n — o.

Proor. We need to show that for any ¢ > 0,
lim, o P(ViL X,/n"?>¢) =
But
P(VEL X,/n'?>¢) = P(VL X, > n'%) = P(UL, {X,> n"%))
=nP(X, > n'%¢) = nP(X] > n%%") < nE(X?)/n*?.
The last inequality follows from the Markov inequality. It follows that

P(vi, X,/n'"?>¢) = E(X?)/n%% - 0 as n— o,
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LEMMA 3.2. Let N(t),0 =t < , be the one-dimensional homogeneous Poisson process
with intensity 1. For all w, 0 < w < o, let

X(t: w) = {N(wt) — wt}/w?
Then
X(t: w) = W(t)

as w — oo,

ProoF. Let
X_(t: w) = {N([wt]) — wt}/w'?
and
Xi(t: w) = {N([wt] + 1) — wt}/w"?

where [x] is the greatest integer < x. It follows that X_(¢: w) < X(¢: w) < X.(¢: w) for all
t and w. Therefore it is sufficient to show that as w — «

X_(t:w)= W() and X.(¢:w)= W().
We can write
X-(¢:w) =[5 (N; = E(N))} + [wf] — wt]([w]/w)/*/[w] 2
where N,, j =1, 2, ..., [wt] are i.i.d. Poisson random variables with mean 1. If we let
X(t:w) =T (N, - E(N))/[@],
then
X_(t: w) = ([w]/w)? XX(t: 0) + ([wt] — wit) /w2

But ([w]/w)'? — 1 as w — », ([wt] — wt)/w"? — 0 uniformly in ¢ as w — o, and X* (¢ : w)
= W(t) as w — . This is true because a random walk with finite incremental variance can
always be placed on the same sample space with the standard Brownian motion W(¢) to
which it converges uniformly in probability; see Breiman (1968, pages 278-281). Weak
convergence is an immediate consequence of this. It follows that X_(¢ : w) = W(t) as w
—> 00,

To show that X, (¢ : w) = W(t) we write
Xi(t:w) =X_(¢: w) + {N([wt] + 1) — N[wt]} /w2

But {N([wt] + 1) — N[wt]}/w"? — 0 in probability uniformly in ¢ € (a, B), for any «, 8 €
(0, ©), as w — o by Lemma 3.1 and the fact that Poisson random variables are non-
negative with finite third moments. Therefore X, (¢ : w) = W(¢) and so X(¢ : w) = W(¢).

LEMMA 3.3.
(3.6) YPO@) = 12w/t
as A — o where Y\"(t) is given by (3.5).

ProoF. Since M(¢A™***¥) has a Poisson distribution, its mean equals its variance.
But from (2.6) we see that

E{M@EN*®9)) ~ fApATH/ B0 as A— oo,
Therefore,
[MEXNTE) — B LM% )}/ (A * )12 = W(e)

as A — o by Lemma 3.2. Rewriting (3.5) it follows that
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YO() = [A@®) — E{A@)}]/A Y
= [M@EN &Y — B {(MN T ED) ]/ (AN B \~2/ )y
= fIPIMENT D) — E (MEN 5 )} ]/t(fAYE+9) 12
= fPW(t)/t

as A — oo,

THEOREM 3.4.
nVEO ) - AW} =0

as n — © and so equation (3.4) holds.

Proor. It is sufficient to prove that
SUPazi=s| Fu(t) — A£)|— 0

in probability as n — oo faster than n****, This follows as the difference depends on the
deficit or surplus in the numbers of observations in the volumes tn=*/**% gnd ¢A=*/*+%
which is o(n™***?) as n — o« independently of ¢ by the weak law of large numbers.
The only details that need to be considered are consistent estimators f and f ” for fand
... Clearly then ¢* is a consistent estimator for t*, given by (2.14), where

Z* = Cz/(k+4){(k + 2)2k;'/(2:z:1 ~z’; )2 }k/(k+4)‘

Although there is a sizable literature devoted to finding consistent estimators for deriva-
tives of density functions at a point, (c.f., Singh (1977)), we will present our own.

It follows from (2.9) that if f= N(v,)/nv, where v, = n™® for any 0 < § < 1, then fisa
consistent estimator of f. To find a consistent estimator for f,; we prove the following
lemma.

LEmMMA 35. Foreachi,i=1,2, ..., k, let f,’{ = {Ni(2a.) — 2N.(a,)}/2na? where
N.(a,) equals~ the number of observations such that | x;| <.a,. If na, — « and a, — 0 as
n — oo then f], is a consistent estimator of f};.

Proor. We apply (2.6) with dimension 2 = 1 and a, = v,/2. Here v, is length, which
is volume in one dimension. Now

E{NJa.)}/2na, = f¥ + af./6 + o(a?)

as a, — 0, where f" is the marginal density for X,. Substituting 2a,, for a,, it transpires
that

E{N:2a,)}/4na, = '+ 4alf;/6 + o(a?)
as a, — 0. Now
E(f) = E{N.a,) — 2Ni(a.)}/2na’ = (2/a3)[E {N.(2a.)/4na,} — 2E {Ni(a,)/4na,}]
= (2/aX){f" + 4aifl/6 — [V — a%fi/6 + o(a})}
= (2/a?)Barfi/6) + o(1) = fl + o(1)

as a, — 0. We have shown our estimator sequence to be asymptotically unbiased as a, —
0, hence as n — . Now we will show that the variance V(f./) — 0 as a,, — . By definition

(4n%al)V(fi) = V{N.(2a,) — 2Ni(a,)}
= V{N.(2a.)} — 4 Cov{Ni(2a,), N.(a,)} + 4V{N,(a,)} ~ 4na, f“’
as n — « by (2.8.) So
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V(fi) ~ (4f “na,)/4n%al = f/naj
as @, — 0 and so as n — . If na’— o, then V(f}/) = 0 as n — oo.

4. A more general class of estimators. In this section we consider estimators of
the form

k
4.1) =y, h(@%ﬂ) Inan,

n

where A(x) is a nonnegative, nomncreasmg function on the real line such that [ h(x) dx
=1, and @, = n %% 50 that £ is not degenerate in the limit. Such a function is used as

“window function.” Up to this point we have considered only window functions of the
form

(4.2) hix|t)=1/t,0=x =<t

and 0, otherwise. As previously, f,,(t) is, for each ¢, 0 < ¢t < =, the estimator using the
window function A(x | ¢).
Consider an estimator of the form

(4.3) fu = Efu(T)

where T is a nonnegative random variable independent of f,,(t) for all ¢. Let U be a
hypothetical random variable uniformly distributed on the unit interval and let 7' = ¢ (U)
where ¢ is a monotone non-decreasing function. Any random variable T may be repre-
sented, uniquely, in this way. Notice that the window functions (4.2) correspond to
hypothetical random variables T having degenerate distributions. The corresponding
function ¢ (u) = ¢ for all u € (0, 1).

Now we show that any estimator of the form (4.3) has a representation of the form
(4.1). Indeed,

(4.4) h(x)=Eh(x|T) = f t dF(¢t) =J’ h(x | ¢ (u) du,
x 0

where F'(¢) is the cumulative distribution function for 7.
We consider the asymptotic behavior of

(4.5) f® = Ef(T = ¢(U)),

where U is uniformly distributed on the unit interval and independent of £, (¢) for all ¢. By
Theorem 3.4,

N L
(4.6) n¥EN L) - =Y = /JJ + yt°,

as n — o where

a=2/k,  B=f7 and y=Ci¥*YE f1/{2(k + 2)).

LEmMMA 4.1. Let f,i‘“ be an estimator sequence of the form (4.5). Then
4.7) n2/(k+4)(ﬁl¢> —=>Y®

as n — o, where the random variable

Y® =EY(T=9¢()) = IY(¢(u))du
(4.8) 0

1

=81 W(eo(w) du/¢(u) +yf ¢°(u) du.
0

0
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This is an immediate consequence of (4.5) and (4.6).

LEmMA 4.2. The expectation
(4.9) E(Y%")? = B’ + y'I,
where
1 1
(4.10) Li=EQ/Tov T)=2 J udu/¢(w), L=ET* =f ¢ (u) du,
0 0

where the hypothetical random variables T, To and T: are mutually independent and
identically distributed as ¢ (U) where U is uniformly distributed on the unit interval.

Proor. By (4.8),

E(Y?)" = EJ' f Y (¢ (u)Y(¢(v) dudv
0 0
(4.11) =B2Ef f Wi (u)) Wi (v) du dv/¢ (u)$ (v)
o Jo

1 1 1 1
+ 2BvE f f W (u))d(v) du dv/é (u) + v* J j o (w)(v) du dv.
0 0 0 0

Consider the first term on the right side of (4.11). Clearly

1 1 1 1
E j j W (o W) W (e (v) du dv/é (w)¢ (v) = j J’ EW($ (W) W(g (v) du dv/e (u) ¢ (v)
o Jo o o
=f f o (1) A ¢(v) du dv/d ()¢ (V)
0 Jo

1,1
=f J’ dudv/pm) v ¢(v) =EQ/To v T).
o Jo

Now Ty v Th = ¢(Uy) v ¢(U,) = ¢(Uy v Uy) where U, v U; has cumulative distribution
function u>. So the first term on the right side of (4.11) is 82I, where I, is given by (4.10).
Consider the second term. Apparently

1 1 1 1
E J J' W(¢(u))o*(v) du dv = J j EW (¢ (u))p(v) du dv = 0.
0 0 0 0

The last term
1 1
YZJ J ¢ (u)¢*(v) du dv = y*I7,
0 0

where I, is given by (4.10). The conclusion (4.9) follows.

LEMMA 4.3. For any fixed ¢, E (Y'**'?) is minimized when
(4.12) a = (B%L,/2ay T2 /2,
The actual minimum is of the form

(4.13) J@ = inf B (Y)" = (e, B, v) ISH) Y™,
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where
(414) ¢(a, B’ _Y) = B4a/(2a+l)y2/(2a+l)((2a) 1/(2a+1) + (2&)_(200/(20“'”).
and «, B8 and v are given by (4.6).
REMARK. Notice that «, 8 and y do not depend upon the shape of the window since
they do not depend upon I, and I, given by (4.10). Therefore ¥ (a, B, v), given by (4.14),

does not depend upon the shape, either. The result of Lemma 4.3 depends upon the shape
only through I, and I.

Proor. By Lemma 4.2,
(4.15) E(Y*)? = B%'I, + y2a™Ii.
Now
OE (Y")?/3a = 0 = — B*a™I, + 2ay’a™'I%.

We multiply through by a®. Now 82, = 2ay2a®**'I? and so a = (82Iy/2ay*I) /**". Thus
(4.12) is true. Now we substitute this minimizing value of a in (4.15). First

207y = (B2Lo)"V %D 20y ) V%D = Y (a B, y) (I8T) Y %,
where
ila, B, y) = B/ 24D (2 ?) /2t D)
Second
Yia* I} = Y’ I} (B*Lo/2ay*I}) >/ etV = (y2IF)' 72/ Gt D( B2 )%/ Bot 1) ()~ 20/ B+ 1)
= B/ Dy 2Rt (g ) 2/ Rt [T )2 = () B,y ) (IGT;) /%Y,

Thus (4.13) is true with (4.14).

LEMMA 4.4. The scale invariant functional J'*, given by (4.13), is minimzed when
(4.16) o (u) = uV/@r?
or, equivalently, by any positive multiple of (4.16).

ProoF. By Lemma 4.3, we choose ¢ (u) so as to minimize IsI; where I§ and I, are
given by (4.10). Differentiating with respect to ¢ (u) for each v,

(4.17) a(Isl) /o = 0 = —(aiu/d?) + a2,

where a; and a. are positive constants irrelevant by scale invariance. Solving (4.17) for ¢
as a function of u, the conclusion of Lemma 4.4 follows.

REMARK. To verify (4.17) we can minimize the functional IsI; over functions of the
form ¢(u) = u™, 0 <m < . Now

1 1
L=2 J' udu/e(u) =2 J umdu=22-m)y W) =22-m)y,0<m<2.
0 0
Notice on the other hand that if m = 2, then Iy = 2 [ u'™™ du = . In any case

L = j ¢*(u) du = J' u*™ du = [u**"/(am + 1)]js = 1/(am + 1).

So
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LI =242 — m)(am + 1), log I§I, = a log 2 — a log(2 — m) — log(am + 1),

o a

alog I, /am = 0 = —
og I55,/6m 2-m am+1

and2—-m=am+landsom(a+ 1) =1. Thusm = 1/(a + 1) and &™ = u"*,

LEMMA 4.5. The optimal shape for the window function is
hx)=(a+ 1)1 —-x%/a,0=x=1,

and 0 for x = 1, where a = 2/k.

REMARK. Recall that x denotes volume. Thus x = Cyr* where r = || x|| is the radius.
Furthermore, o = 2/k and so

R(Cur®) = (B + 201 —C¥*r?) /2 = ( +2)(1 — C* | x |P)/2.

The actual optimal shape is quadratic in the radius regardless of the dimension.

PROOF OF LEMMA 4.5. By definition T'= U"Y“*", where U is uniformly distributed on
the unit interval. Therefore

P(T>t) =p(UY >y
=pU>t*)=1—-¢t*" 0=t=1.
Now A(x) =0, for x = 1 by (4.4), and for x € [0, 1],

1 1
h(x) = f tdE) = (@ + 1) f N dt = (@ + Dt /o= (a+ 1)1 — x°)/a.

The lemma is proved.

REMARK. Note that [°A(x) dx = 1 as required.
How efficient are the estimators based upon truncation? By (4.13) the asymptotic
efficiency is

E = (I8L/IsT)* Y,

where I, and I, are given by (4.10) with ¢ (z) given by (4.16) and I, and I; are the same but
with ¢ (1) = 1,0 < u =< 1. Now

1
(4.18a) IL=2 J’ umWerD) gy = 2(a + 1)/ (2a + 1),
0
1
(4.18b) I = f (Ve du =" (a + 1)/ (20 + 1),
0
and

1 1
I_OE2J’ udu=1=f 1 du = I,
0 0

Thus
Ek = 22¢x/(2a+l){(a + 1)/(2& + 1)}2(a+1)/(2a+1) = 24/1k+4){(k + 2)/(k + 4)}2(k+2)/(k+4}.
Notice that

limp_. Er = 1.
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TABLE 4.1
Relative efficiency of optimal
estimators from Section 3
and Section 4

Dimension Efficiency

.9432
9245
9189
.9186
.9205
.9233
.9265
9298
.9329
.9359
9789
.9886

ggz=
SO WO UTA W

Table 4.1 illustrates the relative efficiency of the optimal estimator found in Section 3
with respect to the optimal estimator found in this section for selected values of the
dimension % of the density function.

To obtain the optimal estimator we first found a in (4.12). Substituting I, and I, from
(4.18a) and (4.18b) into (4.12), we found that

(4.19) a = (BIo/2ay"T?) /" = (B%/2ay) /1 Lo/ 1) /Y.
Now, by (4.6) a = 2/k, B =f"?and y = Cy¥* Y, fr /{2(k + 2)) and so

(B/207)/2"D = [4(k + 2Rf/AC (S £1)]/ 4+

= Gk + 2R/ (S f11) /000 =

given by (2.14). Thus

a =t (L/I7) Ve = 2V (a + 1) /(2 + 1)) 7Y
(4.20) = 2ME0E (ke + 2) /(R + 4)} M/ *

=t*(2(k + 4)/(k + 2)} /",
By Lemma 4.5, the optimal window function is
h(x) = {(a + 1)/a}{1 — (x/a)}*/a = (k + 2){1 - (x/a)}*"*/2a,
where a is given by (4.20) with ¢* given by'(2.14).
REMARK. For the class of estimators studied in Section 3, I, = I, = 1 and so a = t*.

This implies that 2(x) = 1/t* for 0 < x < t*, and 0, otherwise. Substituting this function
h(x) into (4.1) we obtain the optimal estimator for this smaller class.

APPENDIX

LEMMA A.l.

(A1) J dx = §*C,,
xT x=§?
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where C, =11}_, I, and

J/2

/2 a [ 2i—1)/2 if J is even
I, =j cos’0d = {

—m/2

2 [TLV% 2i/(2i + 1) if j is odd.

Proor. If we lety = x/4 it follows that

(A.2) Ax(d) = J dx = 8* f dy.
x Tx=<6? yry=1

All we need to find is C, the area of a k-dimensional unit sphere

1 +(1—y3)"? (1=-Sh.yh'*
(A.3) Cr= j {J J dyi -+ dyk—l} Ayr.
Yp=—1 Yer=—(1-yi)"* n=—(1-yi---y3)"?

But the term in brackets in (A.3) equals
Al = ) = (1= y)*2Cs.
This implies that

1

(A.4) Cr = Cr (1= y)* 2 dys.

-1
If we let y, = sin 6, then (A.4) becomes

w/2
(A5) Ck = Ckfllk = Ck_1 J' COSk0 d0

G=—m/2

It is clear that I, = 7 and I, = 2. Furthermore if we use integration by parts, letting u =
cos’ '8 and dv = cos 8 df, then for j = 2 we find that

f cos’8 df = cos’ ' sinf + (j — 1) f cos’0df — (j—1) J cos’6 db.

It follows that

/2
I,=J’ cos’0df=(j— 1) — (j— 1

—n/2
since

cos(—m/2) = cos(m/2) = 0.
Finally
(A.6) L =(j—-1L-/J;

c.f. Thomas (1965, page 367). The relation (A.6) and the fact that I, = 7 and I, = 2 give the
values of ], as indicated in the statement of the lemma. '

LEMMA A2

(1) fxTx562 X, dX =0
(i) [xrx=s2xx, dx=0 if i#]J
(lll) fxTszS? xl2 dX = 8k+2Ck/(k + 2)
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Proor. Clearly (i) and (ii) are true by symmetry. Now

(7 f x7 dx = §**2 f yi dy.
xTx<8? yTy=1

But

1
J yi dy = Ci f yE(1 — yH)* D2 gy,
yry=l

Vh=—1
If we let y, = sin 6 then we find that

m/2

j yi(l — yAY* V2 dy = Cp, J' sin®f cos*d do
yry=1

—m/2

/2
= Cp_1 f (cos® 8 — cos**?0) db

—n/2

= Cp1Iy — Irs2) = Cprli/ (k + 2) = Ci/ (R + 2)
by (A.6)
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