The Annals of Statistics
1981, Vol. 9, No. 4, 913-916

LINEAR TRANSFORMATIONS PRESERVING BEST LINEAR
UNBIASED ESTIMATORS IN A GENERAL GAUSS-MARKOFF
MODEL!

By J. K. BAKsaLARY AND R. KaLA
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Under a general Gauss-Markoff model {y, X8, V}, a necessary and
sufficient condition is established for a linear transformation, F, of the observ-
able random vector y to have the property that there exists a linear function
of Fy which is a BLUE of XB. A method for deriving a required BLUE from
the transformed model {Fy, FX8, FVF'} is also indicated.

1. Statement of the problem. The following notation will be used throughout this
paper. Given a real matrix A, the symbols A’, A™', r(A), and %(A) will denote the
transpose, inverse, rank, and column space, respectively, of A. Further, A~ will stand for
a g-inverse of A, that is, for any matrix satisfying the equation AA"A = A. Moreover, the
triplet

(1) {y. X8, V}

will denote a general Gauss-Markoff model in which y is an n X 1 observable random
vector with expectation E(y) = X8 and with dispersion matrix D(y) = V, where X is a
known n X p matrix of arbitrary rank, and V is an n X n nonnegative definite symmetric
matrix, known entirely or except for a positive scalar multiplier.

Before stating precisely the problem considered in the paper, let us make the following
observation. If the vector y subject to model (1) with V = I, the identity matrix, were
transformed into the vector w = X'y, then the best linear unbiased estimator (BLUE) of
p =X, p = X(X'X) X"y, would also be obtainable as a linear function of w, namely as g
= X(X'X) w. If, however, the same transformation were adopted in the case of V in (1)
being a positive definite matrix different from I, then the BLUE of g, now having the form
i = X(X’V'X)"X'V'y, would no longer be obtainable as a linear function of w = X'y
unless ¢(V'X) C 4(X). This exception might in fact be expected as the inclusion is a
necessary and sufficient condition for the estimators ji and p to be identical (Haberman,
1975).

In view of the above example, it seems justified to look for a general criterion that
would be useful in deciding whether or not a proposed linear transformation of y preserves
the information indispensable for obtaining a BLUE of XB. More precisely, given model
(1), the problem is to establish a necessary and sufficient condition for a # X n matrix F to
have the property that there exists such a linear function of Fy which is a BLUE of Xg.
A further problem of interest is to indicate a method for deriving a required BLUE from
the transformed model

@) (Fy, FX8, FVF’}.
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2. Results. To establish the main result of this paper, which is given in the theorem
below, we use the following lemma.

LEMMA. Let {y, XB, V} be a general Gauss-Markoff model, and let CB be a set of
parametric functions estimable therein. Then Ay is a BLUE of CB if and only if

(3) AT = CX'T X)X,
where
(4) T =V + XUX/,

with U being any p X p nonnegative definite symmetric matrix for which ¢(X) C ¢(T).
PROOF. Arguing similarly as did Rao (1978) in the proof of his Theorem 1, it can be

shown that Ay is a BLUE of CB if and only if A admits a representation

(5) A=CXTX)XT +WI-TT),

where W is an arbitrary matrix of appropriate order. Since (5) is actually a general solution

to the equation (3), the lemma follows. 0

THEOREM. Let {y, XB, V} be a general Gauss-Markoff model, and let F be a k X n
matrix.
(i) A BLUE of XB is obtainable as a linear function of Fy if and only if

(6) %(X) C 4(TF’),

or, equivalently, ~(X i VF') = r(TF),
where T is any matrix as defined in (4).

(ii) If the condition of (i) is satisfied, then each BLUE of X in the transformed model
(Fy, FX8, FVF'} is also a BLUE of XB in the original model {y, XB, V}, and vice versa.

ProoF. On account of the lemma, a BLUE of Xg in the model (1) is expressible as
LFy, for some n X k matrix L, if and only if

(7) LFT = X(X'T"X)™X".

On the other hand, it is well known that L satisfying (7) exists if and only if
(8) ¢(X[(X'T X)X’} C 6(TF).

But

¢X) D ¢X[XTX) IX"}
O ¢XIX'TX) I'X(T)X} = 4X),
and so (8) reduces to (6). Further, it is obvious that (6) can be written equivalently as
9) rX:TF') = r(TF’).

But, on account of Theorem 19 in Marsaglia and Styan (1974) and the definition (4) of T,
the left-hand side of (9) may be modified as follows:

r(X :TF) = r(X) + r[(I - XX")TF']
=r(X) + [0 - XX )VF’]
=r(X:VF).
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This completes the proof of part (i) of the theorem.
To prove part (ii) observe first that (6) implies

(10) X (T)YX] C ¢X(T")TF'].
According to the definition of T, X'(T7)'T = X’ and 4[X'(T")'X] = 4¢(X"), and therefore

(10) reduces to “X) C 4X'F).

This shows that the functions X8, which are obviously estimable in the original model (1),
are also estimable in the transformed model (2). In view of the lemma, a statistic LFy is
a BLUE of X in the model (2) if and only if

(11) LFTF = X[X'F'(FTF') FX] X'F".
Using now the fact that, on account of (6),
X =TFM

for some k X p matrix M, the equation (11) may be written in the form
(12) LFTF = X(X'T"X)" M'FTF".
Since T is nonnegative definite, (12) is equivalent to (7), thus showing that the sets of
BLUEs of X in models (1) and (2) coincide. O

The conditions of the theorem simplify in the case where
(13) %(X) C 6(V).

The relation (13) is known (Zyskind and Martin, 1969) as a necessary and sufficient
condition for a statistic X(X’V~"X)"X'V~y to represent a BLUE of XpB irrespective of the
choice of a g-inverse of V. The simplification is an immediate consequence of the fact that
if (13) holds then one possible choice of U in (4) is U = O.

CoroLLARY. Let {y, XB, V} be a Gauss-Markoff model wherein ¢(X) C ¢(V), and
let F be a k X n matrix. Then a BLUE of X8 is obtainable as a linear function of Fy if
and only if

(14) %(X) C 4(VF'),
or, equivalently,
(15) r(X:VF) =r(VF).

If this is the case, then each BLUE of X8 in the transformed model {Fy, FXf, FVF'} is
also a BLUE of XB in the original model {y, XB, V}, and vice versa.

A further simplification of the theorem is possible in a still more special case of model
(1), when V = 1. The conditions (14) and (15) occurring in the corollary reduce then to

%(X) C 6(F')
and
rX:F) =r{F),
respectively.
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