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A COMPLETE CLASS THEOREM FOR THE CONTROL PROBLEM
AND FURTHER RESULTS ON ADMISSIBILITY AND
INADMISSIBILITY"

By AsAD ZAMAN

Stanford University

The following decision problem is studied. The statistician observes a
random n-vector y normally distributed with mean 8 and identity covariance
matrix. He takes action § € R" and suffers the loss

LB, &) = (B8 - 1)%

It is shown that this is equivalent to the linear control problem and closely
related to the calibration problem. Among the invariant estimators, it is shown
that the formal Bayes rules together with some of their limits include all
admissible invariant rules. Other results on admissiblity and inadmissibility of
some commonly used estimators for the problem are obtained.

1. Introduction. In this paper we study the following decision problem. The statis-
tician observes y, a normal random p-vector with mean B and covariance I. He takes action
8 € R?” and suffers the loss

(1.1 LB, 8) = (B8 — 1)

The parameter space is taken to be R?/{0}. We exclude the origin since if 8 = 0, the
decision vector has no effect on the loss.

In Section 2 we obtain a class of estimators which includes all admissible orthogonally
invariant decision rules for this problem. In Sections 3 and 4 we derive results on the
admissibility and inadmissibility of some commonly used procedures.

This kind of a loss function arises in a variety of problems. For example, suppose a
system is described by

(1.2) z2=vYx+e,

where z is a scalar dependent variable, y is a vector of unknown parameters, x is a vector
of nonstochastic variables directly under the control of the experimenter, and € is scalar
normal with mean 0 and variance 1. The experimenter desires to choose the vector x so as
to make z close to some desired level z*. He has an estimate of y, y ~ N(y, A), possibly
from previous observations of the same system. Assuming he is using a quadratic loss
criterion, the risk of a decision rule x(y) is given by:

A 2
R A . "x(7)
R(y, x(7) = E[z* = {y2(y) + ' = 1 + (z*)’E {1 - } '
Lety=A""%,8=A""*yand §(y) = (1/2*)A"*x(7). Then the problem transforms to the
canonical form (1.1) up to a linear transformation. In this situation we can also pose the

inverse regression problem. We observe z* and wish to know what x gave rise to it in
equation (1.2). This problem can also lead to the loss function given in (1.1).
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Finally, in the one-dimensional case, the loss function can be written as L(8, §) =
B%(8 — B7")% All results obtained here are valid for the problem of estimating 1/8 with
quadratic loss, given we observe y ~ N(B, 1). This is discussed in Section 5.

2. A complete class theorem. Note that the problem is invariant under the follow-
ing group of transformations: y — Py, 8 — Pf, § — P§, where P is an orthogonal matrix.
We will obtain a complete class of invariant decision rules, i.e., rules satisfying P8(y) =
3(Py) for all orthogonal P. Since this is a compact group, admissibility within the class
invariant rules implies admissibility (see, for example, Theorem 4.3.2 in Ferguson (1967)).
Also, if an invariant rule is formal Bayes, there exists an invariant prior with respect to
which it is formal Bayes. A prior measure II is invariant if, for all orthogonal P, I1{4} =
I1{PA} where PA = { y|3 x € A such that y = Px}.

The main result of this section is:

THEOREM 1. (A Complete Class Theorem for Spherically Symmetric Rules). If §(y)
is invariant and admissible, there exists a probability measure p concentrated on
[0, =), such that

% S -1
2.1 6(y)={f y ' sinh y|ly|| du(v)}{f cosh y| y| d#(v)} 2
0 0 “y“

where, for y =0, (1/y) sinh y||y|| = ||¥|.

REMARKS. The strategy of the proof is the same as that used by Brown (1971) to show
that the set of formal Bayes rules forms a complete class for the estimation of the
multinormal mean. We first show that all admissible orthogonally invariant rules are
pointwise limits of proper Bayes rules (Lemma 3). This illustrates an idea of Stein’s
referred to in his concluding remarks in Stein (1964). Zidek (1967) presents a general
theorem of this kind which, unfortunately, does not apply to the control problem since the
loss is not strictly convex. The second half of the proof demonstrates that admissible rules
which are pointwise limits of proper Bayes rules can be represented as in (2.1) above.

Proor. We shall use a series of lemmas. First we introduce some useful notatior.
Throughout the paper, we will use f to denote the multivariate normal density; f(x} =
(2m) 7" exp(— || x| /2), where p is the dimension of vector x. For an invariant prior I1. we
shall denote by IT the marginal distribution of the first component of the measure
f(B) dTI(B). Thus, I1(4) = fa Jre— f(B) dI1(B). We shall also need a version of the Laplace
transform of I1, which we shall write as Fii(y’y) = [ exp(y||y|| dI1(y). Fy; differs from the
Laplace transform as its argument is | ¥||%, and not ||y||. The relationship of Fi; to the
original measure II can easily be shown to be

(2.2) Fu(yy) = f exp(B'y)f(B) dII(B).

In the sequel, we shall use F'* and F” to denote the first and second derivatives of Fr;(y’y),
omitting the argument and the associated measure IT wherever these are clear from the
context.

dri(y) is defined to be a formal Bayes rule with respect to an improper prior IT if it
minimizes [ (8’8 — 1)*f(y — B) dI1(B), provided that for each y, this is finite for some 8. If
this integral is finite for each y, then it can easily be seen that F'y is finite, the posterior
distribution exists, and the posterior expected loss is finite for some 9.

We shall also use the customary notations R(8, &) for the risk function of §, and B(§, IT)
for the Bayes risk of § with respect to the prior IL. So, R(8, §) = [. {8'8(y) — 1} *f(y — B) dy,
and B(3, IT) = [ R(B, 8) I1(dB).
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We now have the notation necessary for Lemma 1, which gives some expressions for the
formal Bayes rules in this problem.

LEMMA 1. Assume that 811(y) is formal Bayes with respect to an invariant prior I1
(not necessarily proper). Then

A. 8u(y) = (Eu|,BB) 'En|yB
B.du(y) = (F' +2||y|*F")'F’y
C.8u(») = (i ysinh y[ly]| dI1(n) (5 v* cosh y[ly | dT ()~ -

7]

Proor. Minimizing the posterior expected loss by differentiating with respect to § and
setting the result equal to 0, we obtain Ey;|,88'86 — En|,8 = 0. As we shall see, for invariant
priors the posterior covariance matrix is positive definite and hence A follows. We note
that the posterior distribution on the parameter space is

-1
(2.3) Iy= {Jf(y—ﬁ)n(dﬂ)} fly — BILAB).
Let V be the gradient operator (V = (3/dy1, - - , 9/3y»)’). From (2.2) and (2.3), we obtain
(2.4) En,B=1/F)VF = (2F'/F)y,
and

En B8 = (1/F)V(VF) = (1/F)V(@2F'y’) = (2F'/F)I + (4F"/F)yy'.

The inverse of this matrix is

F 2F”
7y —1 - — ’
(2.5) (EnpsBB) =5 <I Fr2Fyy ) .

Substituting (2.4) and (2.5) into result A gives result B. To obtain result C, note that

F'(y'y) = @]yl f yexp(y|lyll) dIT(y)

and

F (y'y) = (4]5]13)" f Fexplyl ¥l diTl) = @y Y f yexp(rlly ) di ).

Substituting into result B gives

-1
(2.6) 8(y) = {f yexp(y|yl) dﬁ(y)} {f Y exp(y[lyl) dﬁ(y)} ﬁ

Since 11 is invariant under the change of variables y — —v, (2.6) is easily shown to reduce
to result C. 0

The next lemma gives a useful expression for the difference in Bayes risk of two rules,
6 and &11. The proof, which follows easily from Lemma 1, is omitted.

LEMMA 2.
B(8, IT) — B(én, IT) = f 6 —én) [f BB'f(B — y)H(dB)}«S —&n) dy.

In particular, if § and I1 are orthogonally invariant, so that 8(y) = Y(y'y)y and én(y) =
Yl y’y)y, we have: ,

B(S, 11) — B(éu, IT) = J’ W = yn)? {j B'yf(B -y)H(dB)} dy.
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LEmMMA 3. If8(y) is invariant and admissible then there exists a sequence of invariant
proper priors I1,(y) and associated Bayes rules 8,(y) converging to 8( y) pointwise almost
everywhere.

Proor. The Stein-Le Cam theorem, as given by Farrell (1968), implies that if §(y) =
Y(y’y)y is admissible and invariant then for any bounded continuous function « from R”
to R, there exists a sequence of finite invariant measures I1, and associated Bayes rules
dr(y) = Yu(y'y)y, such that (i) [ a(B)I1.(dB) = 1, and (ii) lims_.. B(§, I1x) — B(ds, I1x) = 0.
For a proof that this theorem is applicable, see Berger and Zaman [1980]. Take a(B) =
Bif(B). Then (i) and (ii) together with Lemma 2 imply that:

0 = limy—.., j = )?* f BY’f(B — Y)IL(dB) dy
= limy—.. j W = )’ f Bilxl® eXp(— % Iyl 2>f(,8)nk(d:8) dy

. 1
= lim .. f @ = Iyl exp(— il ) dy =0,

The inequality in the second line comes from making an orthogonal transformation using
the invariance of the I1;, and the fact that |8 — y||* = [|8]|> + ||¥|> This demonstrates
that y,, converges to ¢ in L, and hence a subsequence of the Y, converges pointwise almost
everywhere to . 0

LEMMA 4. If there exists an M = 0 such that 8(y) = 0 for |y| > M then § is
inadmissible.

ProoF. Define §(y) to be 8(y) if | y1| = M and (1/,,0,0, - -+, 0) if | y,| > M. Then we
have, for 8; # 0,

R(B,8) — R(B, ) = f {1 - (& - 1) }f(ﬁl — ) dy;
=M ’

2 2
= Lﬂ}lpM {1 - (2 n ,81> }f(z) dz > 0.

Since for B8; = 0, the rules have identical risk, § is uniformly superior to 8.0

Let 8(y) be invariant and admissible. Lemmas 1 and 3 imply that there exists a sequence
of invariant priors I1, such that

oo o -1
2.7)  limpw { j y sinh vy dﬁk(y)}{ f ¥* cosh vy dﬁk(y)} Iyl ™y =8(y ae.
0 0

Since §(y) is invariant, it can be written as

(2.8) 8y =y Iyl

For k = 1, 2, --. define the probability measures du, = (f y* dI1,)'y*dIl,, and the
associated functions

oo o0 -1
¢k<uyu>={ f y“sinhyllylldm(y)}{ j coshyuynduk(y)}.
0 . 0

Then, (2.7) and (2.8) imply that ¢, converge pointwise almost everywhere to ¢.
We will now prove
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LEMMA 5. [ cosh y||y| dux(y) ts bounded in k for any fixed value of ||y||.

ProoOF. Assume, toward contradiction, that there exists a y, say ¥ = ¥, such that

o

lim sups-—.« J’ cosh vy yo |l dux(y) = oo.

0

Let M = | y]. Then the above must hold for all y such that ||| = M. Since
(1/x) sinh x is monotonic increasing for x positive, we have, for any L > 0,

Linh LYy| + % j sinh y[| y || dpa(y)
oelllyl) < L

f cosh v ¥l dus(y)
(4]

The first term in the numerator stays fixed while the denominator is unbounded in k.
Hence

%

* -1
i 1
smhyuyudukm}{ f coshy"y"dyk(y)} =y
L

. . 1
lim sup—. ¢& (|| ¥ ||) = lim sups—.« I {f I

L

The second inequality follows since sinh x = cosh x. By taking L large, we see that the
above implies that lims_... p&( ||y ||) = 0 for || v || = M. Then, by Lemma 4, §( y) is inadmissible.
This contradiction completes the proof. 0

Lemma 5 implies that u, is a tight family. Hence there exists a probability measure u
such that a subsequence p, converges to u weakly. (See, for example, Theorem 4.4.3 of
Chung (1972).) Lemma 5 also implies that lim; ... [§ ¥y sinh y|y|dus, = f§ y™' sinh
vllylldp and lim;... [ cosh y|y| dus, = f& cosh y|y| du. This completes the proof of
Theorem 1.

It can easily be checked that the class of estimates given by Theorem 1 is strictly larger
than the class of orthogonally invariant formal Bayes estimates. For any invariant measure
I1, we can write it as in (2.1) by setting

-1
(2.9) u(A)={ f y“’ﬁ<dy)} j Y1l (dy).
A

However, if p has too much mass near 0, we cannot invert (2.9) to obtain a IT such that the
rule in (2.1) is formal Bayes for I1. Since Theorem 1 does not give a minimal complete
class, the possibility is left open that the formal Bayes rules may also form a complete
class. We will show in the following section that this is not the case by showing that the
rule obtained from setting u to be point mass at 0 is admissible.

3. Admissibility of certain procedures in low dimensions. Zellner (1971) proposed
the use of the rule generated by the diffuse prior (i.e., Lebesgue measure). It is well known
that the analogous rule for the estimation of the multinormal mean is inadmissible in three
or more dimensions. Here we shall prove that Zellner’s rule is admissible in three
dimensions or less. Kei Takeuchi has shown elsewhere that the diffuse prior rule is
inadmissible in dimensions of six or more. Stein and Zaman (1979) have recently shown
that it remains admissible in four, and is inadmissible in five dimensions.

Let 7, denote the multivariate normal prior distribution with mean 0 and covariance
o’ I, and let 8, be the associated Bayes rule.

LEMMA 6.

o? -
8, ={1+ ! .
(¥) ( - lyy> y
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Also Zellner's rule is given by 8.(y) = 8.(y) = (1 +y'y) " 'y.
Proor. Use of Lemma 1B leads easily to this result. 0
THEOREM 2. Zellner's rule is admissible in dimension 1, 2 and 3.

Proor. We shall consider only the case of dimension 3. It is trivial to adapt the proof
to dimensions 1 and 2. Suppose 8. is inadmissible in 3 dimensions and let § be a uniform
improvement. Since the risk functions of decision rules are continuous for this problem
(this follows easily from the continuity of the Laplace transform), there exists an € > 0 and
a point 8, in the parameter space such that |8 — 8o || < € implies R(B, §.) > R(B, &) + .
Now, note the following

0=< US{B(By Tu) - B(sﬂ) TU)}

= 0*{B(5, 7,) — B(., 7,)} + 6*(B(., 7,) — B(8,,7,)}.

= —e J' f(é) dB + o*{B(5., 7.) — B(8., 7,)}.
Bip=pl<a  \°

The first term converges to a strictly negative quantity as o approaches infinity. To
complete the proof, we will show that the second term converges to zero and hence obtain
a contradiction. Since this computation is the core of the proof, we present it in the form
of a lemma.

LEMMA 7.

lim,.. 6*{(B(8., 7,) — B(S,, 7,)} = 0.

Proor. For notational convenience, define
(3.1) D = B(3., 7,) — B(5,, 7,),
and
A= (o + 7% golllyll) = A+ Ay I Iyl
oy =@+ xID" Iyl

The symbols K, K’, K” will represent numerical constants in the following argument.
Using Lemma 2, and the inequality (8y)* < || 8]|*||y ||*>, we can write (3.1) as

D=<Ks* J (b= — ¢0)’ {f I BI*f(B = y)f(ﬁ) dﬁ} dy

[y

N 1 =Ny’ ‘L, Dy
= 3/2 —3 , Wy
KA J'R”{(l+]|y||2)(1+)\"y"2)} Ay 17+ 3Mf > dy.

The second line is obtained by integrating out 8, and writing ¢. — ¢, explicitly. Define X
= A|ly]|?/o®. Regarding X as a x3 random variable, we can write the above as

(1= N2%c®X* + 36°X?)
”y 3/2
b=k E{u A oI + 07X)?

= K"\ (1 — A)“’E{ L+ 3" } .

1+ (@ X)) "N+ (6* X))

Obviously the last expectation approaches 1 as ¢® approaches infinity. Thus 0 = D =<

2K”(1 — \)* and hence 0 =< lim,_... 6°D =< lim,_... 2K”0%/{(1 + 0% = 0.0
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Now we give an example of an admissible estimator which is not formal Bayes. This
will demonstrate that the class of formal Bayes rules is not complete in this problem.

THEOREM 3. In one dimension, 8(y) = y is an admissible procedure which is not
formal Bayes.

ProoF. Assume § is formal Bayes versus a measure I1. Define g(y) = [B exp(By —
Y% B% dII(B). By Lemma 2A, we have §(y) = (g’(y)) 'g(y) = y. Solving the differential
equation for g, we obtain that g(y) = Cy for some constant C. Thus g'(y) = C = [ exp(By
— % 8% dII(B). This can only hold if IT put all mass at 0, a point excluded from the
parameter space. Thus §(y) is not formal Bayes.

We will show that no decision rule can improve on the risk function of 8( y) near 0, and
if it has equal risk near 0, then it must equal §(y). First we compute R(B, §) = E(By — 1)?
=p*- B+ 1.

Suppose § is a uniform improvement on 8. We can pick § to be spherically symmetric.
Hence g(y) = Y(y?)y. We now expand the risk of 8 near B =0.

% R(B,§) = E{(y — B)(BS — 1)* + 28(85 — 1)}.

Since § is an odd function, the above is 0 when evaluated at B = 0. Next we have
62
B’
Since (6*/88%)R(B, 8) = —2, the above must be less than or equal to —2, since & is better
than 8. However, the reverse inequality must also hold: 2E{ y*(y — 2)} = ZELyz{(\l« -1)?

— 1}] = — 2Ey? = — 2. This implies that ¥ must be identically 1 and hence §(y) = y a.e.
g

R(B, 8) |s=0 = E(28% — 4y8) = 2E{y™(} — 2)}.

We note that this provides a fairly simple as well as natural example of an estimation
problem with convex loss where the class of formal Bayes estimates is not complete. Note
also that §(y) = y results from setting {0} = 1 in Theorem 1.

4. A truncation theorem. The object of this section is to prove that all admissible
invariant rules 6(y) = Y(y’y)y, satisfy 0 = ¢ < 1. This is done by showing that if ¢ does not
lie in the interval [0, 1], a truncation which does leads to a uniformly superior rule. This
theorem makes it easy to show that the space of decision rules is weakly subcompact in
the sense of Farrell (1968), which is needed to show that Stein’s necessary conditions for
admissibility hold in this problem (see Berger and Zaman (1980)).

THEOREM 4. (The truncation theorem). Suppose 8(y) = Y(y'y)y, and define A =
{AY(A) > 1} and B = {A|Y(A) <0}. If A or B have Lebesgue measure greater than 0 then
8 is inadmissible, and a uniform improvement is given by

8(y) (yy)€AUB
5y = y ((yeEA
0 (Yy»eEB
Proor. Define
(4.1) AB) = E[{¥(y'y)B'y —1}* = (B'y — 1)*|y'y € A]
(4.2) T'(B) = E[{\(y'y)B'y — 1}* = 1|y'y € B].

Clearly, it suffices to show that A and I'" are positive functions of 8. In (4.2), make the
change of variable v = Py where the first row of P is proportional to 8 and P is orthogonal.
Then v; ~ N(||8]|, 1) and v, ---, v, are all N(0, 1), with all the v; independent. After
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change of variables, (4.2) becomes

AB) = E(W ' v) || Bl *vi — 20'v) | Bl — || Bl "0t + 2| Bllvr|v'v € A).

We are now going to integrate out vs, -« -, U,. For this purpose, define M = sup.{x € A}.
(M may be + «). Define, for v} € (0, M),
(4.3) ) =E{@i+0vi+ .- +0l)|vi+ - + s €A — T}

By Jensen’s Inequality, we have h*(v?) = E{4*(v'v) |v + -+ + v: € A — v}}. Substituting
in (4.3), we get, after integrating out vg, +« -, Un.

(4.4) AP = E[{R) — 1} | Blloi{ (R} + D || Bllvr — 2} |01 € (— VM, VM)).

Defining g(B) = f(B){ [ % fi — | BI) dvi}™}, we can write the conditional expectation as

AB) = f»— {(h@) = 1} | Bl vl {A@]) + 1} | Bl — 2] exp (|| Bllvi)f(v)&(B) dun

vM

0 VM
=J ...dL71+J «oe dur.
VM 0

Make the change of variables v; — —uv; in the first integral and recombine to get

A _
&P
Since y = 1 on A, we must have A = 1. We also have the inequality x cosh x > sinh x, for
x > 0. These imply, since g(8) > 0 for all 8, A(B) > 0, as desired.

It remains to show that I'(8) is also positive. Using the same change of variables as
before, we get from (4.2)

(e = Kf W) [ Bllvi = 26} | Bllvr} exp{— % (Bl — v)* + -+ + v2)}dv.

v'vEB

T
f {h(?) = 1} | Bl vi[2{A(v?) + 1} [|B]lvs cosh || B]|v: — 4 sinh || B]|vi]f(vy) du.

The first term is always positive; for the second term we have, E,, {— 2y(v'v) | B|jv:} > 0,
since this expectand is an odd function of v, which is positive for v; > 0, and v, ~
N(||B1l, 1). Therefore I" must be positive, completing the proof of the theorem. O

5. Estimation of the reciprocal of a normal mean. In this section, we discuss the
application of our results to the problem of estimation of a reciprocal of a normal mean
with quadratic loss. Formally, we observe y ~ N(B, 1), and wish to estimate 1/8. (We know
B % 0 a priori). The loss function is L(8, §) = (§ — 1/8)* = 872 (88 — 1)°. Because of this
relationship, the problem can be regarded as essentially a one-dimensional special case of
the control problem. Since it is easily understood, we shall discuss it to give a feeling for
the nature of the results obtained earlier.

The maximum likelihood estimate of 8 is 8.(y) = 1/y. This is graphed in Figure 1. Many
authors (see for example, Anderson and Taylor (1976) and Basu (1974)) have noted that
this has infinite risk with respect to quadratic loss, and have proposed the truncation
Sm(y) = 1/y or sgn(y)M according as |y| > 1/M or | y| < 1/M. This is graphed in Figure
2. The Complete Class Theorem can be used to prove that the graphs of all symmetric
admissible rules must lie in the shaded region in Figure 3. It is clear that 8x(y) does not
satisfy this condition for any M. The Truncation Theorem provides a uniformly better
truncation, 8y, which is given in Figure 4. Even though this truncation dominates the usual
truncation 8y, it cannot be admissible, because it has a sharp corner. All rules given by the
Complete Class Theorem are C* and hence 5y cannot be admissible. However, we have
not been able to come up with a uniform improvement on 8, and we suspect it may not
be possible to improve on its risk substantially.
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F1G. 1. Maximum likelihood or naive certainty equivalent 8.(y). F1G. 2. Usual truncation ém(y).
F1c. 3. All symmetric admissible rules must lie in shaded region. Fic. 4. Uniform improvement on
usual truncation du(y).

The fact that all admissible procedures go through the origin is surprising at first glance.
A small value of y may well suggest that 8 is small and hence that 1/8 is large. This
conclusion would be premature for 8 may well be negative. An aggressively large estimate
of 1/ on the order of 1/y will then yield a large loss. Large losses accrue as well if S
happens to be too large (on the order of 2y or more). This latter event is almost as well-
supported by small y’s as is 1/8 ~ 1/y. The difficulty here is that if y is small there is not
much information about 1/8 and losses on the order of 1/8® are inevitable. Another
noteworthy fact is that not only do all admissible procedures go through the origin, but
they go through tangent to the line §(y) = y. Thus for small y, all admissible estimates of
1/B satisfy 8(y) = y. We have not been able to obtain a satisfactory intuitive explanation
of this result.

For a more detailed study of this problem, see Zaman (1981).

6. Concluding remarks. We have developed a number of results about the control
problem, the most fundamental being a complete class for symmetric estimators in the
problem.

In Section 3 we proved that the use of Lebesgue measure as a prior leads to admissible
estimators at least up to dimension three. We also proved the inadmissibility of certain
commonly used procedures and provided uniform improvements.

These results are interesting not only for their own sake, but also for the contrast they
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provide to the “direct” problem. (We shall refer to the control problem as the “inverse”
problem, and to the estimation of the multinormal mean as the “direct” problem.) In the
direct problem, the formal Bayes rules form a complete class. In this problem they do not.
A number of inadmissibility results, starting with Stein’s indicate that the diffuse prior
distribution becomes inadmissible in dimension three or more. In our problem, this does
not occur until dimension five.

A very general result on inadmissibility in the control problem is given in Berger and
Zaman (1979). Extensions of this framework to the case where ¢ is unknown, and the case
where the decision § is constrained to lie in some affine subspace of R* are studied in
Zaman (1978).
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