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ADMISSIBLE SELECTION OF AN ACCURATE AND PARSIMONIOUS
NORMAL LINEAR REGRESSION MODEL!

BY CHARLES J. STONE

University of California, Los Angeles

Let M, be a normal linear regression model and let My, - - ., Mg be distinct
proper linear submodels of M. Let £ € {0, - - -, K} be a model selection rule
based on observed data from the true model. Given £, let the unknown
parameters of the selected model M; be fitted by the maximum likelihood
method. A loss function is introduced which depends additively on two parts:
(i) a measure of the difference between the fitted model M; and the true
model; and (ii) a measure C; of the “complexity” of the selected model. A
natural model selection rule %, which minimizes an empirical version of this
loss, is shown to be admissible and very nearly Bayes.

1. General discussion and statement of results. Let % denote an arbitrary set
(e.g., ¥ = R for some d = 0). Given x € %, let Y be normally distributed with mean m(x)
and standard deviation o > 0. The unknown regression function is assumed to belong to a
collection M of functions on %. Let M, C M be a vector space of finite dimension p = 1,
which can be thought of as a normal linear regression model. A subspace of M, will be
called a submodel. Let K denote a positive integer and let Mj, - .., Mk be distinct proper
submodels of M.

ExaMpLE 1. (Polynomial regression). & = R; K= 1, My = {by + bix + -+ + bgx®}
(the collection of polynomials of degree K or less); My, = {bo + bix + «++ + bg-px*7*} for
l1=k=K

ExampPLE 2. (All subsets regression). & = R% My = {bo + bix: + -+ + baxa}, where
x=(x1, -, Xa) € R% My, - -, Mya_, are the submodels of M, obtained by requiring that
b; = 0 for j € S, where S ranges over the nonempty subsets of {1, ---, d}.

Let n be a positive integer, let x1, - - -, x, € Zbe given and let Y7, - - -, Y, be independent
normally distributed random variables each having standard deviation ¢ and such that Y;
has mean m(x;), m € M being the true regression function. For simplicity the identifiability
assumption (relative to {x;, - - -, x,}) is made that if m € My and m(x;) = - .- = m(x,) =
0, thenm = 0.

A model selection rule k is a (possibly randomized) function of Y, --., Y, taking on
values in {0, - -+, K}. (Note that x1, . - -, x, are regarded as fixed in the theoretical results
of this paper; otherwise £ should be allowed also to depend on these quantities.) There is
a large literature on model selection. See Leamer (1978) and review articles and bibliog-
raphies by Gaver and Geisel (1974), Ramsey (1974), Hocking (1976), Bancroft and Han
(1977), Pereira (1977) and Thompson (1978).

Let i, be the maximum likelihood estimator of the true regression function subject to
the constraint of being in M,. Then 7, is also the least squares estimator of m subject to
this constraint; that is, it uniquely minimizes n™! Y7 {Y; — m(x;)}* as & ranges over M,.
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If £ is chosen as that value of 2 which minimizes n™* Y7 {Y, — rix(x,)}% then £ = 0 with
probability one. To obtain nontrivial model selection rules, choose real-valued “penalties”
Cr, 0 < k =< K. Let the model selection rule £ be chosen to minimize n™' ¥ {Y; —
1ir(x:)}2 + Ci. (Ties, which occur with probability zero, can be broken, say, by minimizing
k.) In the theoretical development below the C,’s are nonrandom, but in applications they
as well as the x;’s can be random.

The criterion of minimizing Mallows’ C, statistic yields the rule Z with C = 2n"'¢* dim
M, if o is known and C; = 2n"'6% dim M, if o is unknown and & is an estimate of it.
Mallows (1973) discusses but does not recommend model selection rules based on mini-
mizing C,. Akaike’s Information Criterion (AIC) (see Akaike (1973, 1974) and the large
more recent related literature by Akaike and others) leads to the same criterion as
minimizing C, if ¢ is known. If o is unknown, however, AIC leads to minimizing

log[% Yi{Y:— n'zk(xi)}z] + ;21- dim M.

Selection rules based on C, and AIC appear to be reasonable in problems such as
polynomial regression in which there is at most one model of any given dimension. But in
problems such as all subsets regression, especially when there is a large number n of cases
and many independent variables, it is desirable to consider penalties of the form C; =
¢ dim M, where c is significantly larger than the value 2n""6* suggested by C,.

One promising way of choosing ¢ when n is large is to use cross-validation (see M. Stone
(1974) and Geisser (1975)) to get a reliable estimator R(c) of

1
02 + ;Z’f {ﬁll;(c)(xt) - m(xi)}z)

where £(c) is the rule £ when C), = ¢ dim M, and then to choose ¢ to minimize R(c). The
model selection rule Z(¢) and an analogous rule for classification problems have been made
computationally feasible and used successfully to prune regression and classification trees
grown by AID and similar algorithms (see Breiman and Stone (1978)).

The purpose of this paper is to formulate and prove some optimality properties for the
model selection rule %. In addition to being worthwhile in itself, the results give some
theoretical justification to the many efforts to find model selection rules which work well
in practice..

The results will be formulated in a slightly more general context. It is assumed that &
is a measure space and that the functions in M are measurable. Let u be a probability
measure on %, which is assumed to be regular in the sense that

() [mi(x)p (dx) <o formeM
and
(i) meM, and [m?*x)u (dx) =0 together imply that m = 0.

Let an estimate 1 of the true regression function be used to predict Y for an x chosen at
random according to u by setting Y = m(x). Then for given m, the mean square error of
prediction is
o’ + J’ {rfi(x) — m(x)} u(dx).
Consider the inner product ( , ) on M defined by
(m1, my) = f my(x)ma(x)p(dx)

and the corresponding norm || || defined by || m || =+ (m, m). Then
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|7 —m|?= J {(x) — m(x)} u(dx)

is a measure of the inaccuracy of the estimate m of m. For 0 < k < K let P, denote the
orthogonal projection of M, onto M, relative to the indicated inner product. (Note that P,
is the identity transformation on M,). Then P,m uniquely minimizes || 72 — m || as m ranges
over M.

Let i be the maximum likelihood estimator of the true regression function based on
Y, .-+, Y, and subject to the constraint of being in M,. Within M, a natural estimator of
the true regression function is given by m, = P,m,. If, for example, p is the empirical
distribution po of x1, « - -, x, defined by uo(A) = n~' ¥ Ls(x;), where I, is the indicator
function of A, then

I~ mlf =~ 51 () - mixd)’s

also

1 ) 1 _ . .
- Y, - mx)} = - Y2 A{Y: — mo(x:)}2 + || — mo|?  for 1 € My,
so m; reduces to its previous definition in this special case.
Consider the loss function for £ € {0, - .., K} defined by

(1.1) L(m, k) = ||mx — m|? + Cs.

As mentioned above, | m; — m|f is a measure of the inaccuracy of the estimate 7, of m.
The penalty C;. can be interpreted as the “payment for using a complicated function” (see
Kiefer (1968)), the cost of measuring those independent variables required to compute
my(x) (see Lindley (1968)), or the complexity of the model M, (see Demster (1971)). The
interpretation of C, as a measure of the complexity of the model M, (e.g., proportional to
dim M,) corresponds to the principle known as Occam’s Razor, which emphasizes the
desirability of selecting accurate and parsimonious models of reality. (For various admo-
nitions in the statistical literature to follow this principle see page 8 of Blalock (1961),
Tukey (1961) and Box (1976).) A closely related principle in hypothesis testing emphasizes
the desirability of considering “material” or “substantive” significance as opposed to mere
statistical significance (see Hodges and Lehmann (1954)). Anderson (1962) formulated the
problem of choosing the degree of polynomial regression along the lines of hypothesis
testing. He motivated the problem, however, in terms of the principle of economy described
above. No particular form or interpretation of the penalties Cy, 0 < k < K, is required for
the theoretical results below.
The risk function for a model selection rule % is given by

R(m, E) = E,.L(m, E), meM,

where E,(P,) denotes expectation (probability) when m is the true regression function.
Corresponding to % and a prior probability distribution p on M is the Bayes risk

Mmm=meﬁm@m

Let r(p) denote the infimum of r(p, %) as £ ranges over all model selection rules.

Let my, - - -, mp, be an orthonormal basis of M, with respect to the inner product defined
for m;, my € M, as Y,? mi(x;)mz(x;). Let dm refer to the infinite measure on M, induced by
Lebesgue measure on R? and the map (b1, - - -, b,) = bimi + .-+ + bym,. (Observe that
dm is independent of the particular choice of the orthogonal basis m, ---, m,.) For A C
M, set |A| = [a dm and, for c € R, set cA = {cm:m € A}. Given A € M, with 0 < |A |
< o, let pa denote the uniform probability distribution on A defined by pa(dm) =
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| A|™'I4(m)dm. The set A is said to be “a compact convex polyhedron in M, containing
the origin as an interior point” if it is the image under the above map of such a set in R”,
in which case 0 < |A| < .

Consider now the specific model selection rule % defined to be a value of k € {0, - - -, K}
which minimizes L(o, k) = |fix — io||> + Ci. (Note that & reduces to its previous
definition in the special case u = po.) The rule k is generalized Bayes. To see this let po be
the improper prior distribution on M, defined by po(dm) = dm. The corresponding
posterior distribution of m given Y1, ---, Y, is the same as the distribution of i, +
Y% ¢jm;, where &1, - - -, §, are independent N(0, 0%) random variables. It follows easily from
this representation that % is generalized Bayes with respect to po. For similar results see
Lindley (1968), Brooks (1973), Halpern (1973), and Faden and Rausser (1976).

Two model selection rules £ and &* are said to be equivalent if P,.(E = k*) = 1 for some
m € M or, equivalently, for all m € M. Written as £(Y1, - -+, Y») and k*(Y3, - - -, Y,), these
rules are equivalent if and only if £(y1, - - -, yx) = B*(y1, + + -, ¥2) almost everywhere on R".
If £ is equivalent to k*, then R(m, k) = R(m, k*) for all m € M.

A model selection rule £* is said to be admissible if there is no model selection rule £
such that R(m, £) < R(m, k*) for all m € M with strict inequality holding for some m € M.
A sufficient condition for £* to be admissible is that for every rulek which is not equivalent
to &£* there is an m € M such that R(m,£) > R(m, k*). A necessary and sufficient condition
for this is that for every rule £ which is not equivalent to &* there is a prior probability
distribution p on M such that r(p, k) > r(p, k*). Thus (i) of Theorem 1 below implies that
E is admissible ((i) implies that % is “very nearly Bayes”). Since % does not depend on the
choice of M or o (except that M D M,), these quantities can be regarded as either known
or unknown. If Cy = - .. = Cy, then & = 0 is admissible.

THEOREM 1. There is a compact convex polyhedron A in M, containing the origin as
an interior point such that (i) for some § >0

T(pea, k) — r(pea) = 0(e?™) as c—

and (ii) if £ is any model selection rule which is not equivalent to k, then

lim infose?[F(pca, £) — r(pea, k)] > 0.

Theorem 1 will be reduced to a more convenient form in Section 2, which will be proven
in Section 3.

Instead of insisting that i, be used once the model M; is selected, one can consider
more general procedures for choosing @ € M, to estimate m. This leads to admissibility
problems for procedures of the form (7, k), where m € Mj;. An argument suggested in part
by the proof of Theorem 4.2 of James and Stein (1961) can be used to show that (mz, k)
is admissible in this more general context if dim M, = 2 (for the special case of this result
when dim M, = 1 see Meeden and Arnold (1980)). When dim M, = 3, however, Stein type
considerations presumably lead to the inadmissibility of (mi, k) unless the class of
competing procedures is sufficiently reduced by invariance requirements to lead to an
equivalent admissibility problem in a one- or two-dimensional setting.

I wish to thank Larry Brown and Arthur Cohen for a number of valuable comments on
previous versions of this paper.

2. Canonical form. In this section Theorem 1 will be reduced to a more convenient
form, which will first be described.

Let 1 < p < n, let “.” denote the usual inner product on R”, and let | | be the
corresponding norm given by |v|= Jo-v. Let H be a positive definite symmetric p X p
matrix and define the inner product (,) and norm || || on R” by (v1, v2) = v1-Hvz and || v]|
= (v, v). If H is the p X p identity matrix, then (, ) and || || reduce to “.” and | |.

Let K be a positive integer. Set Vo = R” and let Vi, 1 < k < K, be distinct proper



REGRESSION MODEL SELECTION 479

subspaces of V;. For 0 < k < K let P, denote the orthogonal projection (relative to the
inner product (, )) of V; onto V; and let Ci. be a real-valued constant.

Let Z, ---, Z,, Wy, «--, W,_, be independent normally distributed random variables
each having standard deviation o > 0 and such that EW; = ... EW,_, = 0. Let Z be the
random vector in R” having coordinates Zi, - --, Z, and let W be the random vector in
R™? having coordinates Wy, - .., W,_,. Set 0 = P.Z for 0 < k < K. Observe that 0, = PoZ
= Z is the maximum likelihood estimator of the true mean v € V; of Z based on Z, W. (If
H is the identity matrix, then for 1 < & < K, 0} is the maximum likelihood estimator of v
under the constraint of being in V,.) The loss associated with the true mean v of Z and the
value k& € {0, ---, K} is defined to be

L(v, k) =||v — & |* + Cs.

A model selection rule £ is a randomized {0, - - ., K'}-valued function of Z, W. The risk
function for such a rule is defined by

R(v, k) = E,L(v, k), vE Vo.

The quantities (p, £) and r(p) are also defined as in Section 1. Two model selection rules
£ and k* are said to be equivalent if P,(£ = k*) = 1 for some v € V, or, equivalently, for all
v € V4. Let the model selection rule % be chosen to minimize

0 = Bol* + Co = | PaZ = Z|* + Cs.

Let dv refer to Lebesgue measure on Vo = R? and set |A|= [4 dv for A C V;. Let pa
denote the uniform probability distribution on A defined by pa(dv) = | A |~ Ls(v)dv.

Let B denote the closed unit ball {v:|v| =<1} in V,. For each u € 4B there is an € €
(0, 1) such thatif 1 = 2 < K and u € V,, then

u-v<l-—eg vE V,nB.

For such a choice of €, {v:u-v > 1 — €} is an open neighborhood of u. The collection of all
such neighborhoods forms an open covering of the compact set 4B, which therefore has a
finite subcovering consisting of I open neighborhoods corresponding as above to u; € 4B
and ¢ € (0, 1) for 1 =i < I: Thus

8B C UL, (viu;ov>1—¢).
Set
A={veVou-v=1l-¢ for 1=i=I}.

Then A is a closed convex polyhedron in V, which contains the origin as an interior point
and is disjoint from 4B. Thus A is contained in the interior of B and hence A is a compact
convex polyhedron. The next result is Theorem 1 applied to this set A and the model of
the present section.

THEOREM 11 (i) For some 8 > 0,
r(pca, k) — r(pca) =0(e™)  as c— o,
(ii) If £ is any model selection rule which is not equivalent to k, then
lim inf. . cP[r(pea, £) — r(pca, k)1 > 0.
In order to reduce Theorem 1 to Theorem 1’, let the basis m,, ..., m, of M, and real
numbers m;;, 1 < j, i < n, be such that m;; = m;(x;) for 1< j<pand1=<i=<n and
Z:’_l mymy; =1 if j=1,

=0 if j#1
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For 1 = k£ < K let V. denote the collection of points v = (v1, -+, 1) € Vo such that
vimy + -+ + Upm, € M, or, equivalently, such that
v =2 mix)m(x:), 1=j =p,

for some m € M. Let H = (Hj;) denote the positive definite symmetric matrix defined by

H; = J‘ m;(x)mu(x)p(dx), 1=<jl=<p.
Finally set
Z, =% mix)Yi, 1</ <p,
and
W= Z:l—l Mysp,iYis ) l=j=n-p

3. Proof of Theorem 1’. It will first be shown that (i) implies (ii). For z € Vo, k(2)
is a value of £ which minimizes || Pxz — 2z ||2 + Ci. For almost every z there is a unique
such . Ties, which occur for z in a set of Lebesgue measure zero, can be broken, say, by
minimizing k. Thus £(z2) is well defined for all 2.

Let £ be any model selection rule. It can be thought of as a randomized function of Z
having probability 7x(2) of taking on the value k € {0, --., K} when Z = z. Suppose kis
not the equivalent to £ Then there is a compact subset D of V, such that

(3.1) J’ {2:;0 mu(2) (| Prz — 2|2 + Ci) — | Pz — z||* — Ci } d2 > 0.
D

Set pe = pea, let p(- | z) denote the corresponding posterior density given that Z = z, let
f. denote the corresponding marginal density of Z and let N denote the normal density on
Vo given by

1 2 2
N [ —1z[*/20%
@ (m/2?)"e
Then
@) =— | La@NGE - d
(2 —W a(UW)N(z 'v Z
and

(v]2) = L.a(V)N(z — V)
Pl =TT AN —v) dz

Note that |cA| = c?| A|. It is easily seen that
3.2) lime,. ¢?|A|f(2) =1

and

limeso | || Pez — v]|%0c(v]2) dv = || Pz — 2| *

(3.3)
+fl|vl|2N(v) dU, ke{oy""K}’

both limits being uniform for z in the compact set D. Set
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Gz, k) = j | Prz — v||%0c(v| 2) dv + Ch.

Let k. be the Bayes model selection rule corresponding to p., defined so that
Ge(2, k(2)) = minosp<x Ge(2, k).
Then r(p., k) = r(p.). Now

r(pc, B) — rpe, B) = f (ZX, m(2)Gel2, k) — Ge(2, k(2))} [.(2) dz,

from which it follows that
r(pe, k) — rlpc, k) zj {Zn, (2)Ge(2, k) — Ge(2, k(2))} £(2) dz — {r(pc, k) = r(pc))}.
., Jp

Consequently, by (3.2) and (3.3),
lim inf. ... ¢?{r(pe, k) — r(pc, k)}

= f (Yo m(2)(|| Prz — 2| + Ci) — || Pitaz — 2||* — Ciiy } dz
D .

— lim supc. ¢?{r(pc, k) — r(p.)}.

Thus (i) implies (ii), as desired.
To complete the proof of Theorem 1’, (i) will now be verified. Let p.(z) =  vp.(v| 2) dv
denote the mean of the posterior density p.(- | z). Then

(3.4) r(pe, k) — r(pc) = j Fo(2)f(2) dz,

where
Fo(2) = || Piyz — pe(2) |* + Ciiy — || Prarz — pe(2) | — Cr .

By the definition of 2

| Pioz — 2z |° + Ciay < | Prionz — 2 || +Cro.
Therefore

Fo(2) = {|| Peyz — pl2) | > = || Pz — 2| %}
= | Proz — pe(2) |* = || Pz — 2[|*}
= 2(Pr212 — 2, pe(2) — 2) — 2(Pinz — 2, pe(2) — 2).

Relative to the inner product “.” on R?, let @ and U, denote respectively the
orthogonal projection from Vj onto V), and onto the orthogonal complement of V}, in V5.
Then @ is the identity transformation on V, and U, = 0. Now

pe(2) — 2 = Ur(pe(2) — 2) = @r(pe(2) — 2) € Vi,
SO
(Prz — 2, pe(2) — 2) = (Prz — 2, Up(pe(2) — 2)).
Thus by Schwarz’s inequality
| (Prz — 2, pel2) — 2) | < || Pez — z ||| Ur(e(2) — 2) || < || 2| || Ur(pe(2) = 2) -
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Let 1 be a positive constant such that

7 vl= vl =nlvl, VER".
Then
(3.5) Fo(2) = 20°| 2| {| Uror (pe(2) — 2) | + | Uity (pe(2) — 2) |}.

Three preparatory lemmas will be obtained in order to show that (i) follows from (3.4)
and (3.5). For § > 0 set

A’={veE Vy:lv—a| =8 forsome a€E A}
and

cA’={cv:vE A’} =(vE Vi:|lv—a|=cd forsome a € cA}.
LEMMA 1. For every § > 0 there is a & > 0 such that

f |2|*.(2) dz = 0(e®F)  as c— .
Vo\cA®

Proor. Observe that

f | z|%f(2) dz = 1 j dvf |z|2N(z — v) dz
Vo\cAs |CA| cA Vo\cAd
= 1 f dvj |2|2N(z — v) dz
|CA| cA |z—v|>cd
- f dvj (|2|* + [v]|*)N(2) dz
|CA| cA |z|>c8
— O(e—s'cz)

for some & > 0, as desired.
For y > 0 let B,(2) denote the ball {v:|v — 2| <y} in V.

LEMMA 2. Let 0 < § < e. Then for c sufficiently large

|pe(2) — 2| < ce, 2 € cA®.

Proor. Choose y and 7 with § < y <7 < e. Now A is convex and | A | > 0, from which
it follows easily that for some a > 0

|ANB,(2)|=a, z€E€ A°
Thus
|cA N B (2) | = ac?, z € cA’,

and hence

—2—pl2 2 | a—p]|2 2
f e |zvl/2e dvzf e~ 1712 gy
cANB (2) cANB,(2)

—_p2.,2 2 .
= acPe /%" Z € cAS.
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Observe that forj =0, 1

[ —|z—vl2 2 —
J’ [v— z|/e” #7172 gy = g(e~"r"/>")
L‘A\B‘.,’(Z)
—z—vl2 2
=o<f e lzl/2 dv)
¢ANB,,(2)

—z—v|2 2
JeanBy@) |V — z|e” 17072 dv _ 2 € cA?
—1z—v|2/252 - *
chnBo,,(z)e [z=01%25° gy

uniformly over z € cA®. Observe also that

Observe finally that for all z,
Jea (v — 2)e7 127012 gy

—|z—v|2 2
che |z—v|*/20 dU

/-"c(z) — 2=
The desired conclusion follows easily from these three observations.

LeEMMA 3. For some § >0

max{| Ur(p(2) — 2) |[:2E€ A 1=k <K and |Usz|=<cb} =o(e™*) as c¢— oo,

Proor. Recall from Section 2 that
A={veWVou-v=sl1-¢ for 1=sisI}C{ve V,|v|<1},

where 0 <e<1,u; € Voand |y;|=1forl<i=sIL Alsoifl<i<I1<sk=<K,u¢ Vs,
VE Viyand |v|=1,thenu; - v<1-—¢.

Suppose 1 < k < K and let z € A N V;, be fixed. Let i;, 1 < I < L, be values of i such
that l=i=<TIand % - 2=1— ¢. Then u;, € V, for 1 = =< L and there is an open
neighborhood 4 of z such that

ANA=H4N{viw, - v=1—¢g, for 1=l=L)}.

By compactness there is a § > 0 such that if z € A® and | U,z | < §, then
A N Bys(2) = Ar(2) N Bas(2),
where A,(2) is of the form
Ar(@) = {(v:iu, - v=1—¢, for 1 <1< L};
here L and u;, € Vi, 1 =l =<L, depend on z. If z € cA® and | Urz | = 8, then
CA N Bas(2) = cAr(c™2) N Baes(2).

Consequently, by an argument similar to that used in the proof of the previous lemma, if
8 > 0 is sufficiently small, then uniformly over 1 <k < K, z € cA’ and | U,z | < ¢§,

R
Urlae(z) — 2) = Jea Up(v - zie2 2 dv
ch e |z2—v|%/20 dv

—_] —n2 2
_ JeayeraUnlv — 2)e™ 1270172 gy

—c?
e gy + o(e™).

f cAp(c™12)

It is clear from the form of A.(z) that
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J Un(v — z)e” #7212 gy = 0,
cAy(c712)

Thus the conclusion of the lemma is valid.
The proof of Theorem 1’ will now be completed. By (3.4) it must be shown that for
some § > 0

J F.(2)f.(2) dz = o(e™).

It is easily seen that u.(2) = O(|z|) as | 2| — o« uniformly in ¢ and hence that F.(z) =
O(| z|?) as | z| = % uniformly in ¢. Thus by Lemma 1 for every § > 0 there is a § > 0 such
that

J’ Fe(2)f.(2) dz = O(e_sfz)‘ .
Vo\eAs

By (3.5) it suffices to verify that for some § > 0

(3.6) supecas | Uiia)(pe(2) — 2) | = o(7)
and '
(37) suszcA“l Ukc(z)(,urc(z) - 2) | = O(e‘scz).

To verify (3.6) observe first that if z(z) = 0, then
Uke) (pe(2) — 2) = Uo(pe(2) — 2) = 0.
Suppose £(z) # 0. Then
| Uioz|* = | Qkaz — 2|* = | Piwz — 2|* = 7| Pitwz — 2> < 9*(Co — Ciia).

Consequently | Uiz | = ¢ for ¢ sufficiently large, so (3.6) follows from Lemma 3.
To prove (3.7) observe that if k.(2) = 0, then U, (»(uc(2) — 2) = 0. Suppose z € cA® and
k.(2) # 0. Then

| Prrz = pe(2) 1> < | 2 = pe(2) || + Co = Cr
=7%|z = pel2)|* + Co — Cha).
Choose € > 0. By Lemma 2 it can be assumed that | u.(z) — z| < ce. Therefore

| U202 | < | Q2 — 2|
< |Prz — 2|
= [Praz — pel(2) | + | pe(2) — 2|
= 0| Pr@z — pe(2) || + | pe(2) — 2|
= n(n%%? + C — Ckc(Z,)l/z + ce.

Thus (3.7) also follows from Lemma 3. This completes the proof of Theorem 1’.
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