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ISOTROPY AND SPHERICITY: SOME CHARACTERISATIONS OF
THE NORMAL DISTRIBUTION

BY GERARD LETAC

Université Paul-Sabatier

Main result: X;, X, ..., X, are independent random variables valued in
Euclidean spaces E,, Es, ---, E, such that P[X, = 0] = 0 for all j. Denote R
= [T, | X,)?1"/% Suppose that (R™'X,, R™'Xz, -+, R7'X,) is uniformly

distributed on the sphere of @}, E;. Then the X; are normal if n = 3. The
_case n = 2 and the case of Hilbert spaces are also studied.

1. Definitions and statement of results on probability distributions. In a
nonzero, finite-dimensional Euclidean space E with scalar product (., -)rz and norm
[l - |z, S(E) is the sphere with radius 1. We consider a random variable X valued in E with
distribution u. Recall that u is completely determined by its characteristic function
[eexp(i(t, x)r)pu(dx) = i(t) defined for ¢ in E, and if X is valued in (0, +), p is completely
determined by the characteristic function of the distribution of log X, which is 7 x*“u(dx),
defined for ¢ in the real line R.

DEFINITION 1.1. The normal distribution vg,, on E with variance a = 0 is defined by:
vE,o(t) = exp(—al t||%/2).

The Cauchy distribution yr on E is defined by yz(¢) = exp(—|t|z). The uniform
distribution o on S(E) is defined as the distribution of X/|| X | z, where the distribution
of Xis vg,1.

DEFINITION 1.2. The random variable X in E, or its distribution p, will be said to be
spherical in E if the distribution of (a, X ) g does not depend on a, when « lies on the unit
sphere S(E). It will be said to be isotropic in E if p({0}) = 0 and if the distribution of
X/ || X||£ is og. It will be said to be infinitely-spherical in E if there exists a probability
distribution p on [0, +») such that

;l(t)=f exp(—al||t||z/2)p(da).
0

The adjective “infinitely-spherical” alludes to the fact that such a distribution is, for any
Euclidean space F bigger than E, the orthogonal projection onto E of some spherical
distribution on F. We shall give in Proposition 4.1 an elementary proof of this, well known
as “Schoenberg’s theorem.” Note that the sphericity implies isotropy if P[X = 0] = 0, and
that in dimension 1, sphericity is symmetry, isotropy is P[X < 0] = P[X > 0] = %.

When we consider several Euclidean spaces E1, Es, ---, E, then ©)-; E; denotes the
direct orthogonal sum, and is Euclidean. If all E, are equal to the same E, we denote
@)1 E, = E":s0, R" has its natural Euclidean structure. We shall prove the following
theorems:

THEOREM 1.1. Let X; and X, be two independent random variables valued in nonzero
finite dimensional Euclidean spaces E, and E,. Then X = (X1, X;) is spherical in E =
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E, © E; if and only if there exists a = 0 such that the distribution of X is the normal
distribution vg,,.

THEOREM 1.2. Let X, and X; be two independent random variables valued in nonzero
finite dimensional Euclidean spaces E\ and E.. Then the following properties are
equivalent:

(i) X = (X1, X,) is isotropicin E = E, ® E,.
(i) X and X, are spherical in E, and E;, P[X; = 0] = P[X, = 0] = 0, and the
distribution of X:/(az, X: ), is &, for all as in S(E2).

(ili) Xi and X; are spherical in E, and E,, P[X, = 0] = P[X; = 0] = 0, and ifd =
dim E, and d» = dim E,:

. -1 . -1
it i o i __lt_
(L.1) ELI X |5, ETN X | Hk=o[l+——2k+dl] [1 2k+d2]

for all real t.
Furthermore, if X; and X, are infinitely spherical and (i) is true, there exists a > 0
such that the distribution of X is the normal distribution vg ,.

THEOREM 1.3. Let Xi, X, and X; be three independent random variables valued in
nonzero finite dimensional Euclidean spaces E,, E; and Es. Then X = (X1, Xz, X) is
isotropic in E = E, ® E, ® E; if and only if there exists a > 0 such that the distribution
of X is the normal distribution vg,,.

THEOREM 14. Let X; and X, be two independent random variables valued in a
nonzero finite dimensional Euclidean space E, with the same distribution u. Suppose
that

p{x; (a, x)g =0} =0 for all « in S(E).

Then the following properties are equivalent:

() Xi/(a, X )E is spherical for all a in S(E).

(i) Xi(a, X2)r is spherical for all a in S(E).

(iii) p is spherical.
Furthermore, (X1, Xz) is isotropic in E* if and only if the distribution of X./{a, Xo)x is
vE for all a in S(E).

THEOREM 1.5. Let X1, X7, X5, X? be four independent random variables, where X}
and X are valued in E’ with the same distribution, X! and X% are valued in E” with the
same distribution, and E’' and E” are nonzero-finite dimensional Euclidean spaces.
Denote E = E’ ® E”; suppose that

P[(a’, X1)p + (a”, X1 )g»=0] =0

for all (a’, a”) in S(E), and let X, = (X}, XV), Xo = (X4, X%). Then the following
Dproperties are equivalent:

(1) Xi/(a, X2)E is spherical in E for all a in S(E).

(il) X1(a, X>)g is spherical in E for all a in S(E).

(iii) There exists a > 0 such that the distribution of X; and X is the normal distribution
VE,a-

2. Definitions and statement of the result on cylindrical-distributions. For an
infinite-dimensional Hilbert space E with scalar product (-, - )z and norm || - || £, denote by
Z(E) the set of finite-dimensional linear subspaces of E. If VD W and if V and W are in
Z(E), let pyw be the orthogonal projection from V to W.
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DEFINITION 2.1. A cylindrical-distribution g on E is a set p = (uv; V € F(E)) of
probability distributions uy on V such that the image of pv by pvw is pw when VO W.

DEFINITION 2.2. The normal cylindrical-distribution on E with variance a = 0 is
defined by (vv,.; V€ F(E)).

DEFINITION 2.3. The cylindrical-distribution p on E will be said to be spherical if uy
is spherical on V for all Vin &#(E). It will be said to be isotropic if uv is isotropic on V for
all Vin #(E).

Here is a characterisation of normal cylindrical-distributions:

THEOREM 2.1. Let p; and ps be two cylindrical-distributions on two infinite-dimen-
sional Hilbert spaces E, and E,. Then p = u; ® . is isotropic on the direct orthogonal
sum E, ® E; if and only if there exists a > 0 such that p is normal with variance a.

3. Comments. This paper arises from a question raised by Professors J. L. Philoche
and M. Keane (Rennes), which was: “Is The Theorem 1.3 true for E;, = E; = E3 = R and
X1, X,, X; with the same distribution?” Professor J. L. Philoche wrote an interesting paper
(mainly expository) [10] on isotropy and sphericity: the proofs of Propositions 3.1, 3.2 and
3.3 below can be found in [10].

ProPOSITION 3.1. Let E be a finite dimensional Euclidean space, V a nonzero linear
subspace of V, and pv the orthogonal projection from E to V. If X is a spherical (resp.
isotropic) random variable on E, py(X) is spherical (resp. isotropic) on V. In particular
P[(a, X)r = 0] =0if X is isotropic in E and a is in S(E).

This proposition enables us to amplify in a trivial manner our theorems: for instance,
Theorem 1.3 remains true if we use n random variables (n = 3) instead of three.

ProposITION 3.2. Let X be a random variable valued in a finite dimensional
Euclidean space E such that P[X = 0] = 0. Then X is spherical if and only if X is
isotropic and X/|| X ||z and || X || e are independent.

The next proposition is classical and is one of the simplest characterisations of the
normal distribution:

ProposITION 3.3. Let X be a real random variable suéh that for all real 8 and t:
Elexp(itX)] = E[exp(itX cos 0) E[exp(itX sin 6)].

There then exists a = 0 such that X is normal with variance a.

Let us make some comments on theorems of Section 1. Theorem 1.1 is well known as
“Maxwell’s theorem” (see [4] page 187, Section 3b). We state it here for reference; its proof
is typical of our methods of proof. Theorem 1.2 is the main theorem of the paper: compared
with Theorem 1.1 it shows that isotropy contrasts strongly with sphericity for two
independent random variables. The last part of Theorem 1.4 for E = R is well known and
there exists numerous explicit examples of nonnormal distributions p on the real line such
that if X; and X, are independent with the same distribution p, then X;/X; is Cauchy
distributed; a nice one is u(dx) = v2[7(1 + x*)]"" dx. A more obvious example is the
distribution u of 1/X where the real random variable X has a normal distribution.

Bibliographical data on this subject can be found in the monograph by E. Lukacs and
R. G. Laha [9]. More generally, if we consider part (iii) of Theorem 1.2, we see that there
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are a lot of ways to write the second member of (1.1) as the product of two characteristic
functions, hence to find independent random variables X; and X, such that (X;, X;) is
isotropic; it would be difficult to classify them even with the further restriction of Theorem
1.4 that X; and X, have the same distribution.

A nice application of Theorem 1.3 to functions of real variables is the following: suppose
that fi, f2 and f; are positive integrable functions on R such that the function

F(x1, x2, x3) = J filpx1) fa(px2) fs(pxs)p® dp
0

is a constant on S(R?), then there exists four positive constants A;, Az, A3 and B such that
f(x) = Aj exp(—Bx?), forj =1, 2, 3.

Theorem 1.3 is actually a simple corollary of Theorem 1.2. It is not completely new: for
E, = E; = E3 = R, an equivalent result is proved in [6] and [7] with the further hypothesis
of symmetry for X;, X2, X;. Let us quote also a companion result, found by A. A. Zinger
[14] if X, X,, ---, X, are independent and identically distributed real random variables,
denote X = (X, + .-+ + X,,)/n; consider the subspace E of R" defined by E = {(x1, - - -,
X.); %1+ +-- + %, =0}. Thenif n =6, (X; — X, -- ., X, — X) isotropic in E implies that X;
is normal (with mean not necessarily zero). I am indebted to Professor E. Lukacs for the
reference [14].

A cylindrical-distribution (called in French: “promesure de masse 1”’) is not necessarily
the set of projections of some probability distribution on the Hilbert space. For a discussion
of this problem, a motivation of the definition and a historical perspective, Bourbaki [3]
can be consulted. He uses them to give a short and beautiful introduction to Brownian
motion. Note that Bourbaki calls uv:. what we call uv: we took advantage of the fact that
we restricted ourselves to Hilbert spaces. For an application of Theorem 2.1, we consider
the Hilbert space E = L?*[0, 1] of real functions which are square-integrable with respect
to Lebesgue measure on [0, 1], the space & of real continuous functions f on [0, 1] such
that f(0) = 0, with sup-norm, and the continuous linear P: E — ¥ defined by:

PA(E) = f f() d.
0

The Wiener theorem (see [3], page 83) says that if u is the normal cylindrical distribution
" on E with variance 1, the image of u by P on ¥ is the Wiener probability distribution on
%. Using that theorem, Theorem 2.1 implies that if u; and p, are cylindrical-distributions
on E such that u; ® p, is isotropic in E?, the image of ju; ® p; by the map: P;: E2 — #*

defined by
(fi, ) — (J’ fi(x) dx,J’ f2(x) dx)
0 0

is the Wiener probability distribution for the two dimensional Brownian motion on [0, 1]
(with some normalisation, since the variance is not necessarily 1).

4. A further look to sphericity. Let us comment now on the notion of infinite
sphericity as used in Definition 1.2. Actually, there are three related concepts:

(i) The infinite sphericity in a finite dimensional space.

(ii) The sphericity of a cylindrical-distribution in infinite Hilbert space.

(iii) The sphericity of a distribution on a sequence space.
We characterise these situations in the next three propositions: all the results of this
section are more or less known.

Concerning the first concept, denote by %, the set of spherical distributions on the

Euclidean space R" and by .%, . the set of images of distributions of %, on R* by the natural
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projection R™ — R* if & < n. Obviously %, D %u+1x. The following proposition explains
the term “infinitely-spherical”. Its proof is due to I. J. Schoenberg [13] and can also be
found in N. I. Achieser ([1], page 200).

PROPOSITION 4.1. Let k be a positive integer. The distribution p. belongs to Np=r Snr
if and only if u is infinitely-spherical.

Proofs of this proposition in [1] and [13] use Bessel functions. Let us give an elementary
proof using only Levy’s theorem on continuity of characteristic functions and the weak law
of large numbers.

ProoFr oF ProposiTION 4.1. The “if” part being obvious, we concentrate on the
converse. We consider the pre-Hilbertian space E of sequences of real numbers x = (x, x2,
..., Xn, ...) such that x; # 0 only for a finite number of j, with the scalar product (x, y)
= ¥, x,y;. The subspace {x € E; x; = 0 for j > n} is simply denoted by R" and for & =
n, pns is the canonical projection R* — R*; || - ||» is the norm in R and »,; is the normal
distribution in R" with

bni(t) = exp(—||t]|2/2) for ¢ in R"

Let us denote by AX) the distribution of a random variable X; if p and p, are
probability distributions on a finite dimensional vector space V, u, — p as n — o, means
weak convergence (that is [v f du, — [v f du, as n — o, for all bounded continuous
functions on V).

The hypothesis is the following: for each n = k& there exists a spherical random variable
X, on R" such that

(4.1) LIpuXn] =ZL[Xx]=pn for n=k.

Note that the X,, are not defined on the same probability space and we have not p..X,. =
X,. Without lost of generality we may suppose P[X; = 0] = 0; it is easy to come back
afterward to the case where this is not true. Define 8, = X,./|| X ||.. Now:

(4.2) LIVnpmba] = ve1 as n— o

This fact is known as “Poincaré’s lemma (see [11]); its proof is easy: consider a sequence
(Y,)2: of independent real random variables, with normal distribution vg;, and R, =
Yi+ .-+ Y2]V% So

L[Vnpmba] = g[ﬁ‘/-'_ﬁ (Y1, Yo, ..., Yk)].

But R%/n — 1 as — o, in probability from the law of large numbers and this proves (4.2).
Denote now for real ¢ and for n = k:

an(t) = E[(n™V2(| Xalln)“], Ba(t) = E[(n"* || parbn 1)
and y(¢) = E [|| X&||¥]. Then (4.1) gives a,()B.(t) = y(¢). But:

Ba(t) > 2"/2I‘<i2—t + g)/l‘(g) =fB(t), asn— o,

Hence, from Levy’s theorem (see, for instance, [4], Th.2, page 481), y/B is the characteristic
function of some real random variable £. The distribution of exp ¢ being denoted by p on
(0, + ) we get:

0

an(t) = a(t) = f a*o(da), asn— .
0
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The fact that y(¢) = a(£)8(t) implies now that X is infinitely spherical, which is the desired
result.

The above proposition implies now strong restrictions on spherical cylindrical-distribu-
tions:

PROPOSITION 4.2. Let = (uv: V € #(E)) a spherical cylindrical-distribution on the
infinite dimensional Hilbert space E. Then there exists a distribution p on [0, + ®) such
that

fiv(t) = J' exp(—al t||v/2)p(da) for tin V.
0

Furthermore p. is not a distribution E (except in the trivial case o({0}) = 1).

PROOF. An obvious consequence from Proposition 4.1. is that uv is infinitely spherical
for any Vin % (E). To verify that the corresponding measure pV actually does not depend
on V, consider V; and V; in & (E); we get for ¢ in Vi:

o %, . . ° 1%,
exp —a—z—' pv,(da) = fiv,(t) = fivv,(t) = | exp| —a=—— pv+v,(da)
[ 0

since ||¢|%, = l£%,+v,. Hence pv, and pv,.v, have the same Laplace transform and are
equal. Symmetry gives pv, = pv,+v, and proves the first part.

To see that p is not a probability distribution, suppose that there exists a random
variable X valued in E such that the orthogonal projection Xv on the finite dimensional V'
of X is pv distributed. Since || Xv||v < || X| =, we get for positive x:

P[|| X|? < x] < P[| Xv|} <x] forall Vin#(E)).

But clearly, | X||¥ is the product of two independent random variables: the first one is p
distributed, the second is x 2 distributed with parameter n = dim V. So, we get P[[| X ||* <
x] = 0 for all x > 0, a contradiction.

For simplicity, we state the last result on the space R" of sequence of real numbers,
and not on E" where E is an Euclidean space:

PROPOSITION 4.3. Let u be a probability distribution on the space R" of real sequences
X=X, X1,...,Xn),...) equipped with the usual o-field. Suppose that Xo, X1, ..., X5)
is spherical for each integer n. Then there exists a probability measure p on
[0, + ) such that p is the distribution of VVYo, VVY1, VVYy, ...) where V, Yo, Y1, ...
are independent random variables V, being p distributed and Y, with normal distribution
VR1.

A proof of this is given in [5]. Generalizations, replacing sphericity by isotropy and
stationarity can be found in [2] and [8]. '

5. Proof of Theorem 1.1. We prove it first for E; = E> = R. Let ¢;(¢) = E [exp(itX;)]
j =1, 2. Since the distribution of X; cos § + X; sin 6 does not depend on 6 in R, then
@i(t cos 8)@s(t sin ) does not depend on 6. Taking 6 = 0 and 8 = 7/2, we get g1 = ¢z, and
then ¢1(¢ cos 8)q:(t sin ) = @(¢) for all real ¢ and . Proposition 3.3 gives the result.

For the general case, we take a; in S(E,) j = 1, 2; Then for real 8, (a;cos 0, assin 8) is in
S(E). So from the one dimensional case (a1, X1) g, and (az, X») g, are normal with the same
variance and the result follows.

6. Proofs of Theorems 1.2 and 1.3. Let us explain first how Theorem 1.3. is a
simple corollary of Theorem 1.2: consider X; = (Xz, X3). Since (X1, X1) is isotropic, X1 is
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spherical (Theorem 1.2.) with P[X7 = 0] = 0. Since X; and X; are independent, Theorem
1.1. shows that X is normal in E, ® E; with variance a > 0. The same reasoning shows
that (Xi, X;) is normal in E, © E; with the same variance a, and the result is proved. The
“only if ” part is trivial. Now we embark upon a proof of Theorem 1.2.

i=> ii. We prove it first for E; = E; = R. Denote by p and » the distributions of X; and
X;. The measures p* and »* (resp. p~ and »~) are the restrictions of the distributions of X;
and X, (resp. of —X; and —X;) to (0, +x). Hypothesis (i) and Proposition 3.1. imply
u({0}) = p({0}) = 0 and

P[X,>0]=P[X:<0]=P[X>>0]=P[X>2<0]=1/2.
But for real ¢:

2 (7 . 2 (% . - A
(6.1) - (tan 0)* df = — q“(1+¢q¢*)""dgq={cosh—| .
7 J, T 2

0

Thus for all € and n in {—, +} and for real ¢:

f J xixz s (dx)v™(dxe) = (4 cosh ) .
0

Since (cosh (7t/2)" is never zero, we get for all ¢:

f x7%"(dx;) # 0 and J xut (dx) —f x4u (dxy).
0 0 0

This implies p* = ™. In the same way »* = »~ and symmetry (= sphericity) of s and » is
proved. By (6.1) X;/X; is Cauchy distributed.

Now we prove (i) = (ii) for general E; and E,. For a; in S(E;) and a: in S(E.), the
random variable ((a:, X1) £ , (a2, X2)g,) is isotropic in R?. Denote for real t:

@a,(t) = E[| (a1, X1)£,|*] and yo,(¢) = E [| (a2, X2) 5,| 7*].

From the one-dimensional case and (6.1) we get for real ¢;

(6.2) Wﬂl(t)¢a2(_t) = <COSh 22{> .

Hence ¢.,(¢) and y,,(¢) are independent of a; and a; respectively. From the one-dimensional
case again, (a1, X1)g, and (az, X;) g, are symmetric, so their distributions are independent
of a; in S(E,) and a3 in S(E3). The remainder of (ii) follows from (6.2).

(ii) = (iii). Let 6, = X;/|| X, ||g,, / = 1, 2. Proposition 3.2. implies that 6,, 8, || X1 ||, and
| X2 || z, are independent. Let d, = dim E;, and for all a, in S(E;) and real ¢:

9a(t) = E [| (o, 6, | ] Jj=12
Obviously ¢q () does not depend on «;. Using (6.2) we get for real ¢:
-1
t
6.3) 9 (Opa(~1) E [ X, 1% B [| Xa]5] = (cosh ”;) .
In order to compute g4, (¢), j = 1, 2, we consider independent random variables Y; and

Y. such that their dlstrlbutlons are vg 1 and g, 1; the distributions oz of 6, are the same as
Y,/II'Y, |l g, Since || Y, |I% is x dlstnbuted with d; degrees of freedom, 'if we replace (X1, X5)
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by (Y31, Y2) in (6.3) we get:

di it\ (de it\[ [di\nfd2\] _ mt\"

Comparing with (5.3):

v o ofd i\ A i\[ (A ()]
(6.4) E[l X1 ||%, E [ X151 = F(; + E)F(? - E)[F<§)P(§)] .

We can now use the product decomposition of gamma function (see, for instance, Sansone
and Gerretsen [12], page 188):

[C@] " =e"2]]7 (1 + E)e_z/".
This formula and (6.4) give (iii).

(iii) = (i). The preceeding proof shows that @ = |Xi|g/|X:|z, and @' =
|| Y1||&,/|l Yz | £, have the same distribution when the distribution of (Y1, Y») is vz,1. Denote:
IXlle = [ X:llE, + [ X:2[E]7* and 6 =X/ X|s.

We get, keeping the notation 6; and 6, as above,:
0= (0] Xil|e/ X e, 02 ]| Xz |2,/ 1| X | £)
= (0i[Q" + 1172 6:Q[Q" + 1]7'7).

Sphericity of X; and X, implies independence of 6;, 6 and @, and # has the same
distribution as

(01[Q12 + 1]—1/2, 02Q/[Q/2 + 1]—1/2)

because we may suppose X, Xz, Y, Y independent. Since the distributions of 6, and 6
are og, and og, the distribution of 8 is oz.

Last part. We suppose now that (X, X;) is isotropic in E and that there exist two
distributions p; and p» on (0, +) such that for all , in S(E,) and real ¢:

E [exp(it (o, X))5)] = f exp(— £ g>p,(a). .
) J= 1, 2.

This implies that for real ¢ and j = 1, 2:

e e x2\ dx
E [|{a, Xj)g,|"] = f o;(da) J |x|“exp<— “‘)
0 — 2a 2ma
(6.5) .

2u/2 ( 1 it) J “
=TI z+= a'%p,(da).
Ve \2 2] !

Since (i) « (ii), (6.2) implies for real ¢:

-1
E[|{a1, X1)g,|“] E [|{ca, Xz)Ezl—"] = <Ch —-)

1 1 it 1 it
= F(é + §)F<§ - 5)-
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This equality and (6.5) give for real ¢:

J’ a" 2p1(da)-J' a™"?py(da) = 1.
0 0

Standard reasoning shows that such equality implies that p; = p, = a Dirac mass on some
point a > 0, and this concludes the proof of Theorem 1.2.

7. Proofs of Theorems 1.4 and 1.5. Theorem 1.5 is a simple corollary of Theorem
1.4, which shows that X; = (X1, X7) is spherical under hypothesis (i) or (ii). Since X] and
X1 are independent, we can use Theorem 1.1 and we get (iii). Converse part (iii) = (i) and
(ii) is trivial.

Now we prove Theorem 1.4. (iii) = (i) and (ii) is obvious. We show that (i) or (ii)
implies (iii). We prove it first for dim E = 1, so we have to show that if X;/X, or X, X, is
symmetric, then u is symmetric. We consider for this the homomorphism 4 of the
multiplicative group R \ {0} to the multiplicative group of complex numbers of modulus
1 defined by h(x) = | x|* sign x, for fixed real ¢. Let ¥(¢) = E [h(X))]. Note that u is
symmetric if and only if ¢/(¢) = 0 for all ¢£. But

E [R(X\/X2)] = | ¥ () |?
E [A(X:1X2)] = (¢ ()%

So X:/X; or X, X, symmetric imply ¢(¢) = 0 for all ¢

We consider now the case dim E > 1. Let ,(¢) = E [|( a, X1)£|*] if ais in S(E) and ¢
real. We separate the cases (i) and (ii). Suppose (i). Then ¢, (¢)p.(—¢) is independent of
ay, so for all a; and a in S(E) and real ¢:

(7.1) P, (D) Pa(—E) = @alt)pal—t).

This implies @q,(¢) = @a(t) if pa(—2t) # 0. Suppose that g, () #* 0 and @.(f) = 0, we get a
contradiction if we exchange (a, a;) and (¢, —t) in (7.1), since @.(t) = p.(—t). Hence q@,(t)
does not depend on « in S(E). From the one dimensional part of the proof applied to
(a1, X1)e and (a, Xz) g, we get (a1, Xi)r symmetric. Since the distribution of | (a1, X1)£ |
does not depend on ay, p is spherical.

The proof of (ii) = (iii) goes the same way and starts from

Po, (E)Pal(t) = @alt)palt).

The proof of the last part of Theorem 1.4 is immediate, using the equivalence (i)
(iii), the fact that yg is spherical and Theorem 1.2.

8. Proof of Theorem 2.1. Immediate, using Proposition 4.2. and the last part of
Theorem 1.2.
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