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ESTIMATION IN A MULTIVARIATE “ERRORS IN VARIABLES”
REGRESSION MODEL: LARGE SAMPLE RESULTS!

By LEON JAY GLESER

Purdue University

In a multivariate “errors in variables” regression model, the unknown mean
vectors uy, : p X 1, u, : r X 1 of the vector observations X1, Xz, rather than the
observations themselves, are assumed to follow the linear relation: uz, = a + Buy,,
i=1,2, ..., n Itis further assumed that the random errors e, = x, — u,, X; = (X,
X %), u; = (u), u?), are i.i.d. random vectors with common covariance matrix Z..

“Such a model is a generalization of the univariate (r = 1) “errors in variables”
regression model which has been of interest to statisticians for over a century.

In the present paper, it is shown that when =, = 0°I,+,, a wide class of least
squares approaches to estimation of the intercept vector a and slope matrix B all
lead to identical estimators & and B of these respective parameters, and that &
and B are also the maximum likelihood estimators (MLE’s) of « and B under the
assumption of normally distributed errors e,. Formulas for & B and also the
MLE’s U, and 6° of the parameters U; = (uy, - - +, W1x) and o are given. Under
reasonable assumptions concerning the unknown sequence {uy,, i=1,2, ...}, &,
B and r™'(r + p)6” are shown to be strongly (with probability one) consistent
estimators of a, B and o2 respectively, as n — oo, regardless of the common
distribution of the errors e, When this common error distribution has finite
fourth moments, & B and r~'(r + p)6? are also shown to be asymptotically
normally distributed. Finally large-sample approximate 100(1 — »)% confidence
regions for @, B and ¢ are constructed.

1. Introduction. It is well known that the presence of errors of measurement in the
independent variables in univariate (one dependent variable) linear regression makes the
ordinary least squares estimators inconsistent and biased. An extensive literature, dating back
to Adcock (1878), deals with estimation in models of univariate regression which incorporate
“errors in variables.” (For references, see Anderson (1976), Madansky (1959), Moran (1971),
Sprent (1966).) Less is known concerning estimation in multivariate “errors in variables”
regression models as such; although, as shown later, such models are mathematically equivalent
to linear functional equation models and certain models of factor analysis, for which a sizeable
and constantly expanding literature exists (see Anderson (1976)). Recent work relating directly
to the multivariate “errors in variables” model as parameterized in the present paper has been
done by Gleser and Watson (1973). Bhargava (1979), and Healy (1975).

In a multivariate “errors in variables” regression model, n random vectors x, = (X1, X2)’
are observed, where xi, isp X 1 and xy;isr X 1,i=1, 2, - -+, n. It is assumed that

(L.1) x=xli=uu‘+eli =u+e
’ ' X2 uy; /, €2 ) N

where

(12) llzz=a+Bu1,, i=l’2,...’n’
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and that
(1.3) the e/’s are i.i.d. with mean vector 0 and covariance matrix Z..

The parameters B:r X pandu; : p X 1,i= 1,2, ..., n are assumed to be unknown, and are
to be estimated. The parameter a:r X 1 is either known to be 0 (the no-intercept model), or else
is unknown (the intercept model ) and must be estimated. If consistent sequences of estimators
for B are desired, the parametric form of Z, cannot be completely unspecified (see Section 5).
In the present paper, it is assumed that . = ¢°I,+, where the scalar 6* > 0 is unknown and is
to be estimated. That is, the assumption (1.3) is specialized to the following:

(1.3%) The e’s are i.i.d. with mean vector 0 and covariance matrix =, = 6%l

In Section 5, it is shown that when 3., = ¢2Z,, = known and positive definite, then the data
can be transformed linearly in such a way that (1.1), (1.2), and (1.3") hold for the transformed
data.

To condense notation, let X; be the p X n random matrix whose columns are xy;, i = 1, 2,
-+, n, and let X, be the r X n random matrix whose columns are Xz, i = 1, 2, - - -, n. Similarly,
let U; be the p X n matrix whose columns are uy;, i = 1, 2, - - -, n, and let U; be the r X n matrix
whose columns are uy;, i = 1, 2, - - -, n. Finally, let E be the (p + r) X n random error matrix
whose columns are e, i = 1,2, ..., n, and let

X= <§;> U= (g;):(p+r) X n,

have columns xi, Xs, - -+, X, and uy, uy, - -, u,, respectively. In terms of these matrices, the
model (1.1), (1.2) becomes

_ _(0 L,
(14) X—U+E—<al;>+(B>U1+E,
where 1, = (1, 1, - -+, 1) : 1 X n. The assumption (1.3") can be restated as follows:

ASSUMPTION A. The columns of E are i.i.d. with common mean vector 0 and common
covariance matrix X, where Z, = ¢+,

The mathematical equivalence between models of the form (1.4), linear functional equation
models, and certain fixed-factors analysis models is discussed at the end of this introduction.

Two approaches to the estimation of the parameters a, B, U; and o” have received primary
attention in the literature on univariate (r = 1) “errors in variables” regression models. In
what may be called the MLE approach, it is assumed that the common distribution of the
columns of E is multivariate normal, and maximum likelihood estimators (MLE’s) of the
parameters are found. In contrast, the GLSE approach makes no assumptions about the
distribution of E beyond those found in Assumption A. Since under the model (1.4), Xz — a1,
— BX; has mean 0 : r X n and columns with common covariance matrix (I, + BB’), values
of a and B are chosen to minimize some scalar function of the normalized “error’ (or
“residual’’) matrix

(1.5) Q(a, B; X) = (I, + BBy V*(Xy — al}, — BX)),

where (I, + BB’)"? is any square root of I, + BB’. In the case r = 1, (1.5) is an n-dimensional
vector, and minimization of the length of (1.5) yields the generalized least squares estimators
(GLSE’s) of Sprent (1966). (See also Moran, 1971; pages 246-7.) In this case, the MLE and
GLSE approaches yield identical estimators. When r > 1, many scalar functions of (1.5) could
be used. In the case » = p of the no-intercept model, Gleser and Watson (1973) show that the
MLE approach and the GLSE approach which minimizes the Euclidean norm (tff QQ'])"/? of
(1.5) lead to the same estimator of B. In addition to the MLE and GLSE approaches, an
approach analogous to ordinary least squares could be used, based on minimizing some scalar
function of
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Xy = 0 I,
(1.6) R(a, B, Uy X) =X — (odﬁ,) - (B)Ul
over a, B, U.. It is well known that this method, when based on minimizing the Euclidean
norm (tr[RR’])'”* of (1.6), and the MLE approach yield the same estimators of , B and U,.

In Section 2, it is shown that the GLSE approach based on minimizing any orthogonally
invariant norm (see Definition 2.1) of (1.5) yields the same estimators of a and B as the MLE
approach. It is also shown that the ordinary least squares approach based on minimizing any
orthogonally invariant norm of (1.6) yields the same estimators of a, B and U; as the MLE
approach. Formulas are given for the MLE’s 6%, B, U, and & of 6° B, U; and « under both the
intercept and no-intercept models, and the uniqueness of these estimators as MLE’s, GLSE’s
and ordinary least squares estimators is discussed.

In Section 3, it is shown that B and r~'(p + r)é% define sequences of strongly consistent
(as n — o) estimators of B and o, respectively, in both the intercept and no-intercept models;
and that in the intercept model, & defines a sequence of strongly consistent estimators of a.
For the intercept model with r = p, these results have previously been reported by Healy
(1975). The strong consistency results of Section 3 are obtained without any assumptions about
the distribution of E beyond those stated in Assumption A. In particular, it is not assumed
that the columns of £ have a multivariate normal distribution.

Strong consistency results (which assert convergence with probability one) provide deeper
knowledge of the large-sample properties of estimators than do weak consistency results
(which assert only convergence in probability). Results of the latter type have been obtained
for B and r~'(r + p)&* for the no-intercept model by Gleser and Watson (1973) and Bhargava
(1979), and in the case r = 1 for both no-intercept and intercept models by many authors.
Although weak consistency results are adequate for obtaining large-sample distributions and
Fisher efficiencies of estimators, strong consistency results seem to be needed in the theory of
sequential estimation (see, e.g., Gleser and Kunte (1976)) and in deriving large-deviation
based measures of efficiency (Bahadur (1971)). Hence, it is worth demonstrating that a
sequence &, of estimators is strongly consistent for a parameter £.

Section 4 considers large-sample distributional results for n'/*(B — B) and n'/*(r"'(r + p)6*
— o) in both the intercept and no-intercept models, and for n'/*(& — «) in the intercept model.
If the common distribution of the columns of E has finite fourth moments, these quantities
have asymptotic multivariate normal distributions. Assuming that the common distribution of
the columns of E is multivariate normal with mean vector 0 and covariance matrix o2/, (that
is, e, ~ MVN(0, 0¢°I,+,), all i), or that the moments of this common distribution up to, and
including, the fourth-order agree with the corresponding moments of the MVN(0, ¢%,.,)
distribution, approximate large-sample 100(1 — »)% confidence regions for a, B and o” are
constructed. Finally, Section 5 discusses the practical relevance of the assumptions needed to
carry through the large-sample theory.

Two related models. Before beginning discussion of the theoretical results mentioned
above, it is worth commenting on the relationship of the model (1.4) to two mathematically
equivalent models for which there is an extensive literature—the linear functional equation
model and the factor analysis model with fixed factors. Both of these models start with the
assumption that a (p + r) X n matrix X of observations has the structure

(1.7) X=U+E,

where U is a (p + r) X n matrix of unknown constants believed to have rank p, and the
columns of E are i.i.d. with common mean vector n and common covariance matrix .. The
assertion that U has rank p is equivalent to asserting the existence of an r X (p + r) matrix X
of full rank such that

(1.8) KU=0.

Even if U is known, such a matrix K is not unique. Linear functional equation models impose
conditions on K and U sufficient to insure statistical identifiability of these parameters; the
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goal of users of such models is to estimate the matrix K of functional coefficients. Tintner
(1945) and Geary (1948) assume that 2. is known (or estimable by an independent and
consistent estimator %), and use the MLE approach to estimate K and U. Geary (1948) proves
weak consistency of the MLE K and discusses the problem of consistently estimating n ™" U(,
— n"1,1,)U’. Using large-sample distributional results of Anderson (1948), Geary also
obtains the classical Fisher efficiency of K. These large-sample results (except for the efficiency)
do not require the assumption that the common distribution of the columns of E is multivariate
normal.

As noted by Anderson (1976), Geary’s results can be made to apply to the case where it is
assumed that I, = ¢, where =, is known. Such a model can be transformed (see Section 5)
into a model of the form (1.7), (1.8) in which =, = ¢*I,.., corresponding to Assumption A. In
this case,. the restriction upon K imposed by Tintner (1945) and Geary (1948) to permit
statistical identifiability of the parameters is that

(1.9) KK’ =1I..

Note that the “errors in variables” model (1.4) has the form of (1.7), (1.8) with 5" = (0, «"), but
instead of (1.9) requires that K has the form

K=(—B1).
Another assertion equivalent to the statement that U in (1.7) has rank p is that
(1.10) U=LF,

where L : (p + r) X p and F: p X n are both of rank p. Equation (1.10) is recognizable as
defining a factor analysis model in which L is the matrix of factor loadings and F is the matrix
of factor scores. Most of the literature on factor analysis assumes that the columns of F are
i.i.d. replications of a MVN(0, I,,) distribution, and that 2, is an unknown diagonal matrix.
However, Whittle (1952), Lindley (1953) and Anderson and Rubin (1956) discuss the case
where F is assumed fixed (fixed factors), with

(L.11) Fl,=0, FF =nl,

and =, = ¢°I,.,. The restrictions (1.11) are not enough to statistically identify the model;
Anderson and Rubin (1956) provide a detailed discussion of the kinds of conditions on L that
can serve for this purpose. Using the restriction that L’L is diagonal with distinct descending
diagonal elements, Lindley (1953) uses the MLE approach to obtain estimators of L, F and
0. Both Lindley (1953) and Anderson and Rubin (1956) discuss weak consistency and large-
sample distribution theory for the MLE of L and ¢ (again, without assuming that the columns
of E have a multivariate normal distribution). Clearly, the “errors in variables” model (1.4)
has the form of (1.10) with F = Uy, " = (0, a’) and

I,
(1.12) L= <B>.

The requirement (1.12) specifies that certain elements of L have known values, corresponding
to one of the methods of identifying the model (1.10) suggested by Anderson and Rubin
(1956).

Since the models (1.4), (1.8), (1.10) all stem from a common linear structure (1.7), it is
reasonable to expect that MLE’s and large-sample results for the MLE’s of the parameters of
any one model can be used to obtain MLE’s and large sample results for the MLE’s of the
other models. Provided that the parameters of the models (1.8) and (1.10) are sufficiently
restricted so as to insure statistical identifiability, this expectation is (with an exception noted
below) largely correct. Nevertheless, in the present paper little use is made of results appearing
in the literature of linear functional equation and fixed-factor factor analysis models. In
Section 2, the MLE approach is treated in the context of a broader, more distribution-free
least squares approach for which few parallels appear in the literature of the related models.
The large-sample results of Sections 3 and 4 are obtained without assuming that the nonzero
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eigenvalues of lim,_,.n "' UU’ (in the no-intercept model), or of lim,—,n ™' U(I, — n™'1,1,) U’
in the intercept model, are distinct, an assumption adopted (and apparently necessary) for the
large-sample results obtained in the literature of the other two models relating to the case X,
= 0°I,+,. Finally, since the parameters of the model (1.4) have important practical interpre-
tations in may scientific contexts, and since this model has long been of interest to statisticians,
it seems desirable to analyze this model strictly in terms of its own structure, particularly since
such a direct approach has the advantage of clarity.

2. MLE and GLSE estimators. Because the analyses of the no-intercept and intercept
forms of the model (1.4) involve similar steps, an attempt is made in the following sections to
treat these two forms of the model simultaneously. To this end let

PR ' C,=1I, for the no-intercept model,
=1I,—n""1,1;, for the intercept model.

The estimators considered in this paper are based on the following reduction of the data X:
Let

22) W= XC.X',

andletdi=de= +-- = dp, Z dps1 = + - - = dp+r = 0 be the (ordered) eigenvalues of W. Let

(23) D= (‘?m“x % 5 ) = diag(dh dZ, M) dp+r)7

where Dmax = diag(d, d, - - -, dp), Dmin = diag(dp+1, - - +, dp+r). Finally, let
_[Gu G . X

2.4 G_<G21 622).(p+r)x(p+r), Gu:p Xp,

satisfy

2.5) G'G = I,., = GG',

(2.6) W = GDG".

That is, G is an orthogonal matrix whose ith column is the eigenvector of W corresponding to
dyi=1,.---,p+r
Assuming that G;7' and Gy’ exist, define estimators of B, U; and « as follows:

(2.7) B = GzlGl_ll = —(Gzlz)_lG{Z,
(28) Ul = (GHG{]X] + GllG2/1X2)Cn = [(Ip - Gl2Gl/2)X1 - Gl2Gé2X2]Cm
2.9) a=0 for the no-intercept model,

=(— B, I)x, for the intercept model,

where X = (X1, X2)' = n~'X 1,.. The equivalence of the alternative computation formulas for B
and U, given in (2.7) and (2.8) follow as a direct consequence of (2.5). Whether or not G}
and G3; exist, define

(2.10) 62 =n"Y(p + )" tr[ Denin].

Since computation of B requires that Gii' and/or G2 exist, the following two lemmas are
of interest.

LeMMA 2.1.  If G is defined by (2.4) and (2.5), then G is nonsingular if and only if Gy is
nonsingular.

PROOF. Suppose that Gi; is nonsingular. Let Geo.1 = Ga2 — G21G1i Gi2. From the determi-
nantal equality | G| = | Gi1|| Ge2.1| and the facts that |G| % 0, |G| # 0, it follows that
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| Gez.1| # 0. However, it is a consequence of (2.5) that G G11 + G2G% = 0, and hence that
Gaz.1 = Goo[Ir + (GI_IIGIZ),(Gl_ll G2)].

Therefore, | G2 | # 0 and G is nonsingular. A similar argument shows that the nonsingularity
of Gz, implies that Gy; is nonsingular. (I

LEMMA 2.2. Let G be defined by (2.4), (2.5) and (2.6). If Assumption A holds, rank (C,) =
p + r, and the common distribution of the columns of E is absolutely continuous with respect to
Lebesgue measure on (p + r)-dimensional Euclidean space, then

2.11) P {G11 and G, are nonsingular} = 1.

Proor. From the given, it is straightforward to show that the elements of W on or below
the diagonal have a joint distribution which is absolutely continuous with respect to
Y% (p + r)(p + r + 1)-dimensional Lebesgue measure. Representing the elements of G in terms
of polar coordinates, transforming from W to (G, D), and then integrating out terms not of
interest, it can be shown that if p < r, the p® elements of Gi; have an absolutely continuous
distribution with respect to p*-dimensional Lebesgue measure; while if r < p, the r* elements
of Gz have an absolutely continuous distribution with respect to r>-dimensional Lebesgue
measure. Consider the case p < r. (The case r < p is treated similarly.) Note that | G | is a
polynomial in the elements of Gi;. By Okamoto’s (1973) lemma, P{| Gu:| # 0} = 1, and this,
together with Lemma 2.1, implies (2.11). O

For any s X ¢ matrix 4, s < ¢, let A[4 ] be the ith largest nonzero singular value of 4; that
is, Af[4] is the ith largest eigenvalue of 44, or of A’A, and
M[A] = A[A]= -+ = A[4] = 0.

Recall that if 4 is an s X s positive semidefinite matrix (4 is p.s.d.), then A 4], - - -, AJ[A] are
also the eigenvalues of 4. If 4;, A, are s X s symmetric matrices, the notation 4; = 4, means
that 4; — A, is p.s.d. It is well known that if 4;, 4> are s X s symmetric,

(2.12) A1 = A, implies that A[4,] = A\[4:], i=1,2 .-,
Further if 4; = A; and A4, 5 A, at least one of the differences A{4:] — A,[A42] must be positive.
DEFINITION 2.1.  An orthogonally invariant norm || - || defined on s X ¢ matrices 4 is a norm
which also has the property that
|HAl = |4] = | AH:]|
for all 4 : s X t, all H : s X s orthogonal, all H, : t X ¢t orthogonal.

Using the singular value decomposition for s X ¢ matrices, it is easily shown that any
orthogonally invariant norm || 4 || is a function of A only through A,[A4], -- -, A[A4]. Indeed,
the following is true.

LemMa 2.3.  The function || - || on s X t matrices A is an orthogonally invariant norm if and
only if
2.13) 41 = gul4], -- -, AL4D)

for some symmetric gauge function (s.g.f.) g(-) defined on s-dimensional Euclidean space.
PrOOF. See von Neumann (1937).

A scalar-valued function g(-) defined on s-dimensional Euclidean space is an s.g.f. if g(-)
is a norm which further satisfies
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g(DPN) = gN)

for all A : s X 1, all diagonal matrices D.; having +1’s on the diagonal, and all s X s
permutation matrices P.

LeMMA 2.4. Let g(-) be an s.g.f. on s-dimensional space.

(1) The function g*(\;) defined on si-dimensional Euclidean space, s; < s, by g*(\1) =
g((A1, 0)) isan s.gf.

(i) IFAY = AV, A, =12, and NP | < AP, i= 1,2, ---, s, then gA") =
gA®).

PrOOF. Part (i) follows directly from the definition of an s.g.f. A proof of part-(ii) appears
in Olkin (1966; pages 55-56). 0

The following definitions are implicit (or explicit) in the discussion of Section 1.

DEFINITION 2.2. The estimators &X), B(X), Ui(X) are ordinary least squares estimators
(OLSE’s) of a, B, Ui, respectively, relative to an orthogonally invariant norm || - || defined on
(p + r) X n matrices R, if for all «, B, Uy, X,

I R(a, B, Us; X) || = | RG&(X), B(X), Gi(X); X) |,

where R(a, B, Uy; X) is defined by (1.6).

DErFINITION 2.3.  The estimators a*(X), B*(X) are GLSE’s of «, B, respectively, relative to
an orthogonally invariant norm | - ||o defined on r X n matrices Q, if for all &, B, X,

I @, B; X) lo = || Q(ar*(X), B*(X); X)]lo,

where Q(a, B; X) is defined by (1.5).

THEOREM 2.1. If Gil and Gz; exist, then &(X), B(X), U(X) defined by (2.9), (2.7) and
(2.8) are OLSE’s of a, B, U, relative to any orthogonally invariant norm on ( p + r) X n matrices,

and further a(X) and B(X) are GLSE’s relative to any orthogonally invariant norm on r X n
matrices.

PROOF. Let |- || be any orthogonally invariant norm defined on (p + r) X n matrices. Fix
a and B. Applying classical projection arguments, it can be shown that
(2.14)  R'(a, B, Us; X)R(a, B, Ui; X) = R'(a, B, Ui(a, B); X)R(, B, Ui(a, B); X),

where

2.15) U(a, B) = (I, + B'B)"'(I,, B')[X - ( 0 )]

al),

Indeed, equality in (2.14) holds if and only if U; = Ui(a, B). Since the nonzero eigenvalues
of R'R and RR’ are identical, it now follows from (2.14), (2.12), the “only if” part of Lemma
2.3, and Lemma 2.4(ii) that

(2.16) IR(e, B, Us; X)|| = | R(e, B, Ui(a, B); X)||.
Note, from (1.5), (1.6) and (2.15), that

)

@.17) - [(_Il;/)(l, + BB')"\(~B, 1,)} [X - (a‘:, )}

=TI"(B)Q(e, B; X),



“ERRORS IN VARIABLES” REGRESSION 31

where
(2.18) T'(B) =, + BB ) '*(—B, I)

is an r X (p + r) row-orthogonal matrix. In consequence, p singular values of R(a, B, Ui(a, B);
X)) are zero, with the remaining r singular values being equal to the singular values of Q(«, B;
X). From Lemma 2.3 and Lemma 2.4(i), there is an orthogonally invariant norm || - ||o defined
on r X n matrices Q such that

(2.19) | R(e, B, Ui(e, B); X) | = || Q(et, B; X)po,

for all &, B, X. Noting that U, = Uy(a, B), it follows that if it can be shown that & and B are
GLSE’s of « and B relative to any orthogonally invariant norm || - ||o on r X n matrices, then
the OLSE character of &, B, U, realtive to | - || will follow as an immediate corollary.

Hence, let || - ||o be any orthogonally invariant norm defined on r X n matrices Q. Fix B and
note that for all a, X,

(2:20) Qe B; X)Q'(e B; X) = Q(0, B; XC,)Q'0, B; XG)
with equality holding if and only if

a=dB) =0, in the no-intercept model,
(2.21)
= (=B, I)X, in the intercept model.

Consequently, (2.12) and Lemma (2.4)(ii) imply that

(222) | Q(e, B; X) o = || Q(a (B), B; X) o = || O, B; XC.)|lo-
Now, note that

(2.23) 0(0, B; XC,) = I'(B)XC,,

where I'(B) is defined by (2.18). It is a consequence of the Courant-Fischer min-max theorem
that for all row-orthogonal matrices I':r X (p +r),

(229 MTXC) = M XC] = NEAI W] = a2, i=1,2 .01
with equality holding for all i in (2.24) if
(2.25) I' = A(G2, G2)

for some r X r orthogonal matrix A. It is easily shown that T" = T'(B) satisfies (2.25) with A
= (G%2G2)"*(Ga)™". Thus, it follows from (2.23), (2.24), Lemma 2.3 and Lemma 2.4(ii) that
for all B, X,

(2.26) || @0, B; XCu)l|o = || QO0, B; XCy)[lo = g(d¥a, - - -, d¥2),
where g(-) is the s.g.f. corresponding to || - ||o. Applying (2.22) and (2.26) yields
(2.27) 10 B X)llo = || (@&, B; X) o = g(@lfa, - --, dif2),

proving that & and B are GLSE’s of a, B relative to || - ||o. O

It is of interest to determine when &, B, U are the unique OLSE’s of a, B, U, relative to an
orthogonally invariant norm | - ||, and similarly when & and B are the unique GLSE’s of &, B
relative to an orthogonally invariant norm || - [|o. Looking through the proof of Theorem 2.1 it
is clear that such uniqueness is only possible if the norms || R|| or || Q ||o are strictly monotonic
in the singular values of R and Q, respectively.

DErFINITION 2.4.  An orthogonally invariant norm || 4 || on s X ¢ matrices A4, s < t is strictly
monotonic if Ai[A:1] = A[4:], i = 1, 2, ---, s, with strict inequality holding for at least one
index i, implies that || 4, || > || 42|
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Note that the classical Euclidean norm || 4 || = (trf[44'])'/? is orthogonally invariant and
strictly monotonic, but that the orthogonally invariant norm |4 | = Ai[A4] is not strictly
monotonic.

THEOREM 2.2 Assume that the conditions of Lemma 2.2 hold. Then

() &, B and U, are the unique (with probability one) OLSE’s of a, B and U, relative to any
strictly monotonic, orthogonally invariant norm || - || on ( p + r) X n matrices R;

(ii) & and B are the unique (with probability one) GLSE’s of a and B relative to any strictly
monotonic, orthogonally invariant norm || - |0 on r X n matrices Q.

PROOF. Let % be the collection of all X:( p + r) X n for which Gi; and Gg; are nonsinglilar,
and also d, > dp+1. It follows from Lemma 2.2 and results of Okamoto (1973) that P(¥) = 1.
Fix X € 4. Recall that U\(a, B) = Ui, &(B) = &. Also note that since Gz is nonsingular, the
only solution for B of the equality

(2.28) T'(B) = (I, + BB')V*(—B, I,) = A(Giz, Gi)

is B = B. However, since d, > dp.1, the equality (2.25) is a necessary and sufficient condition
for equality to hold for all i in (2.24). Now using (2.12), the remark following (2.12), and
Definition 2.4, and retracing the steps of the proof of Theorem 2.1, assertions (i) and (ii) are
easily verified. 0

REMARK. If the common joint distribution of the columns of E is not absolutely continuous
with respect to Lebesgue measure, or if rank (C,) < p + r (so that the conditions of Lemma 2.2
fail to hold), it is conceivable that a collection of X-values could exist with positive probability
for which d, > dp+1, but for which G1; and G are singular. In this case, no solution for B in
(2.28) can exist and thus no B exists for which A,[T(B)XC,] =dy2, i=1,2, -+ -, r (see (2.24)
and (2.25)). If || - ||, or || - ||o, are strictly monotonic, then for this collection of X’s, OLSE’s of
a, B, Uy and GLSE’s of a, B do not exist. This assertion follows since it is possible to show for
any orthogonally invariant norm || - ||o on r X n matrices that

229) inf, | Q(e, B; X) llo = g(d¥, ---, d¥3),

where g(-) is the s.g.f. corresponding to | - |0, and then the above argument shows that this
infimum cannot be attained by any («, B).

It remains to show that &, B, U, and 6% are MLE’s of their respective parameters.

THEOREM 2.3. If rank (C,) = p + r and the common distribution of the columns of E is
multivariate normal, then &, B, U, and 6* defined by (2.9), (2.7), (2.8) and (2.10), respectively, are
the unique (with probability one) MLE’s of a, B, U, and a2, Further,

max, v, L(X; a, B, Uy, %) = L(X; & B, U,, 6%

230) —fontpen
’ Q2me)(tr] Dmin]) ’

where L(X; a, B, Uy, ®) is the likelihood of X.

Proor. The likelihood of the data X is
2.31) L(X; a, B, Uy, 0% = (2w02)_"(”+”/2exp{— % | R(er, B, Us; X) ||2},
where R(a, B, Ui; X) is defined by (1.6) and

IR|| = @r[RR] = [ZE=7 AH[RIT

is the classical Euclidean norm. Applying Theorem 2.1, together with (2.16) (2.19) and (2.27),
yields the inequality



“ERRORS IN VARIABLES” REGRESSION 33

L(X; o, B, Uy, 6% = L(X; &, B, U1, 0?)
2.32)

1
= (27702)_""’+”/2exp{— 302 tr{ Dimin] },

which holds for all X for which Gi; and G, are nonsingular, all «, B, U, and o> Since the
multivariate normal distribution is absolutely continuous with respect to Lebesgue measure,
it follows from Lemma 2.2 that (2.32) holds with probability one. Since the classical Euclidean
norm is strictly monotonic, it follows from Theorem 2.2 that &, B, U, are the unique (with
probability one) estimators of «, B, U, that achieve the upper bound in (2.32). Finally, it is
well known that the upper bound in (2.32) is uniquely maximized as a function of o by 6>
Plugging 67 into the right-hand side of (2.32) yields (2.30). 0

REMARK 1. Healy (1975) obtains MLE’s of parameters of a model which includes (1.4) as
a special case. His proof, which is different than that given here, can be used to yield a proof
of Theorem 2.3. However, Healy does not consider either the uniqueness of the MLE’s or their
relation to OLSE’s and GLSE’s. He also assumes, without proof, that Gi; and Gz are
nonsingular.

REMARK 2. In the intercept model with p = r = 1, it is well known that the MLE of the
scalar B can be expressed in the form
(2.33) B = So2 — S11 + [(s11 — 522)2 + 43%2]1/2
2512

s SlZ# 0,

where S = (n — 1) W = ((s,/)) is the sample covariance matrix. That this formula yields the
same result as (2.7) can be seen by noting that the eigenvalues d; and 4z of W are solutions of
the quadratic equation

0=d’— ([WDd+ | W|=d*— (n— D(su + se2)d + (n — D:(s1152 — 5%),
so that

+ S90 + + 2 _ 4 — 2.\11/2
(2.34) d = (n _ l) {Sn S22 [(Sn 322) (S11szz S12)] }

2

Also the scalars G11 = gi1 and Ga1 = g1 satisfy

d (g“> = W<g”) =(n- 1)s<g“).
821 821 gz

In particular, 511g11 + 512g21 = (n - 1)_1 dlgn, SO that

-1 (n— 1)_1 dy — su
gy =—/mm/ ™,
S12

and, simplifying the expression in (2.34), the equality of g1g7' and (2.33) is established. The
relationship between (2.33) and the slope ga1g11' of the major axis (first principal component)
of the probability ellipse generated by S was found independently by K. Pearson and C. Gini
(see Moran (1971), page 237). It should be noted that in contrast to Moran’s conjecture (pages
245-246), the solutions (2.7)-(2.10) of the likelihood equations in the case r = p = 1 (and in
general for all r, all p) do not define a saddlepoint of the likelihood, but actually do maximize
the likelihood, as shown by Thoerem 2.3.

3. Strong consistency. In this section, strong consistency properties of &, B and 67 are
discussed. No conditions are imposed on the distribution of the columns of E beyond those
appearing in Assumption A. In particular, it is not assumed that the common distribution of
the columns of E is multivariate normal, or even that this distribution is absolutely continuous
with respect to Lebesgue measure. Thus (see the remark after Theorem 2.2), it is conceivable
that for fixed n, Gii' and G with positive probability can fail to exist, making & and B
undefined. Fortunately, for every sequence w = (X1, Xz, - - -) of observations, except perhaps
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for a collection of such sequences having probability zero, there exists a sample size n(w) such
that G1i and Gz exist for all n = n(w) (see Lemma 3.3).

In this and the following sections, reference is made to the following assumptions on the
sequence uy,, i=1,2, ---.

ASSUMPTION B. lim, . n ‘U U} exists.

AssUMPTION C. The matrix
3.1 A = lim, .. n 'U,C, U}

is positive definite.

Assumption B implies that A exists, but not that A is positive definite. Assumption B also
implies the existence of the following quantities:

(32 p=lim, ..n 'Ul, = <:) + G;’)m, 1 = lim, o n ' Uil,,
(33) 7= ((ry)) = lim,.e n 'UC,U’ = (g)A(I,,, B).

Let

G.4) 0 = 6Ly + 7= 0*Lpur + <f§’)A(1,,, B).

LeEMMA 3.1. Under (1.4), Assumption A and Assumption B,

(3.5) lim, . n ‘W =0, with probability 1 (w.p. 1).
Proor. From (1.4) and (2.2)

(3.6) n'W=n"'EC.E +n 'UC,E'+n 'EC,U’ +n 'UC,U’.

By Assumptions A and B, (3.3) and the SLLN,

(3.7 limu. n '[EC.E’' + UC,U’'] =0, w.p. L.

Thus, (3.5) holds if

(3.8) lim, .o n '"UC,E'=0, wup.L

Note that in the no-intercept model, n 'UC,E’ = n"' UE’, while in the intercept model
n 'UC.E' = n 'UE' — ue,

where

(3.9) i=n'Ul,, &=nEl,.

By Assumption A, the SLLN and (3.2),

(3.10) lim, o =p, lim,..€=0, w.p. L.

Thus, under either model, (3.8) holds if lim,_, n 'UE’ =0, w.p. 1, or equivalently if

(3.1 limy oo n " i uner =0, wp. 1, al ij=12---,p+r

where U = ((u.2)), E = (1))
From Assumption B, the limit of n' Y% u}, exists (n — ). Using Abel’s partial
summation formula, it can be shown that the existence of this limit implies that

02 Zf=1 k_Qu?k = ZZ:] k_ZVar(uikejk) < o,
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Applying the corollary to Theorem 5.4.1 in Chung (1974) establishes (3.11), and thus (3.4). 1
RemaRrk. It follows directly from (1.4), (3.9) and (3.10) that
(3.12) limy o X = lim, (X7, X3) = p = <I§)"1 + (g), w.p. L
Let yi = y2 = -+ = y, = 0 be the (ordered) eigenvalues of A(I, + B’B), and let D, =
diag (y1, y2, * *, yp). Using the fact that the y/’s are also eigenvalues of (I, + B'B)/?A[(I, +

B’B)'?] for any square root (I, +B’B)? of I, + B’B, it can be shown that there exists
Y:p X p nonsingular for which

G13) AU, + B'BW =D, (I, +BBy=1I,
Let I'(B) be defined by (2.18). Then
(.14) @(%’)‘p - <g’)\l/(021p +D,), Or'B)=T'(B)’L.

Hence the (ordered) eigenvalues 6, = 6, = -- - = ., = 0 of © are
(315) 0i=02+‘)/i, i= 1, 2, AR /S 0p+j=02, j=1, 2’ oo,

From (3.13) and (3.14), it follows that the rows of y’(I,, B") are orthonormal eigenvectors of
© corresponding to the largest p eigenvalues 6, - - -, 8, of ©.

LEMMA 3.2.  Under the assumptions of Lemma 4.1,
(3.16) lim,... n"'D = Dy = diag(d, 0, -+, Opsr),  W.p. 1.

Proor. The result (3.16) follows from Lemma 3.1, and the fact that the eigenvalues d,,
i=1,2, ..., p+ rof the matrix W are continuous functions of the elements of W.[]

COROLLARY 3.1.  Under the assumptions of Lemma 3.1,

(3.17) limp o 7 'Diwin = 0°L,,  w.p. 1,
and thus
(3.18) lim, .o r '(p+1r)6*=0%  wp. 1.

ProOF. The result (3.18) is a direct consequence of (3.17), which in turn directly follows
from (3.15) and (3.16).0

In the proof of Lemma 3.3, w = (X1, Xg, ---) is a point in the probability space of all
sequences of observations, and a superscript # on a sample quantity (e.g., W) indicates that
that quantity is calculated from the first n elements of w. This notation is discontinued once
Lemma 3.3 is provcti.

LemMa 3.3.  Let (1.4) and Assumptions A, B, and C hold. With probability one, for each w
there exists n(w), 0 < n(w) < o, such that Gi? and G% are nonsingular and B"™ =
GR(G?P)™! exists, all n = n(w). In addition,

(3.19) lim, .o B™ =lim,.o B =B, wap.L
Proor. Fix w such that (3.5) and (3.16) hold. Note that since each G is orthogonal, the

sequence {G™} liesin a compact subspace of (p + r)? — dimensional Euclidean space. Thus,
each subsequence of {G™} has a convergent sub-subsequence with limit, say,

_ (Hu Hi
H <H21 sz)'
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(n)

Since each G is orthogonal, so is H. For all n,

Gi? G
ntw® = (n'D&),
G G

and taking limits over the indices of the sub-subsequence on both sides of this equality, using

(3.5), (3.15), (3.16), yields:
Hu\ _ (Hu), 2
o ()= (1) 1, 00

Thus (H11, H51)' is in the eigensubspace corresponding to the largest p eigenvalues of ©. Since
Assumption C implies that

0, = 0"+ vp > 0% = O,

this eigensubspace is unique. Hence, it follows from (3.14) and the orthogonality of H that
there exists Z:p X p orthogonal such that

(3.20) (g:) - (g’)lp:.

Note that the limit of (G{?)(G{?) over the indices of any convergent sub-subsequence of
(G™Y is

HuHi] = EE,II/, = \l/ll/, = (Ip + B/B)_l,

as can be seen from (3.20), the fact that = is orthogonal, and (3.13). Since this limit is
independent of the sub-subsequence, facts about limits of sequences in Euclidean space imply
that

(3.21) lim,... (GIP)GY) = (I, + B'B) .

Using the fact that the determinant of the limit (I, + B'B)"" is positive and (3.21), it is now
straightforward to show that there exists n(w), 0 < n(w) < %, such that G{7 is nonsingular for
all n = n(w), proving the first part of the lemma. Equation (3.19) is established by a sumlar
argument, noting first that for all convergent sub-subsequences of {G™} that (G
eventually exists, and then noting from (3.20) that the limit of B™ = G$(G{?)™" is HuH1i
= B independent of the sub-subsequence. [J

COROLLARY 3.2. Under the assumptions of Lemma 3.3,
(3.22) lim, ,.a = a, w.p. L.

ProoOF. For the no-intercept model, @ = 0 = a and (3.22) trivially follows. For the
intercept model, (3.22) is a direct consequence of (2.9), (3.12) and (3.19).0

In Section 4, it is shown that A, defined by (3.1), helps to determine the covariance matrix
of the asymptotic distributions of n'/*(B — B) and n"/*(& — ). For purposes of constructing
large-sample approximate confidence regions for B and «, it is therefore desirable to find a
consistent sequence of estimators for A. Let

A =n,+ B'B)—l[(z,,, B')W(%’) —r(p + né*d, + B'B)](I,, + B'B)™!
(3.23)

= n"[G1 DmaxGi1 — rt tr[Dmin JG11G11 ]

The second equality in (3.23) is a consequence of (2.5), (2.6), (2.7) and (2.10).
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LEMMA 3.4. Under the assumptions of Lemma 3.3, the estimator A is a strongly consistent
estimator of A; that is,

(329 lim, A =A, wp. 1
Proor. The result (3.24) follows directly from (3.4), (3.5), (3.18), (3.19) and (3.23).0

ReMark 1. From (3.1), it might be conjectured that
n-lﬂlcnlji = n_lGl;DmaxGlll

defines a consistent sequence of estimators for A. However, from (3.18), (3.21), (3.23) and
(3.24),

(3.25) lim n 7 01Co U = limy ™ G11Dmax G
=A+d*I,+ B'B), wp.l,

so that this conjecture is false.

ReMARK 2. Using (2.5), (2.6), and (2.7), it can be shown that when G3; exists,

’

(B, — I,)(n_lW)( fl) = (I, + BB'Y[n"'G2DuinGs 1(I. + BB’)

(3.26)
+ (B — B)[n"'G11DmaxG1 1(B — B)'.

Taking limits as n — o in the equality (3.26), using (3.4), (3.5), (3.19) and (3.25), yields

(327 limy ' Go2 DminG2 = 0°(I, + BB')™,  w.p. L.
4. Asymptotic distributions. From (3.6), the mean of W is
@1 EW) = ne’Ipe, + UC,U’,

where &(+) is the expected value operator. Assume that the conditions of Lemma 3.3 hold. For
n = n(w), where n(w) is defined by Lemma 3.3, G1{ exists, and from (2.5), (2.6), (2.7) and 4.1),

Uy, B)n (W — EW)I(B, — I.Y = [n*(B — B)] ("' G2 DminG32)(I, + BB")
4.2)
— (I, + B'B)(n"'G11 DmaxG11)[nV/%(B — B)].

Lemma 4.1, If n™/*(W — &(W)) has an asymptotic (as n— ) distribution, and Assumptions
A, B, C hold, then the asymptotic distributions of n**(B — B) and
4.3) F=-A"(I,+ B'B)"\(I,, B)[n"VA(W — &(W))I(B, — I.)
are identical.

Proor. The assertion of Lemma 4.1 is a direct consequence of (3.19), (3.25), (3.27), and

@.2).0
From (2.6), (2.7), (2.10) and (4.1),

m2[r ! (p + r)6* — 0%] = tr{GG(B, — L)[n (W — E(W)1(B, — L)'}
@4)
+ tr{GpGi[n"*(B — B)|[n"'U.C, U 1[B - BY'}.

LeMMA 4.2, Under the conditions of Lemma 4.1, the asymptotic distributions of
n'*(r'(p + né* — 0*) and
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4.5) v=r""tr{(I, + BB ) \(B, — L)[n AW — &W)I(B, — )}

are identical.

PrOOF. From (2.5), (2.7), (3.19) and (3.21),

limn-moG22Gé2 = limn-»oo(lr - GZIG,ZI) = limn-wo(lr - BGHG’]]B")
(4.6)
=I,—B(,+ B'B)'B'=(,+ BB)", wp.L

From Lemma 4.1, n'/*(B — B) has an asymptotic distribution. Thus, (3.1) and (4.6) imply that
the second term on the right side of (4.4) is 0,(1) as n — c. Thus, from (3.19) and (4.6), the
assertion of-'Lemma 4.2 follows. [

LEMMA 4.3.  In the intercept model, assume that n*’*(X — ) and n™"*(W — &(W)) have an
asymptotic joint distribution, and that Assumptions A, B, C hold. Then the asymptotic distributions
of nV* (& — a) and

4.7 m = (=B, I)[n"*x — 0)] — Fu
are identical, where F is defined by (4.3).

PrOOF. Observe that from (2.9),
(4.8) n'%(& — a) = (=B, I)[nAX — 0)] — [nY4(B — B)]x:.

The assertion of Lemma 4.3 is now a consequence of (3.12) and Lemma 4.1. 0

Lemmas 4.1 through 4.3 motivate consideration of the asymptotic joint distribution of
n~V (W — &(W)) and n*/*(x — u). For this asymptotic distribution to exist, it is sufficient that
the following assumption holds.

AssuMPTION D.  Let the random vector e = (ey, ez, - - +, €,+-)" have the common distribution
of the columns of E. Then the elements of e have finite fourth moments: &(e,) < 0, i =1, 2,
ce,ptr

Lemma 4.4. Let yi, ys, - -+ be a sequence of mutually independent s-dimensional random
vectors, where y; has mean vector 0 and finite covariance matrix V,. If lim,.n 'Y, V= V*
exists (and is finite), then

49) n2y=n" 9 yi > MVNQ©, V*).

Proor. Consider any linear combination
¢[n¥2y] = n7 Tk ()
of the elements of n'/?y. By the given '
lim,_n~' Y&, Var(c'y,) = ¢’V *c.

From this result, the independence of the ¢’y.’s, Markov’s inequality, and Corollary 2 and
Theorem 4 of Gnedenko and Kolmogorov (1954), pages 141, 143, it follows that for all c,

c'(n**§) >4 N(O, ¢’'V*c).
From this last result, (4.9) directly follows. 0
Define

(410) Z, = ere, — 021p+r + (uk - p.)ei,, + ek(uk - M.)',
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where e is the kth column of E, u, is the kth column of U, and p is defined by (3.2); £k = 1,
2, - - .. The Z;’s are independent (but not identically distributed) (r + p)-dimensional symmetric
random matrices.

COROLLARY 4.1.  Under Assumptions A, B, and D, the elements of n™"/* Yi_, Z, which are
on or below the diagonal, together with the elements of n'/> € = n™"*> ¥, ex, have an asymptotic

Ye(p + r + 3)(p + r)-variate normal distribution with means O and covariance matrix

vt vk
* =
v (Vsa V?z)
defined as follows. Let 8;; be the Kronecker delta and 1, be defined by (3.3). Then

(1) Vh = ((vE.j.a.,n)) gives the asymptotic covariance between the (i, j)th and (i’, j')th elements
of nV2Eh Zy, i< i S

@.11)  vE . = E(eejee) — 046”’6!”,' + 02(7';'{61'_,' + 7,80 + 1,00+ T,6.);

(i) V& = (V#) gives the asymptotic covariance between the (i, j)th element of n™"/ 23k Zs
and the Ith element of n'/?€. If Vi, = ((vf; ) then

4.12) ve 1= Eleeier).

(iii) V4 = 0>I,+, is the asymptotic covariance matrix of n*'’e.

PrOOF. Let y, be the %(p + r + 3)(p + r)-dimensional random vector whose first %2(p +
r + 1)(p + r) elements are the elements on and below the diagonal of Z, arranged (say) in
lexicographic order, and whose last (p + r) elements are the elements of e.. The assertion of
Corollary 4.1 follows from Assumptions A and D, (3.2), (3.3) and Lemma 4.4. 0

Note from (3.6) and (4.1) that under the no-intercept model (when C, = I,.),

4.13) n Y W — &(W)) = n"V*EE’ = n¢’I., + UE' + EU’)
=n"? Tiei [Ze + peh + e'];
while under the intercept model (C, = I, — n7'1,1}),
(4.14) VW = E(W)) = nTThoy Ze + (n — @)%Y + () (n — i )
=n""2 Y1 Zi + 0p(D),
since, by Corollary 4.1, n'/?€ =, MVN(0, 6°I,.) and since, by (3.2), lim,_...(ii — ) = 0. Since

also n'/*(X — i) = n"/%, the following theorem is a direct consequence of (4.13), (4.14) and
Corollary 4.1.

THEOREM 4.1.  Under Assumptions A, B, and D, the following results hold:

(i) In the no-intercept model, the elements of n™"/*(W — &§(W)) on or below the diagonal have
an asymptotic ¥%(p + r + 1)(p + r)-variate hormal distribution with zero means and with
covariance between the (i, j)th and (i’, j)th elements given by

4.15) v T mé(eeve) + wé(eeve )
+ weé(ereie) + py&(eeje)

where p = (p1, iz, +* +, Pp+r).

(ii) In the intercept model, the elements of n™"*(W — &(W)) on or below the diagonal,
together with the elements of n/*(X — W), have an asymptotic %(p + r + 3)(p + r)-variate normal
distribution with means zero and with covariance matrix V*. Thus, for example,Vl =
((vEj)@.51)) gives the asymptotic covariances between the (i, j)th and (i, j')th elements of
n"YH W — &(W)).
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From Theorem 4.1 and Lemmas 4.1 through 4.3, the asymptotic distributions of n'/?(B —
B) and n"*(r"'(p + )6” — ¢°) in the no-intercept model, and the asymptotic distributions of
n'*(& — a), n'2(B — B) and n"*(r"(p + r)&* — o7) in the intercept model, can be
straightforwardly obtained. These asymptotic distributions are all (multivariate) normal with
zero means, but the covariance matrices of these distributions involve third-order and fourth-
order cross moments of e, and thus are both complicated in form and hard to estimate from
data. The following assumption is therefore imposed to simplify results, and permit construc-
tion of large-sample approximate confidence regions for the parameters of the models.

AssuMPTION E. The cross-moments of the common distribution of the columns of E are
identical, up to and including moments of order four, to the corresponding moments of the
MVN(O0, ¢%1,.,) distribution.

THEOREM 4.2. Assume that Assumptions A, B, C, and E hold. Under both the no-intercept
and intercept models

@) n'2(r7'(p+ re® — ¢*) =L N(O, 2r'o*);

(ii) the elements of n'/*(B — B) have an asymptotic rp-variate normal distribution with zero
means and covariance between the (i, j)th and (i’, j’ )th elements given by *[6*A™'(I, + B’B)'A™!
+ A7), [I, + BB'lu;

(iii) in the intercept model

n'2(& — a) =, MVN(0, o(I. + BB")),
where

p =0 {1 + pi[o®A™'(I, + B’'B)'A™ + AV},

and further the elements of n'/*(B — B) and nV*(& — «) have an asymptotic r(p + 1)-variate
normal distribution where the asymptotic covariance between the (i, j)th element of n'/*(B — B)
and the Ith element of n'/*(& — a) is

o’(I, + B'B)u{[o’A7(I, + B'B)'A™" + A7 Jwi},.

In using the above results, it should be remembered that A is defined by (3.1) in a different
fashion in the no-intercept and intercept models.

ProOOF. Assumption E implies Assumption D. The assertions of the theorem now follow

from Lemmas 4.1 through 4.3, Theorem 4.1, and straightforward calculation of the covariances.
]

Let x7[1 — »] be the 100(1 — »)th percentile of the chi-squared distribution with ¢ degrees
of freedom. Note that

(4.16) o’A™(I, + B’'B)'A7'+A™' =. A" [A + o°(I, + B’'B)” ]A™!

is consistently estimated by A ~[n'G11 DmaxG11]A 7", as can be seen from (3.24) and (3.25).
The following results now follow from Theorem 4.2, (3.12), (3.18) and (3.19).

COROLLARY 4.2. Under the assumptions of Theorem 4.2, and under both the no-intercept
and intercept models, a large-sample approximate 100(1 — v)% confidence interval for o* is

{0%:| 6% = (n) ™ tr[ Dmin ]| < (n¥* ) e[ Drmin 1(2x [ 1 — »])*/%}.

COROLLARY 4.3.  Under the assumptions of Theorem 4.2, and under both the no-intercept

and intercept models, a large-sample approximate 100(1 — v)% confidence region for the elements
of Bis
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{B:tr{n(I, + BB') (B — B)A(n"'G11 DnaxG11) A (B — BY 1= r"(p + 16 *x5[1 — v},
which is equivalent to the following computationally more convenient region:

{B:tr[(I, + BB') (B — B)GuDmix (Dmax — tr{r Do 11,)°G51((B — B)']
= (rm) Mt Do i [1 — »1).

COROLLARY 4.4. In the intercept model, under the assumptions of Theorem 4.2 a
100(1 — »)% confidence region for a is

{a:n(@ — a)(I, + BB') (& — @) < px2[1 — #]},
where

p = () 7'tr[ Drmin I{1 + XiG11Drtex (Dinax — trr " Duun 1)’ G11%1} .

Theorem 4.2 can also be used to construct a large-sample joint confidence region for the
elements of « and B in the intercept model; however, for reasons of space, and since in practice
a and B are usually studied separately, the formula for such a confidence region is omitted.

Because of their relatively simple form, the large-sample confidence regions of Corollaries
4.2 through 4.4 have practical appeal. However, potential users of these regions should be
aware that errors-in-variables models frequently behave counter to the maxims of large-sample
theory developed for parametrically more regular models. For example, in the case r = p = 1
with Assumption E strengthened to require multivariate normality of the columns of the error
matrix E, Theorem 4.2 shows that B (a scalar in this case) has finite asymptotic variance.
Nevertheless, for any sample size n (no matter how large), the exact variance of B is infinite;
indeed, #(B) is not well-defined (Anderson (1976)). This fact should not dissuade practitioners
from considering the use of the confidence region for B in Corollary 4.3, but it would be wise
to be cautious in assigning an exact confidence value to such a region, at least until analytic
and/or simulation studies in fixed-sample situations give more insight into the exact properties
of that region.

5. Comments on assumptions. The major results of this paper require two assumptions for
their validity;

(i) that A exists and is positive definite (Assumption C).

(ii) that the covariance matrix, . of the errors equals 6%+
It is, of course, open to arguinent whether either of these assumptions can be even approxi-
mately valid in practical contexts.

Of the above two assumptions, assumption (i) is the easiest to justify. First, in econometric
and psychometric applications of “errors in variables” models, it is often assumed that the
sequence {uy,, i = 1,2, .-} is obtained from independent observations of a random vector u,
having a distribution of known form (usually normal) with a finite covariance matrix X,. As
Moran (1971, page 246) remarks, this assumption converts the model from a functional
equation model into a structural equation model, and thus changes the nature of the statistical
problem. Nevertheless, it is worth noting that this assumption implies that assumption (i) holds
with probability one through application of the SLLN.

Loosely speaking, assumption (i) requires that the uy; observations sample all directions in
p-dimensional space with relative frequencies (over the sequence {uw, i = 1, 2, -+-}) of
commensurate magnitude. Certainly, any well-designed classical response surface experiment
would require that the observations on the vector of independent variables have this property,
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and in the present model the u,,’s play the role of the vector of independent variables. Using
simulations in the case p = r = 3, Gleser and Watson (1973) under-sampled one dimension in
3-dimensional space. The resulting estimates of B bore little resemblance to the true value. On
the other hand, when all dimensions were nearly equally sampled, the estimates of B were
reasonably accurate even in moderately small samples.

With respect to assumption (ii), it should be noted that if the requirement in Assumption
A that . = 0”[,. is replaced by the more general requirement

5.1 Se = 022, 2o known,

then transforming the data x,, i = 1, 2, --+, n to new dataZ;"* x,, i = 1, 2, .-+, n,
where 25"/ has the form

Tu 0
—1/2 _ 11 . .
(52) 20 <T21 Tzz), T]].p Xp,

yields a model for the transformed data of the form (1.4) with covariance matrix S, = 6°I,+,.
If a* and B* are the intercept vector and slope matrix of the new model, then the identities

(5.3) a* = Txa, B* = Ty, Tt + T BT1!,

allow estimators for a*, B* based on the transformed data to be converted to estimators for
a and B. Further, the estimator 5 of ¢° based on the original data is

(5.4 F=n"(p+ " YT A[Z0" W],

where A,[Z5" W] is the ith largest singular value (in this case, eigenvalue) of =" W.

Thus, the basic question that must be asked about the practicality of using assumption (ii)
is whether or not the form of the error covariance matrix X, can be known up to a constant
scalar multiple.

In the geophysical surveying problem mentioned in Gleser and Watson (1973), there is
some justification for this assumption. First, prior experience with the errors involved in
measuring the longitude, latitude, and altitude of a stake placed on a glacier can yield the
matrix of correlations Py = %, among the three kinds of measurement error. By symmetry, one
can argue that the error variances in measuring the three dimensions are approximately equal
(to 6®). Thus, &(eel,) = &(exeh) = o2Py. Further, since the first and second surveys of any
stake are widely separated in time, the errors made in these two surveys should be independent
of one another. Putting these arguments together,

— 2P 0
Z.=o0 < 0 P0>'

In some problems, such as in psychometric testing (Lord (1973)), it may be possible to
obtain m, independent measurements on each x,, i =1, 2, - - -, n. In this case, =, in its entirety
can be estimated by the pooled sample covariance matrix S with 3=, (m; — 1) degrees of
freedom. However, rather than use the methods of this paper to analyze the data in such cases,
it would be advisable to consult the basic paper by Anderson (1951), where the relevant
maximum likelihood theory is worked out in full.

Turning back to the original problem (where m, = 1, all /), the following theorem shows

that unless some fairly strong assumptions relating Z;; = &(ei€l;) to o = &(eqeh,) are
required, the MLE approach cannot be applied to estimate «, B, U; and =..

THEOREM 5.1.  For the model (1.4), relax Assumption A to allow 2. to be an unknown (p
+ r) X (p + r) positive definite matrix in a class & containing matrices of the form
I, 0

where o°, k are unrestricted. Then if the common distribution of the columns of E is multivariate
normal, the likelihood of the data has an infinite supremum.
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Proor. This theorem generalizes a result of Anderson and Rubin (1956), pages 129-130.
Note first that the supremum of the likelihood over a, B, Uy, and 2, in #is no less than the
supremum of the likelihood over «, B, U; and Z. of the form (5.5). Assuming 2. has the form
(5.5), fix k, and use the transformation of the data mentioned at the start of the discussion of
assumption (ii) along with Theorem 2.3 to maximize the likelihood L(X; &, B, U:, o2 k) over
a, B, U, and o This yields L(X; &, B, U, 6° «) proportional to

27 A Co(k)) W]y etz

and it is easy to see that this last expression tends to infinity when x — oo. [

REMARK 1. The arguments in the proof of Theorem 5.1 easily extend to cover cases in

which =, has the form
1/2 1/2
- K1 Ip 0 K1 Ip 0
Z (o x;/21,> = <0 kYL,

where 3 can either be fixed or allowed to vary over any class of positive definite matrices,
and where «;, ko > 0 are unrestricted.

REMARK 2. In the intercept model with r = p = | and the columns of E multivariate
normally distributed with unknown covariance matrix ., one can partially differentiate the
likelihood with respect to the parameters and arrive at solvable likelihood equations. From
Theorem 5.1, it is seen that these equations do not yield MLE’s, despite assertions to the
contrary in the literature. Instead, as shown by Solari (1969), the solutions to these equations
provide saddlepoints for the likelihood.

An even stronger argument than Theorem 5.1 against trying to fit “errors in variables”
models in which 2. is completely unrestricted is provided by Nussbaum (1977). For the
intercept model with » = p = 1 and the columns of E multivariate normally distributed,
Nussbaum shows that if Z. is unrestricted, no strongly consistent estimator for B can exist.
Nussbaum’s arguments can be straightforwardly extended to the multivariate case (r, p = 1),
both in the intercept and no-intercept models.

The above arguments should not be interpreted as stating that no models of the form (1.4)
in which X, is of a more general form than (5.1) can be analyzed. Bhargava (1977) discusses
a model in the case r = p where =, is an unknown block diagonal matrix, and proves the
existence of MLE’s of the parameters of this model. The work of Anderson and Rubin (1956),
and a considerable recent literature, suggests that allowing 2. to be an unknown diagonal
matrix subject to certain restrictions adopted in factor analysis, and regarding the model (1.4)
as a factor analysis model where certain elements of the matrix L of factor loadings have
specified values (see Section 1), can lead to consistent methods for estimating « and B.

Finally, it should be noted that the methods of analysis of Sections 3 and 4 can be used to
study robustness of the large-sample properties of &, B and 6° when =, # 0°I,+.. In particular,
it should be possible to identify a class of matrices . under which B remains a strongly
consistent estimator of B. Some results concerning this problem are planned for a forthcoming

paper.
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