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This paper is a continuation of a paper in the Annals of Statistics (1976), 4
1159-1189 where, among other things, a Bayesian approach to testing indepen-
dence in contingency tables was developed. Our first purpose now, after allowing
for an improvement in the previous theory (which also has repercussions on
earlier work on the multinomial), is to give extensive numerical results for two-
dimensional tables, both sparse and nonsparse. We deal with the statistics X*, A
(the likelihood-ratio statistic), a slight transformation G of the Type II likelihood
ratio, and the number of repeats within cells. The latter has approximately a
Poisson distribution for sparse tables. Some of the “asymptotic” distributions are
surprisingly good down to exceedingly small tail-area probabilities, as in the
previous “mixed Dirichlet” approach to multinomial distributions (J. Roy. Statist.
Soc. B, 1967, 29 399-431; J. Amer. Statist. Assoc. 1974, 69 711-720).

The approach leads to a quantitative measure of the amount of evidence
concerning independence provided by the marginal totals, and this amount is
found to be small when neither the row totals nor the column totals are very
“rough” and the two sets of totals are not both very flat.

For Model 3 (all margins fixed), the relationship is examined between the
Bayes factor against independence and its tail-area probability.
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15. Introduction. In what we shall call Part I of a study of contingency tables, Good (1976)
developed, among other things, a Bayesian approach for testing the null hypothesis H of
independence of rows and columns. One practical, as distinct from philosophical, merit of the
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purely Bayesian approach is that it does not depend on large samples, but we also consider
non-Bayesian and partly Bayesian methods. The work is based on the assumption that the
initial state of knowledge is symmetrical with respect to the rows and also with respect to the
columns. The distinctive feature of the approach is that under both the null and nonnull
hypotheses the prior distributions of the marginal probabilities are mixtures of symmetric
Dirichlet distributions (which had given interesting results for the multinomial situation in
Good, 1965, 1967, and Good and Crook, 1974). A number of the notations and terms of Part
I will be adopted for Part II without further explanation, especially n;j, n:., n,;, N, pij, pis p, 1
s, H, H, A{(n.), (n,)}, X2, A, k, ¢(k), A(k), F\, Fs, Fs), F3, G, and FRACT (the Bayes factor
against H provided by the row and column totals alone). We shall, however, modify ¢(k) in
a manner proposed by Good (1979a), and this will imply Fi = F>. See equation (15.4) and the
discussion that follows it.

For convenience of reference we start Part II with Section 15. The term 2N log N should
of course be added to the right side of formula (13.2), which is in Part I, as the number
indicates.

In the present paper we shall be concerned only with two-dimensional contingency tables.
We shall report numerical results for some of the formulae in Part I based upon more than
5000 contingency tables chosen more or less at random but by no means haphazardly. We also
include much new theoretical material.

Irrespective of one’s approach to testing H there are three familiar procedures for sampling
a contingency table, which we call Models 1, 2, and 3. In Model 1 the sample is taken at
random from the population, in Model 2 the row (or column) totals are fixed before taking the
sample, and in Model 3 both the row and column totals are fixed. The Bayes/non-Bayes
compromise (or synthesis) used by Good (1967) for the equiprobable multinomial hypothesis,
and further extended by Good and Crook (1974), is available in its simplest form only under
Model 3 as explained in Section 16. For this and other reasons our primary concern will be
with this model although Models 1 and 2 occur more frequently in practice. Model 3 does
occur in practice, though at first sight this seems surprising, but the main practical justification
for our preoccupation with it, apart from its considerable theoretical interest, depends not on
its frequency of occurrence but on the following argument.

We find that FRACT, which is equal to Fi/F;, depends on whether the row totals and
column totals are rough or flat as measured, for example, by r Y ni./N? and s Y, nj/N” where
by convention we usually assume that no marginal total is zero. FRACT seems usually to lie
between % and 2% when neither of the two sets of marginal totals is very rough and the two
sets are not both very flat. (One of us (Good, 1979a) has, however, conjectured that FRACT
is not identically equal to 1 under any sensible Bayesian model.) When using Model 1 or 2 this
condition will usually be satisfied in practice. As Jeffreys (1961, page 432) implies, a Bayes
factor of 3 is of little importance. This judgement of Jeffreys, combined with the inequality for
FRACT, to some extent justifies those statisticians who, following Fisher (1938, page 102; and
1956, pages 87-88), are prepared to assume FRACT = | when the sampling is according to
Model 1 or 2. (Fisher, 1935, page 48 is less dogmatic.)

The asymptotic distribution of X, given H, is the same for all three sampling models, as
mentioned in Section 1 where references are given. But, from the point of view of both the
Bayes and Neyman-Pearson theories, the use of X” alone strictly requires the assumption that
the marginal totals contain no evidence for or against the null hypothesis (an assumption that
is valid when sampling by Model 3). The use of Fisher’s “exact test” and of our statistic G (the
criterion based on the Type II Likelihood Ratio) also strictly depend on this assumption. If
any of these three statistics is used when the sampling is by Model 1 or 2, then the (Bayesian)
judgement is required that the evidence from the marginal totals is negligible.

A statistician using Model 1 or 2 and who is prepared to adopt a purely Bayesian approach,
will of course not need to concern himself with the value of FRACT since he can simply
calculate F; or F» (which are equal).

The Bayes factor F; against H is much more difficult to compute than the Bayes factors F;
and F, and the computation can become impracticable. To meet this difficulty we are forced
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to investigate methods of approximating F; since Model 3 does occur. The problem is largely
solved because of the inequality > < Fi/F; < 2% which, as we just mentioned, is usually true
in practice.

The formula for each of Fi, F, (and F), Fs, and Fs(k), derived in Part I, can be restated
in a form that is often more convenient for our computer programs when the marginal totals
are not too large. For example,

=1, §C, ni))
, S(rsk, N) ¢

(15.1) Fy= -
Y H,»,]- Sk, my)
[I7:! Hjnj! P ] J:) m“d’(k) dk

N (k) dk

where

$(k, m) = ;:0' (h +«) ifm=1,

=1 ifm=0;
and Y'* denotes a summation over all tables (m;,) having the assigned marginal totals. (The
formulae involving gamma functions, derived from (2.7) and (5.1) to (5.4), and the function

A(k) of (5.6), are also of value.) The formula for Fs(k) is obtained by taking ¢(k) as a Dirac
delta function in the expression for F3. Thus

NJ, ; $k, nij)

(15.2) Fy(k) = :
[LAMLnt 2> {H,.‘ Lk, mij)/ m,-,!]}

We shall need this formula in Section 16 on the Bayes/non-Bayes compromise.
Other matters discussed in this paper are (i) the distributions of G, X? and A both for
nonsparse and for sparse tables; (ii) the statistic

(153) R = 1/2 ZU ni,(n,-,- - l)

for sparse tables; (iii) the numerical analysis of FRACT, giving the support for our previous
remarks on this subject; and (iv) the relationship between F; and its tail-area probability.

The statistics that we consider have various advantages and disadvantages. The purely
Bayesian statistics have the advantages that (i) they allow explicitly for which of the three
sampling models is used; (ii) they do not depend on asymptotic theory when used in a strictly
Bayesian manner (cf. Good, 1967, page 400), and therefore when used in this manner they can
be used for any sample size; (iii) they are likely to have good power because their construction
depends on a precise formulation of the nonnull hypothesis (cf. Good and Crook, 1974, page
711); (iv) they lead to an indication of how much evidence concerning independence is
contained in the marginal totals; and they have the disadvantages of (v) being at present more
controversial than X and (vi) requiring more calculation. The statistic G has the advantage of
being based on Bayesian soil yet having a distribution that can be well approximated in nearly
all circumstances (see Section 17). The statistics X%, A, and R are all easy to calculate. The
asymptotic theory for X” is good for tables that are not too sparse, and that for R is good for
tables that are sparse enough. The asymptotic approximation for the tail-area probabilities of
A are good for tables that are not sparse, and its derivation depends on Model 1 or 2 so that
it can be used for these models without assuming that the evidence from the marginal totals
is negligible, unlike X, G, and R. Some of these comments will be made more quantitative in
Sections 17, 18, and 19.

We now give the reason for replacing (2.4) by (15.4):

1
k{7 + [log.(kt)]*}’

(15.4) d(k) = ¢(t, k) =
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where ¢ is the number of categories in the corresponding Dirichlet distribution. (The argument
was given briefly by Good, 1979a,) For example, in (15.1), = rs.

If the symmetric Dirichlet density of ¢ categories is denoted by D(s, k), we know that the
prior for the innards, given H, is, for Model 1,

J' D(rs, k)p(rs, k) dk
0

if ¢ is permitted to be a function of both k and ¢, where ¢ denotes the number of categories.
Therefore, by the lumping property of the Dirichlet distribution, the prior for ( p;.) is

oo

J' D(r, sk)p(rs, k) dk = % f D(r, Dp(rs, I/s) dl.
0 0

Now the row totals form a multinomial sample, and this sample could have been taken before
we had decided to sample the contingency table. It is convenient for the statistician, and we
believe it is usually a very good approximation, if the prior assumed for this multinomial is
unaffected when we decide to sample a contingency table. If we insist on this convenient
feature, then the prior must be independent of s. Therefore ¢(rs, I/s)/s must be mathematically
independent of s. Therefore (assuming differentiability of ¢, though continuity may well be
sufficient for the conclusion we shall soon reach) we have rs™'¢; — s7%¢ — Is™® = 0, where ¢,
and ¢» denote the partial derivatives of ¢ with respect to its first and second arguments.
Therefore rs¢; — Is ' = ¢. Let rs = x and Is™' = y. Then x¢1 — y¢po = ¢. Let p(u, v) = e"p(e*,
e"); then p; = p,. Change to new independent variables £ = u + v, n = u — v; then dp/an = 0,
that is, p is a function of 4 + v alone and therefore ¢(¢, k) is of the form Y(tk)/k, as in (15.4).

Note that when the distribution of (n;) does not depend on s, the row totals by themselves
give no evidence for or against H, and the corresponding Bayes factor Fi/F; = 1, so that F;
= F,. Similarly, F; = F. Fisher usually assumed that FRACT = 1 and our implicit
assumption that the row totals alone contain negligible evidence concerning H is a much
weaker assumption.

The above argument has repercussions on the appropriate prior for any multinomial, even
in problems containing no reference to contingency tables. Hence some adjustments are required
to the results of Good (1967), and Good and Crook (1974), but we believe the adjustments will
be small because the numerical adjustments in the present work are small when (2.4) is
replaced by (15.4).

We wanted ¢ to behave approximately like the Jeffreys-Haldane density 1/k while
maintaining propriety, and this was achieved by taking ¢ of the log-Cauchy form. The median
and quartiles of the particular log-Cauchy density defined by (15.4) are 1/¢ and e*"/t. It may
be recalled that Perks (1947) first proposed the flattening constant 1/¢ (for multinomials)
because, being inversely proportional to ¢, it leads to a desirable invariant property under
pairing off of the ¢ categories to reduce the number of categories to %¢. He determined the
constant of proportionality by taking k = % for ¢ = 2, that is, for t = 2 he adopted what is
known as the Jeffreys-Perks invariant prior. Although Perks’s suggestion proved to be
untenable (Good, 1967, page 412; Perks, 1967, page 266), we have now arranged to make the
median value of k equal to 1/¢ and the quantiles proportional to 1/t. This resurrects Perks’
idea at a “higher level”. The upper quartile "/t seems to us to be at a reasonable place, but
of course the more general log-Cauchy hyperprior

A
kn (A2 + [log(kt/u)T?)’

whose median is g = p;/ and whose quartiles are pe™, could be entertained. This density has
no turning points if A > 1, and we shall never refer to a value of A < 1. The nth percentile is

(15.6) g/
where g is the upper quartile of (15.5) (Good, 1969b, pages 45-46). The user, in any given

(15.5)
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application, could guess values for some quantiles of the flattening constant k so as to choose
the hyperhyperparameters p and A. Good (1952, page 114) suggested a rough principle of
“Bayesian robustness” for hierarchical Bayesian models and it is exemplified in Table 1 where
the values of F; are given, for the 3 X 3 table with innards (2, 3, 0; 0, 1, 4; 0, 0, 5), corresponding
to sixteen pairs (g, ¢). The entry 12.6, where u; = 1 and A = &, corresponds to (15.4). This
table shows, for example, that large proportional changes in what could be the judged values
of the median and upper quartile lead to very much smaller proportional changes in F.
For the main conclusions see Section 22 first.

16. The Bayes/non-Bayes compromise or synthesis. The idea of the Bayes-Fisher com-
promise is to use a Bayesian or somewhat Bayesian statistic to test a null hypothesis in a
Fisherian manner. A discussion of the relationship between the compromise and Fisherian
methods of hypothesis testing is given by Good and Crook (1974). If the null hypothesis H is
a simple statistical hypothesis there is no difficulty in interpreting what is meant by the Bayes-
Fisher compromise. If H is composite, then one could effectively “convert” it into a simple
statistical hypothesis by assuming a prior distribution over the simple component hypotheses
of which it is a logical disjunction. This procedure leans more towards a Bayesian philosophy
than when H is simple, which is the case with which the present paper is concerned. For
Model 3, H is indeed a simple statistical hypothesis because the probability of (n;;) is then the
Fisher-Yates probability

(16.1) P{(nij)| (i), (n,), H} = [[ni! [In /(N [[ni)!).

[This conditional probability is correct for Models 1 and 2 also, but then the marginal totals
also contain some evidence about H.] It is especially convenient in this case to make use of the
Type I likelihood-ratio statistic because H is a case (k = ) of the nonnull hypothesis,
although it is on the boundary of the parameter space. The use of this statistic is a compromise
between Bayesian, Fisherian, and Neyman-Pearsonian methods.

The Type II likelihood ratio for Model 3 is

maxe P{n;))|(n:), (n,), H(k)}
P{(ni) | (n:), (n,), H}

where H(k) denotes a simple component of H, and Fs(k) is given by (15.2). We write, as in
Part I,

(16.2)

= maxz F. 3(k),

G = {2 log. max; Fs(k)}"?,

and we also consider the statistics X%, A, and R.

It was conjectured in Section 10 that Fs(k) as a function of k has at most one local
maximum, and this conjecture has been well corroborated numerically and graphically.
Accepting this, it can be proved that max,Fs(k) = 1 (attained at k = o) if and only if X* <

TABLE 1
Values of F, for the 3 X 3 table (2,3, 0;0, 1, 4;0, 0,
5), depending on the hyperhyperparameters y and q of
the log-Cauchy distribution (n = pi/(rs) = p/9; ¢ =
pe')
The entry 12.6 corresponds to (15.4)

A w/2 T 3n/2 27

M g 053 26 124 59
1/36 279 158 111 88
1/18 245 142 102 82
1/9 21 126 93 715
2/9 177 110 83 63

4/9 14.0 9.4 7.4




DIRICHLET AND CONTINGENCY TABLES, II 1203

(r — 1)(s — 1) (compare Good, 1965, page 37; Good, 1974; and Levin and Reeds, 1977). In this
case G=0,s0that ((G=0)=P{X><(r—1D)(s— 1D} =1—c,wherer=(r—1)@E—-1)+1
and c, is the probability that x* with 7 — 1 degrees of freedom exceeds 7 — 1. The values of ¢,
given in a table in Good (1967, page 411) increase from 0.317 when 7 = 2 to 0.5 when 7 is
large.

Wilks’s theorem (1938) suggests that the asymptotic distribution of G* should be a chi-
squared distribution with one degree of freedom, that is, that that of G is a standardized
normal distribution, folded about its expectation. But, in view of the above comments
combined with the analogous results for the multinomial, it is more natural to assume (cf.
Section 10) that the exact tail-area probability P(G), is approximated by Q(G) where

Q(G) = c.(2/m)"* J' eV dy G>0.

G

It turns out, however, though we do not know why, that after all Q*(G), defined as c;' Q(G),
approximates P(G) better in the extreme tail of the distribution. [A similar effect occurred in
the multinomial results of Good and Crook (1974), but only when nearly all N “objects” fell
into a single cell.] The theory of Wilks (1938) is not strictly applicable, because k = o is on the
boundary of the hyperparameter space, as we said before. A similar difficulty applies in the
analogous multinomial problem in spite of the discussion in Good (1967, page 411).

Now Chernoff (1954) generalized Wilks’s work to cover the case where the parameter lies
on the boundary of the parameter space. He showed, under certain regularity conditions, that
the asymptotic distribution of minus twice the natural logarithm of the likelihood ratio is that
of a random number “which is zero half the time and behaves like x* with one degree of
freedom the other half of the time”. The meaning of “asymptotic” in our application is that
rs — oo (while presumably N/(rs) must not tend to zero). To see this, note that the likelihood
P{(n;)| (n:), (nj), H(k)} is expressible in the form [[:;f(n:), as is required in the theory of
Wilks and of Chernoff, because it is equal to

. (nij+ k — l)(n‘f)

(mij+ k — l)(m‘/)
i n,‘,‘! 2

L
in which the denominator does not depend on (). [Here x™ = x(x — 1) - - (x — m + 1) and
x@=1]

When rs is not large we know that P(G = 0) is 1 — ¢, and we have already mentioned that
this tends to % when 7 — oo, that is, when rs — . When 7 is not large, Chernoff’s theory
could presumably be improved by introducing c, instead of %. Our results appear to verify this
presumption.

The above discussion of the asymptotic behavior of G applies also to the problem of
significance tests for multinomials mutatis mutandis (Good, 1967; Good and Crook, 1974).

Before giving numerical results we note one advantage that G has over F; when we wish to
calculate them both rather accurately. The advantage is that the calculation of F; requires that
Fs(k) or A(k) be calculated for enough values of k to perform an approximate integration,
whereas to calculate G (or max F(k)) we need to calculate Fs(k) for only a few values of k,
when Fj(k) = 0 is solved by the Newton-Raphson method. The user of purely Bayesian
methods should also note that the Bayes factors F; and F; are much easier to calculate than is
F; and that Models 1 and 2 occur more often than Model 3.

17. The approximate distributions of G, X%, and A, for nonsparse tables. Let S denote
any of the three statistics G, X7, or A; let § denote the corresponding random number; and let
P(S = S), or P(S) for short, be the exact right-hand tail-area probability of S. Let Q(S = S)
or Q(S) be the approximation to P(S), except that, as discussed above, we have two
approximations, Q(G) and Q*(G), for P(G). The approximations Q(X?) and Q(A) are the
usual chi-squared asymptotic approximations. Furthermore, let the error ratio be the larger of
P(S)/Q(S)and Q(S)/P(S). We shall use this ratio to measure the merit of the four approximate
tail-area probabilities. Had it turned out that either P(S)/Q(S) or Q(S)/P(S) was always
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greater than 1 our measure would have been somewhat stronger, but this did not usually
happen. [We did find, however, that, in a sample of 850 tables with distinct frequency counts,
P(G) > Q(G) 76% of the time while 0*(G) > P(G) 82% of the time. This suggests that
{Q(G)Q*(G)}"* might be investigated but we have not done so.]

The exact distribution of S under Model 3 can be computed, assuming the null hypothesis,
by tabulating the Fisher-Yates probability of each possible contingency table with the assigned
marginal totals and then cumulating these probabilities in the appropriate manner.

Except in special cases, the cost of computing the exact distributions of the statistics can be
great when either , s, or the marginal totals are large, so in general we chose to keep rs no
more than 16 and N no more than 36 (but see Section 18 and Table 10). Within these
constraints we selected 7, s, and N and then selected sets of row and column totals by each of
the three sampling methods described in Appendix D, which are called Sampling Methods A,
B, and C and should not be confused with Models 1, 2, and 3.

Table 2 shows the number of contingency-table margins selected for our contingency-table
sample by Sampling Methods A, B, and C. In Section 18, the average cell entry E will play a
role in our discussion of the merit of the approximation to the distribution of each statistic.
[Another kind of average of the cell expectations is of interest, although we thought of it too
late for inclusion in our computer programs. It is defined by

1
17.1) = —log {E 2.;; exp(—nin;/ N)}

This is an average that gives the greatest weight to the small values of n;n;/N and appears to
be a better measure than E for the sparseness of a table. When all the expectations n:n,;/N are
appreciably less than 1, then D is approximately equal to E.]

Let a group of contingency tables consist of all those tables whose “innards” sum to any
fixed one of the sets of marginal totals in our sample. For each of the 504 groups of contingency
tables in our sample, a program computed (i) the exact and approximate distributions of the
statistics, and (ii) for each contingency table, the error ratio, which is max [P(S)/Q(S), Q(S)/
P(S)]. The program then placed into the same set those error ratios that had an approximate
tail-area, Q or Q*, in the interval (107*, 107™*") (» = 1, 2, 3, ...). Finally, the program
categorized the error ratios for each » according as they were in the interval [1, 2), [2, 5), [5,
10), or [10, ).

TABLE 2
Composition of the sample of contingency tables

The average value of E over the 504 groups of tables is 2.8 and the range is (0.75, 6.00)

Number of groups of Contingency
Tables Selected

rxs N

Sampling Sampling Sampling Total

Method A Method B Method C
2x3 20 100 40 1 141
2x4 20 100 40 1 141
2xS 20 50 20 1 71
2X6 20 0 0 1 1
2x3 36 20 20 0 40
3x3 20 20 20 0 40
3x3 15 0 10 1 11
3x3 18 0 10 1 11
3x3 21 0 10 1 11
3x3 24 0 10 1 11
3x3 27 0 0 1 1
4x4 12 19 6 0 25

9 504

309 186
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Table 3 shows, for all the groups in our sample, the percentages of error ratios in the
intervals given above whenever 10~ < Q(S = §) < 10™*. This is shown for each of the
approximations Q*(G), Q(G), @(X?), and Q(A). For each approximation we show also the
total number of error ratios for each value of ». This number is also the number of distinct
values of each statistic for a given value of ». For example, for Q*(G) the number of error
ratios when » = 1 is 410. Of these 410 error ratios 30% were less than 2, 70% were between 2
and 5 and none of them were greater than 5. For all of the statistics the sample of error ratios
for values of » greater than 8 was too small. Hence, our remarks are restricted to values of »
less than 9.

We shall give evidence in Section 18 that the accuracy of the approximate distribution
depends upon E. Hence any rough conclusions that can be drawn from Table 3 about whether
0*(G), Q(G), Q(XD), or O(A) approximates its tail-area the best are conditional upon the
average value of E for the sample of contingency tables, which is 2.8. Within this sample the
range of E was not large enough to detect any interesting dependence upon E.

One of the most striking facts that emerges from Table 3 is that, of the 4571 distinct values
of 0*(G), not one of them had an error ratio that was more than 10, whereas, for small tail-
area probabilities, all of the other approximate distributions did have some error ratios that
were at least 10. But of the three approximations with some error ratios that were at least 10,
Q(A) had the least proportion on the average.

To obtain a single measure of the accuracy of each statistic’s approximate distribution, for
v given, we compute a score, denoted by 8[Q(S = S)|»], by assigning weights to each of the
intervals [1, 2), [2, 5), [5, 10), and [10, ). The weights we choose are 4, 2, 1, and 0 respectively.
That is, we regard it as twice as good for the error ratio to be in the interval [1, 2) as in the
interval [2, 5); four times as good in [1, 2) as in [5, 10); and of no value in [10, «). A user could
of course select his own set of weights. We write

(17.2) 8[O(S) | v] = Y (5 wimi/ S my) (i=1,23,4),

where m; is the number of error ratios in the interval [1, 2) for » given, m; is the number in the
interval [2, 5), ms is the number in [5, 10), and m, is the number in [10, ©); and w; = 4, w, =
2, w3 = 1, and ws = 0. As thus defined, § has the merit of belonging to the interval [0, 1], both
endpoints being attainable. § was computed with the help of Table 3.

Table 4 shows the scores of the approximate distributions for » = 1(1)8 and their rank
orderings based on the scores. For example, when » = 1, §[Q(G) | 11> 8[Q(A) | 11> 8[Q(XD) | 1]
> 8[@*(G) | 1] which gives the rank ordering Q(G) > Q(A) > Q(X?) > Q(G*), where the curly
“greater than” symbol means “is preferable to”. (The preference orderings are expressed in
the table by means of the list Q(G), Q(A), Q(X?), Q*(G).) We see then that Q(G) is a better
approximation than the others for 1 < » < 4, Q(X?) is the worst for 3 < » < 8, and Q(A) or
0*(G) is the best for 5 = v =< 8. Provided that a user accepts our values for the weights as
appropriate he could use these rank orderings, for example, in the following way: suppose that
for a contingency table that arises in practice Q(A) = 1.5 X 107°. The exponent —5 implies
that » = 5. Suppose also that » = 5 for the other approximate distributions. Then, since, for »
=5, Q(A) has a higher score than any of the other approximations, the user can conclude that
the approximate tail-area of any one of the other statistics would probably not be as good an
approximation of its exact tail-area.

The recommendations that are implicit in Table 4 do not take into account (i) the
convenience of always using the same statistic (in which connection note that Q*(G) is always
a reasonable approximation for 1 < » < 8), (ii) the costs of calculation (which seem to halve
about every eighteen months), (iii) questions of power, and (iv) the possibility of sparse tables.
Sparse tables are discussed in the next section.

Bayesian methods necessarily make implicit or explicit reference to the behavior of statistics
when the null hypothesis is false. Therefore we conjecture that in general the statistic G will
lead to more powerful significance tests than X? or A, even when P(G) is replaced by Q(G) or
0*(G). But we did not examine empirical evidence for this conjecture because our project was
large enough already. We have begun to examine this question and we hope to report the
results later.
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. TABLE 4
Scores of the approximate distributions for the sample of contingency tables. The last column gives the
approximate probabilities in the rank order of their scores

Tables 3 and 4 do not apply to sparse contingency tables.

v S[O*(G)|v] 8[Q(G)|¥v] S[Q(X*)|v] [QA)|v] Rank Orderings

1 65 99 87 94 0(G), Q(N), Q(X?), 0*(G)
2 67 96 .88 .84 Q(G), Q(X?), Q(A), 0*(G)
3 77 90 66 77 0(G), 0*(G), Q(A), O(X?)
4 78 .79 .50 77 0(G), 0*(G), Q(A), O(X?)
5 71 62 44 5 Q(A), Q*(G), Q(G), Q(X?)
6 61 .52 33 .66 Q(A), 0*(G), Q(G), Q(X?)
7 69 38 14 .58 0*(G), Q(A), Q(G), Q(X?)
8 66 .54 .16 .56 0*(G), Q(A), Q(G), Q(X?)

18. Sparse tables. A sparse table may be defined as one containing a high proportion of
cells for which the expectation n;n.j/N is small (say less than 0.5). Examples of sparse tables
occur, for example, in Pearson (1905) (reproduced in Good, 1956), Eck (1961) (reproduced in
Good, 1965, page 55), in Bishop, Fienberg, and Holland (1975), pages 191, 203, 326, 341, and
in numerous texts dealing with the statistics of language, a guide to which is given by Good
(1969a). Note that multidimensional tables are especially prone to be sparse. We regard this
as an important forward-looking reason for an interest in sparse tables, although the reason is
indirect because here we consider only ordinary (two-dimensional) contingency tables. In
principle our methods can be extended to more dimensions, as explained in Part 1. We shall
concern ourselves mainly, in Sections 18 and 19, with those sparse contingency tables having
a small value of E.

To investigate which of the approximate distributions is the best approximation for sparse
contingency tables, we were forced to look at marginal totals that had special properties.
Otherwise, by the time rs is large enough, for N fixed, to permit both a small value of E and
small tail-area probabilities, it becomes impracticable to compute the exact distributions. (For
tail-area probabilities greater than about 1/100, Monte Carlo methods would be practicable,
but we have not yet tried this approach.)

Using one of the results of Good and Crook (1977) for square contingency tables that have
all their marginal totals equal to 2, which can be conveniently called the all-twos case, we can
deduce formulae for the exact distributions of G, XZ, and A. With these formulae one does not
have to run through all possible r X r tables that have their marginal totals equal to 2 in order
to compute the exact distributions.

When r = s and all marginal totals are equal to n, where n > 2, it is practicable to evaluate
the extreme right-hand tails of the distributions of X 2 A, and G. This can be done by means
of specialized combinatorial arguments. We have considered the case n = 3 in some detail and
our results are discussed at the end of the present section.

The number of tables having all marginal totals equal to 2, and having exactly ¢ internal
twos, is

(18.1) (:)(:)t!A*{Z, r—10x(r-1),

where A*(2, u X u) is the number of u X u tables with all marginal totals 2 and with all interior
entries equal to 0 or 1. We can deduce the value of 4*(2, u X u) from the formula

(18.2) Ak, 2, u X u) = )27 i k"”(zss)[(u — 92!

by putting k = —1 (Good and Crook, 1977, Formula (3.5)). Upon multiplying (18.1) by the
Fisher-Yates probability we see that the probability of obtaining an interior of ¢ twos and 2(r
— f) ones is
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()27 A* (2, (r — ) X (r — 1)}
[(r — &' 2r)

(18.3)

We used this formula in an obvious way to compute the exact distributions of G, X* and A.
(The above theory for the all-twos case is an example of a more general approach mentioned
in the penultimate paragraph of Section 20.)

We computed these exact distributions, the approximate tail-areas Q*(G), Q(G), Q(X?),
and Q(A), and the error ratios. For r = 3, 4, ..., 25, Table 5 shows the largest values of » for
which the error ratio is less than 2, 5, and 10 whenever 107 < Q(S = S). The results for O(G)
are not given in the table because in every case Q*(G) approximated P(G) more closely.

When r = 15, for example, the error ratio of Q(X?) is always less than 2 for 1 < » < 12, less
than 5 for » = 13 and 14, and less than 10 for 15 < » < 17.

We also show, for each value of r in the table, the value of E, which is 2/r, and the
minimum value of P(S = S), which is the most extreme exact tail-area probability that occurs
for that value of 7 and is the same for all of the statistics. This most extreme case occurs when
the innards of the contingency table consist of r twos arranged like rooks not mutually “en
prise”, in other words when the table resembles twice a permutation matrix.

From Table 5 we can see that Q *(G) approximates P(G) within a factor of 2 almost down
to the most extreme tail irrespective of the value of E. For example, (i) when E = 0.182, which
is when r = 11, Q*(G) approximates P(G) within a factor of 2 so long as » < 11; (ii) when E

TABLE 5
Largest values of v for which the error ratio is less than 2, 5, and 10, whenever 10" < Q(S =S),forn=2
N =2r,andr=3(1)25

i

An asterisk means that there is no such value of ». (See also the text regarding A.) 6.7 (—2) for example,
means 6.7 X 10~

Where Where Where
Q(S) = 0*(G) S= X S=A
Error
Ratio Smallest
"\ Inter- 2 S 10 2 S 10 2 S 10 E P(S=S$)
als

3 * 2 2 * 2 2 * * 2 .667 6.7 (-2)

4 * 3 3 * 3 3 3 3 3 .5 9.5 (-3)

S 3 4 4 4 4 4 * 2 3 4 1.1 (-3)

6 4 4 S 4 4 4 * * * 333 9.6 (-5)

7 S S 6 7 7 7 * * * .286 7.4 (—6)

8 7 7 8 3 S S * * * 25 49 (-7)

9 8 8 9 3 8 8 * * * 222 2.9 (-8)

10 9 9 10 4 9 9 * * * 2 1.5 (-9)
11 11 11 12 4 11 11 * * * .182 73 (—11)
12 12 13 13 4 12 12 * * * .167 32(-12)
13 13 14 14 4 13 14 * * * 154 1.3 (—13)
14 15 15 15 5 15 15 * * * 143 4.7 (—15)
15 16 16 16 12 14 17 * * * 133 1.6 (—16)
16 18 18 18 11 14 16 * * * 125 5.2 (—18)
17 19 19 19 11 12 14 * * * 118 1.6 (—19)
18 21 21 21 11 13 14 * * * 11 4.5 (-21)
19 23 23 23 9 13 15 * * * .105 1.2 (-22)
20 24 24 24 10 11 13 * * * .1 3.1(-24)
21 26 26 26 10 11 13 * * * .095 7.6 (—26)
22 27 27 27 10 11 13 * * * .091 1.8 (-27)
23 29 29 29 8 11 13 * * * .087 3.9 (-29)
24 31 31 31 8 12 12 * * * .083 8.4 (-31)
25 32 32 32 8 10 11 * * * .08 1.7 (-32)
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= 0.118 (r = 17), Q *(G) approximates P(G) within a factor of 2 so long as » < 19; and (iii) for
the smallest value of E in Table 5, E = 0.08 (r = 25), 0 *(G) also approximates P(G) very well
indeed since it is within factor of 2 of P(G) so long as » < 32. The most extreme tails of these
three examples are 7.3 X 107", 1.6 X 107", and 1.7 X 10~ respectively, which means that
Q*(G) is an extraordinarily good approximation almost down to the most extreme tail (good
enough for a cryptanalyst!). In fact, if the reader will compare the last column of Table 5 with
the column headed 2 relating to Q(S) = Q*(G), he will see that the approximation P(G) =
Q*(G) is amazingly good, even for the smallest probabilities, for all values of  up to r = 25.
We recall that the statistic G for the equiprobable multinomial had an asymptotic distribution
good down to such probabilities as 107'° (Good and Crook, 1974).

The asymptotic distribution of X* approximates the exact distribution of X* within a factor
of 5 almost down to the most extreme tail so long as E = 0.143 which is when r =< 14. When
E < 0.143 (r = 15), Q(X?) approximates the more extreme tails of P(X?) less and less well as
E decreases. We give the following two examples from the table: (i) When E = 0.1 (r = 20),
Q(X?) approximates P(X?) within a factor of 5 so long as » < 11 and within a factor of 10 so
long as » < 13, but, when » = 14, Q(X?) is a poor approximation to P(X?); and (ii) When E
= 0.08 (r = 25), Q(X?) is within a factor of 10 of P(X?) for » < 11, but it is out by factors from
13 to 10™ for 12 < » < 46. This factor 10, which is not in the table, was determined from our
computer output.

Table 5 shows that Q(A) is a very poor approximation to P(A) when E < 0.35. Also the
computer run from which Table 5 was constructed demonstrates that, for r = 6, Q(A) differs
by at least a factor of 10 from P(A) 98% of the time. And the approximation becomes, not
surprisingly, very much worse as E decreases. For example, (i) when E = 0.133 (r = 15) our
computer output showed that Q(A) is out by factors between 10° and 10'® as P(A) varies from
1.8 X 107 to 1.6 X 107'¢, and (ii) when E = 0.083 (r = 24) Q(A) is out by factors from 10° to
10°! for 4.3 X 10~° > P(A) > 8.4 x 1073,

These results appear to establish that both Q*(G) and Q(X ?) are much superior to Q(A),
for very small tail-area probabilities, when E is less than 0.35, at least when the marginal totals
are flat.

To show that the remarkable accuracy of Q *(G) for sparse contingency tables, as obtained
for n = 2, does not depend upon n being equal to 2, we constructed the most extreme part of
the right-hand distributions when n = 3 for r = 5, 10, 15, 20, 25 and then computed the
corresponding approximate probabilities to obtain the error ratios (see Appendix E). Table 6
shows the error-ratios for r = 15, 20, and 25, and also shows the “innards” of the tables to
which the error ratios apply, and the probabilities P(S = S). The approximation Q *(G) makes
sense down to tail-area probabilities smaller than 107

19. The statistic R and a statistic of C.A.B. Smith. A statistic for sparse contingency
tables that has belonged to folklore for some decades is R = % 3 ni(n; — 1) which may be
described as the total number of “repeats” within cells. For multinomial distributions, when
2tR = N(X® + N — 1), the corresponding statistic was discussed by Good (1967, pages 400 and
418). This statistic dates back at least to Friedman (1922) and independently to Turing (1941),
and was used by Eck (1961) for symmetrical tables. It is natural to assume that the distribution
of R for sufficiently sparse tables is approximately Poissonian, given the null hypothesis,
though Eck (1961) assumed a binomial distribution which is also reasonable. For r X r
contingency tables having all the marginal totals equal to 2 we have found that the Poisson
assumption is slightly better than the binomial assumption, and is extremely good. This is
shown by Table 7 which compares the exact tail-area probabilities of R with the Poisson
approximation, for a few values of .

The example given by Eck was discussed by Good (1965, pages 55-56) where it was pointed
out that the Poisson or binomial assumption is dangerous if there are any cells where the
expectation is not small. The danger arises if the observed frequencies in such cells are high
because they can then contribute too much to R.

In Appendix C, formulae are given for the expectation and variance of R in terms of the
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TABLE 6
Error ratios for five of the six most extreme values in the right-
hand tail of S when n =3, N =3r, and r = 15, 20, and 25

r=15

Error Ratios For

Innards  P(S= )
0*(G) QXY o)

31 5.1 (-33)

3132212 4.9 (-30) 24 L.1(11) 5.5(27)
312233 1.3 (—28) 1.3 3.8(9) 3.0 (26)
31218 51(=28) 49 5.4 (8) 10.0 (25)
31244 5.6 (=27) 1.1 2.3(8) 10.0 (24)
3138 3.7(=26) 29 6.0 (7) 1.9 (24)

r=20

32 1.1 (—48)

318212 1.8(—45) 29 1.9 (28) 3.5 (44)
317318 6.8 (—44) L5 9.8 (25) 1.0 (43)
317218 2.6 (—43) 5.8 4.7 (24) 2.7 (42)
3162414 4.0 (—42) 1.3 9.0 (23) 1.8 (41)
3162316 27(-41) 35 8.0 (22) 2.8 (40)

r=25

3% 2.3 (-67)

32212 6.3 (—64) 23 Not run Not run
3229318 3.0(—62) 45 Not run Not run
3222215 1.2 (-61) 492 Not run Not run
32414 23(—60) 50 Not run Not run
3212316 1.6 (—=59) 297 Not run Not run

marginal totals (n;.) and (n.;), assuming the null hypothesis. These formulae have a neat form
for square tables when all the marginal totals are equal.

Smith (1951, 1952) (or see Kendall and Stuart, 1961, or 1973, Exercise 33.9) proposed a test
for heterogeneity of proportions which can also be interpreted as a test for independence of
the rows and columns of a contingency table. (It is so interpreted by Kendall and Stuart.)
Smith’s statistic, which we shall call XZags, is defined by the equation

Xeass = X {(ny — nin ;N7")/n ;}.

Smith states that this “test might be more powerful than x2[X?, in certain circumstances, and
also that it might be applicable when there were small expectations in some of the classes”.
Unfortunately it can also be much less powerful than X*. Consider, for example, the two 3 X
2 contingency tables shown in Table 8. The contingency table on the left should clearly refute
the null hypothesis and the one on the right should not, yet XZ4gs is larger for the table on the
right. So Smith’s statistic may not have adequate power when the row -or column totals are
“rough”. This difficulty might not arise for sparse contingency tables, but we have not
examined this question.

20. The Bayes factor against H provided by the row and column totals. The main purpose
of this section is to discuss FRACT, but first we make some brief comments concerning the
factor Fi/F; provided by the row totals alone. As pointed out in Section 15, we have now
decided that this factor should be equal to 1 so that Fy, F,, and of course Fy), should all be
equal and we have chosen a mathematical form of ¢ that achieves this. With the hyperprior
¢ that was used in Part I and elsewhere (see equation (2.4)) we have found that F,/F; is
merely close to 1 for 42 sets of n;’s with N = 20 and r and s between 2 and 5. For example,
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when r = 2, s = 4, and N = 20, and assuming the ¢ of Part I, we found that F/F; was well
approximated by 1.26 — [(n;. — 10)? + (n2. — 10)*]/300; in fact, F1/F, was 0.76 for n;. = 1, n,.
= 19 and was 1.26 for n;. = n,. = 10. On the other hand, the “Bayes postulate” k = 1 (also
expressible as ¢(k) = 8(k — 1)) can lead, by (6.1) and (6.2), to much larger values of F1/Fj; for
example, when r = s =5, and n; =4 fori =1, 2, 3, 4 and 5, we obtain Fi/F; = 10.1.

The Bayes postulate had been independently proposed by Jeffreys (1936, page 427) and by
Good (1950, page 99) (although Good proposed it in a tentative spirit), and they both withdrew
it (Jeffreys, 1937, page 494; Good, 1965, Chapter 5). Jeffreys (1937, page 495) refers to “the
revision of prior probabilities as knowledge in a subject advances.” Instead of suggesting a
new Bayesian model to replace the Bayes postulates for H and H, he advocated testing new
parameters one at a time rather than simultaneously. Hence, in his 1937 paper, he proposed
a test only for 2 X 2 contingency tables. While agreeing that 2 X 2 tables are especially
important we believe that tests for larger tables are also of value.

Any purely Dirichlet prior obtained by taking ¢(k) = 8(k — ko) would lead to the conclusion
that the row totals alone give nonzero weight of evidence for or against H, whether or not ko
= 1 (which gives the Bayes postulate). It is fortunate that this objection to purely Dirichlet
priors can be circumvented by using appropriate mixtures of them.

We now turn our attention to FRACT which, with our present hyperprior (15.4) [and
indeed whenever ¢(#, k) is of the form y(tk)/k] is equal to F1/F;3 and to F;/F;. From (5.1) and
(5.4) we have, with ® as defined in Section 2.

(20.1) FRACT = [ = 2 @my), rs, 1)

F;  ®{(n.), r, 1®{(n,), s, 1}

which of course does not depend on the innards of the table.
Nominally, FRACT applies to Models 1 and 2 and not to Model 3. But, if we want to use
the criterion X? or G for testing H, although the sampling was done according to Models 1 or

TABLE 7
Some exact tail-area probabilities for R in the all-twos case, and
a comparison with the Poisson approximation Q

The table is 7 X r and v denotes the number of n; equal to 2

var (R)

r 8(R) #R) Ve P P/Q
5 .556 1.016 S 1.058 (-3) 3.800
3 2.222 (-2) 1.173
10 .526 1.003 10 1.53 (-=9) 5.48
8 1.39 (=7) 1.52
6 2.09 (-5) 1.106
4 2.17 (-3) 1.029

2 9.85(-2) 1.002
20 512 100069 20 3.13(-24) 7.83
18 L19(=21) 206
14 759(-16) 123
10 235(-10) 1078
6  1.66(=5) 1.019
2 942(-2) 1.00054
25 510 10004 25 171(=32) 8.8
23 1.03(=29) 229
22 325(-28) 160
18 6.69(=22) 126
14 644(-16) LI2
10 217(-10) 1.045
6  1.60(=5) 1.012
2 933(=2) 1.00034
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TABLE 8
Two 3 X 2 contingency tables, one highly significant, the other
not

Only the innards are shown

10,083 10,013 10,168 9928
10,047 10,007 10,017 10,037
100 0 45 55

2, then, as argued in Section 15, we need to assume that these models are adequately
approximated by Model 3 which implies that we need to find out if FRACT is close enough
to unity. It may be recalled from Section 1 that Sokal and Rohlf (1969, page 589) said that X?
and A seem to give similar results even when they are used for the wrong model. As they say,
A is based on Model 1, though we claim it is equally valid to base it on Model 2 because, as
we have argued, the row totals alone (with no other information) give no evidence about H.

Another reason for our interest in FRACT is that it leads to approximations to F; as we
said in Section 15. In Section 7 it was conjectured that F3 might be well approximated by
FyF )/ Fy, but under our new assumptions this expression is equal to F1. From an inequality
mentioned in the paragraph preceding (15.1), a good approximation to F; can be derived from
the inequality 2F; > F3 > %F).

Before giving the results of our calculations concerning FRACT we consider some intuitive
arguments that help to make the results appear reasonable. We begin by considering a 2 X 2
table sampled by Model 1 or Model 2, with N = 2 and row totals n;. = n,. = 1. The column
totals are necessarily either (i) 0 and 2 (in some order), or (ii) 1 and 1. In Case (i), the columns
of the table are necessarily proportional (in a trivial sense) so Case (i) must support H
(slightly). In Case (ii) the innards must have two 1’s on a diagonal, so Case (ii) is slightly
against H. As a second example, consider a 3 X 3 table with row totals n;. = n,. = n3. = 5.
Now suppose we are told that the column totals are (0, 0, 15). This will again force the columns
to be proportional and so will support H. (Column totals of (1, 1, 13) would also support H
though a little less clearly.) But if instead we are told that the column totals are also (5, 5, 5),
then there are many possible innards that would undermine H, especially the six innards each
with frequency count 0°5° where the three 5’s are necessarily not mutually en prise when
regarded as rooks on a “chessboard”.

In both these examples, when the row totals are already known to be flat, we find that very
rough column totals somewhat support H and very flat column totals somewhat undermine H.
We would thus expect the intermediate cases, where the column totals are neither very rough
nor very flat, to supply less evidence for or against H.

The above argument is made more convincing when we notice that the various logically
possible outcomes of an experiment cannot all support or all undermine a hypothesis. One
way of seeing this is by recalling Turing’s theorem that the expected Bayes factor against a
true hypothesis is unity! (Good, 1950, page 72.) Although we have rejected the “Bayes
postulate” (k = 1), it is instructive to use this postulate for verifying Turing’s theorem for the
first 2 X 2 example. The calculations can be done either by using (6.1) and (6.3) or by recalling
that all ordered partitions of N into multinomial categories are equally probable under Bayes’s
postulate (Jeffreys, 1961, pages 133-134). The probability under Model 1 of getting all
marginal totals equal to 1 is % given H, and %o given H. Hence Fi/F5 = %; while, for all other
sets of marginal totals, F1/F3 = %o. Thus the expected value of FRACT, given H, is % - %

+ % - %0 = 1, in accordance with Turing’s theorem.

In Table 9 we give some values of FRACT for a 3 X 3 contingency table when the
hyperprior is given by (15.4). It bears out the intuitive reasoning just given. A new qualitative
feature of Table 9 is the large value of FRACT when both row and column totals are very
rough, namely when the marginal totals are (1, 1, 13; 1, 1, 13). We offer the following intuitive
explanation of why this value of FRACT is so large.

Since the row totals (1, 1, 13) by themselves convey zero evidence concerning H, we regard
them as permanently given, and we consider the evidence then provided by the column totals
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TABLE 9
Some values of FRACT when r = S = 3 and N = 15, using the
hyperprior (15.4)

Marginal totals FRACT Marginal totals FRACT
(1, 1,13, 1, 1, 13) 19.9 5,551,1,13)  0.140
(1,1, 13; 1, 3, 11) 3.62 5,55 1,3,11) 0538
a, 1, 13; 1, 4, 10) 2.68 (5,5,5,1,4,10) 0948
(1, 1,13, 1,5,9) 2.10 5,55 1,59 1.34
(1,1,13;2,4,9) 0.973 5,5,52,4,9) 1.77
(1,1,13;3,3,9) 0.641 553,39 1.92
1,1,13;2,6,7) 0.570 5,5,52,6,7) 2.29
(1,1,13;3,57) 0.261 5,5,53,57 2.65
(1,1,13;4,4,7) 0.214 5,5,54,4,7) 272
(1, 1,135,5,5) 0.140 5,5,5,5,5,5) 312

TABLE 10

Values of FRACT for 2 X 2 contingency tables with all marginal totals equal to n
The last row gives the values of 0.0282(log.n)® + 0.0071(logzn) + 2.172

n 2 4 8 16 32 64 128 256 512 1024

FRACT 2215 2269 2444 2654 2918 3227 3.602 4.035 4523  5.065
2207 2299 2447 2652 2913 3231 3.604 4.035 4522 5.065

(1, 1, 13). There are just seven possible innards consistent with these marginal totals, two of
which have the frequency count 0°1°13'. We call these the “most extreme cases”. One of the
tables with frequency count 0°1°13' has [1, 1, 13] as its main diagonal. Assuming H, the
expectations in the cells are 1/15 (four times), 13/15 (four times), and 169/15 (once). The total
expectation in the “rare” cells is 4/15, and that in the “medium” cells is 52/15. Then X?Z, with
two degrees of freedom, for each of the most extreme cases, is

A Q- 4/15)2 + %, © - 52/15)2 + oo 13 - 169/15)2 = 15.

This corresponds to a tail-area probability of about 1/1800, or about 1/500 if we multiply
by 7/2 to make rough allowance for there being two ways out of seven for obtaining the most
extreme cases. This tail-area probability of 1/500 should be further increased somewhat
because our specific lumping of the nine categories has a degree of arbitrariness, and because
the x? approximation is not good in this example, but the argument has removed any surprise
that our Bayes factor is as large as 19.9.

For 2 X 2 tables, with all marginal totals equal to n, we can conveniently calculate FRACT
from (20.1) and (5.5) by using also formula (4.1) of Good and Crook (1977) which was quoted
as (B1.9), in Part 1. Some results of the calculation are given in Table 10. It will be seen that
FRACT appears to be tending very slowly to infinity (in fact FRACT is well approximated by
a quadratic in log n, as shown in the table). This slow tendency to infinity is presumably also
true for larger contingency tables with flat margins.

For 2 X 2 tables with margins (1, N — 1; 1, N — 1), which are very rough when N is not
small, we calculated FRACT for nine values of N between 4 and 50. We found that it
appeared to be tending to infinity slower than 2N"/* and was always less than 2N/,

As a final collection of examples of FRACT we took thirty sets of row and column totals,
selected at random from the 504 sets mentioned in Section 17. The results are given in Table
11. We see that the largest value of FRACT was 5.7, and the smallest was 0.15. With the
obsolete hyperprior ¢, defined by (2.4), the values of FRACT were much the same as for the
present ¢. We again appear to have Bayesian robustness.

As a general guide for when one may neglect the evidence from the marginal totals we give
our conclusions regarding the qualitative behavior of FRACT. In the following list we use the
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TABLE 11
Values of FRACT using the old and new hyperprior ¢, for thirty sets of marginal totals. Also the values of
F; and P(F3) for the most extreme innards

(i) the number of the table; (ii) the marginal totals; (iii) and (iv), the values of FRACT when ¢ is given

by (2.4) and (15.4) respectively; (v) the frequency count of the most extreme innards; (vi) the number of

ways in which the most extreme innards can occur; (vii) P(Fs), (viii) Fs; (ix) N'/2P(Fs) F3; (x) the natural
logarithm of the entries in column (ix).

FRACT Fy

[0) (i) margins (i) @) ) (vi) (vii) (wili) (ix) (x)
CT1 1,19;4,7,9 013 015  9'7'31'¢? 1 0.20 1.7 1.54 43
CT2 1,19 3,89 022 025  9's2'1'¢? 1 0.15 24 1.60 47
CT3 7,131,217 0.7 0.7 13'412'1'0? 1 3 68 0.93 -.07
CT4 9,11;1,6,13 1.0 1.0 11'6'2'1'0? 1 4.6 (—4) 207 0.43 -84
CTS 9,11;1,7 12 1.1 1.1 1'7'1%0? 1 7.1 (=5) 1371 0.44 -.82
CTé 8,12 1,8, 11 1.6 1.8 11'8'1'0° 1 7.9 (—6) 3388 1.20 .18
CT7 5,15, 1,8, 11 1.8 1.8 11'5'3'1'0? 1 3.6 (-3) 33 0.54 —-.62
CT8 5,15: 1,7, 12 1.8 1.9 12!512'1'0? 1 1.4 (-3) 101 0.61 —.49
CT9 7,13;4,7,9 2.1 2.0 9'7'4'0? 1 1.3 (-5) 2251 0.13 -2.04
CTI10 8,12,5,6,9 23 22 8'6'5'110* 1 7.1 (=5) 85 0.027 =36l
CTI1 1,19; 1,4, 15 26 3.0 15'4'1'0° 1 0.050 13 2.96 1.09
CTI2 1,19;1,2, 17 37 42 17'2'1'0° 1 0.050 13 2.92 1.07
CTI3 10,10; 1, 1,2, 16 0.4 0.5 10'6'2'120° 2 0.087 23 087 -.14
CT14 8,12 1,23, 14 0.9 0.9 12'312%1'0° 1 7.2 (-4) 92 0.30 -1.20
CTI5 6,141, 1,2, 16 1.1 1.2 14'221%0° 1 3.1(-3) 40 0.56 -.58
CT16 6,14,1,1,3,15 1.4 1.5 14'3'1%0? 1 3.9 (-4) 327 0.57 -.56
CT17 9,11;2,2,5, 11 1.6 1.6 11'5'2%* 1 6.0 (—6) 8501 0.23 -1.47
CTI18 1,191, 1,8, 10 1.5 1.8 10'8'1%* 2 0.100 17 346 1.24
CTI19 7,13;1,2,5, 12 1.7 1.9 12'52'1'0* 1 1.3 (-5) 10690 0.62 —.48
CT20  6,14;2,2,5,11 2.0 2.1 15220 2 1.03 (—4) 716 0.33 -L11
CT21 6,14,1,1,5,13 23 27 13'5'1%0* 2 52 (-5) 8050 1.86 62
CT22 2,18 1,2,3, 14 2.5 2.8 14'312'1'0* 1 53(=3) 62 1.45 37
CT23 5,15,2,2,3,6,7 13 1.2 7'6'312%0° 2 1.3 (-4 212 0.12 -2.12
CT24 7,13 1,1,3,6,9 1.9 20 9'6'3'1%0° 2 2.6 (-5) 2789 0.32 -1.14
CT25 6,14, 1,1,3,3, 12 22 24 12'3%1%0° 6 2.6 (-5) 2858 0.33 -L11
CT26 3,17, 1, 1,2, 15 49 5.7 152'1°0° 4 3.5(-3) 149 233 .85
CT27 1,9, 10;4, 6, 10 14 1.5 10'6'3'1'0° 1 22 (-6) 27528 0.27 -1.31
CT28 1,2,17;2,7,11 12 1.5 11'6"2'1'0° 1 2.0(-3) 100 0.91 -.09
CT29 2,5 13;1,9,10 1.9 2.0 10'5'3'1%0* 1 3.1(-4) 142 0.20 -1.61
CT30 1,6,13;2,3,15 23 2.5 1332'120* 2 1.7 (—4) 183 0.63 —.46

terminology “Flat-Flat”, for example, to mean that both the row totals and the column totals
are flat:
(i) Flat-Flat; Somewhat undermines H.
(ii) Flat-Rough: Somewhat supports H.
(iii) Rough-Rough (with no zero marginal totals); Undermines A much more than Flat-
Flat.

(iv) Flat-Medium: % < FRACT < 2%.

(v) Medium-Medium: %2 < FRACT < 2%.

Cases (iv) and (v) are the ones usually encountered in practice. This to a large extent
justifies the assumption that Models, 1, 2, and 3 are approximately equivalent when testing for
independence of the rows and columns of a contingency table.

The calculation of A(k). When F; or FRACT is calculated with the help of (5.5), the
calculation depends on the value of A(k). Efficient algorithms for the calculation of A(k) are
available, especially when r = s and when the row and column totals are completely flat (Good
and Crook, 1977) and they apply also for the classical combinatorial problem of calculating
A(1), the number of arrays. (In Good and Crook (1977), page 39, line 1, an index —1 was
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omitted, and, in line 2, the symbol g; in the upper limit of summation should be go.)
Approximations, for arbitrary margins, based on statistical and other arguments were given
therein and in Part I. A further statistical argument for the case k = 1 was proposed by Gail
and Mantel (1977) and a comparison of the statistical arguments is given by Good (1979b).

One of the methods for calculating A(k) depends on the number A(») = A(», (n:), (n.)) of
tables with given margins whose innards have a given frequency count » (meaning v, zeros,
v; ones, ---). The times taken to compute the exact distributions of G, A, and R, when
“running through all tables” with given margins, are proportional to A(») and not to A(1).
Only in special cases is there a known convenient closed form or simple finite series for
calculating A(k), A(1), or A(»). Some such special cases were relevant for Section 18 and for
Table 6.

Other literature related to FRACT. A number of statisticians have held that the marginal
totals contain evidence about H; for example, Barnard (1945, 1947), Pearson (1947), Good
(1950, pages 99-101; 1965; 1976), McDonald, Davis, and Milliken (1977). Plackett (1977)
made some remarks that “seem to confirm the intuitive view that the likelihood function
provides little information ...”. Perhaps only a Bayesian approach can offer quantitative
answers, as in the present work.

21. The Bayes factor F; and its tail-area probability. To shed further light on the
relationship between Bayesian and Fisherian significance we calculated N'/2P(F;)F;, which
relates the Bayes factor F3 to P(F3), the right-hand tail-area probability of F5. Model 3 is used
here rather than Models 1 or 2 because, as we mentioned in Section 16, it is only for Model 3
that the null hypothesis is “simple”. The relationship between a Bayes factor and its tail area
was previously examined in the context of multinomial significance testing in Good (1967)
and Good and Crook (1974) and found to be a strong one under fairly weak conditions. We
would expect the relationship to fail when the Bayesian or Fisherian showed poor judgement.

To carry out a similar analysis for contingency tables would be very laborious. We therefore
decided to look only at the innards of a table, with given margins, having the largest Fj,
because for these innards we can easily calculate the tail-area probability P(Fs).

For each of our thirty sets of row and column totals we computed N'/2P(F;)F; for the table
innards with the largest Fs: see Table 11. The lower and upper quartiles of N'/2P(Fs)F; in our
sample of thirty tables were 0.32 and 1.45, so half the time 0.32 < N'/*P(F3)F; < 1.45. (When
the ¢ of Part I was used, the interquartile range was (0.25, 1.27), so we again have Bayesian
robustness.) Over the thirty tables log[N'/>P(F;)F;] appears to have a normal distribution
with mean —0.5 and standard deviation 1.1, which we may express as N2P(Fs)F; = 0.6 = 3.
Although we have dealt somewhat cursorily with the relationship between Fs; and P(F;), we
feel justified in saying that our observations are tolerably consistent with our experience in the
multinomial situation.

22. Conclusions. We have stated some conclusions within each section of this paper, but
we now summarise by mentioning a few salient points.

(i) The purely Bayesian methods appear to be robust with respect to variations in the
hyperhyperparameters y and g of the log-Cauchy hyperprior. .

(ii) For tables that are not very sparse the approximation P(G) = Q(G) is very good when
Q(G) > 107 and therefore P(G) = Q*(G) is a better approximation.

(iii) For sparse tables, at least when the marginal totals are flat, it seems that the approxi-
mation P(G) = Q*(G) is extraordinarily good for small tail-area probabilities, the chi-squared
approximation for X” is also very good when » < 8 and E = 0.08, but that for A is very poor.
The statistic R, the number of repeats, has closely a Poisson distribution (but not if any cell
expectation is large). The exact expectation and variance for R are given in Appendix C.

(iv) Our conclusions concerning FRACT are given near the end of Section 20.

(v) A rough relationship between F; and P(F3) is given in Section 21 and it resembles the
results found earlier for the corresponding multinomial problem.
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APPENDIX C
The mean and variance of the number of repeats within cells
[Appendices A and B occurred in Part I}

It is simple to prove that

R,S:

(C1 SR|H) =0

and straightforward but heavy to prove that
RsS3  ReS: | (R} — 4Rs — 2R;)(S3 — 485 —25:) RIS}

(C2) Var(R|H)= N® + IND AN® - ANOR’
where
Rp=zinl!.“)7 S}A=Z]n(;‘) l-"=l’2’3’°"'
The method of proof is to make use of the familiar identity
Mn. !
(C3) g Lrlllnt_

N !Hm,;! ’

for a variety of values of N etc., where Y * was defined in Section 15. (The combinatorial
identity (C3) expresses the fact that the Fisher-Yates probabilities add up to 1.)
In particular, for square tables having all marginal totals equal to n, it is easy to see that

(C4) R=(X®~=r*+ rm)n/Q2r),
and it can be shown that

_(n—1)’nr
(C5) SRIH) = J

n3(n — 1)’(r — 1)’
2(nr — 1)’(nr = 3)°

(C6) Var(R|H) =

and
Var(R|H) _ n’(r— 1)

£(R) (nr — )(nr — 3)°

It is easier to deduce (C5) from Smith (1951, 1952) or from Kendall and Stuart (1961,
example 33.9) than from (C2). Presumably it can also be obtained from Welch (1938, page
158) or Haldane (1940, page 353).

Note that Var(R | H)/& (R) is close to 1 when r is large, even if n is large. But we cannot
expect R to have approximately a Poisson distribution unless n/r is small.

(o)

APPENDIX D
Description of the methods for sampling marginal totals when r, s, and N are fixed

Sampling Method A. The selection of a set of contingency-table marginal totals for assigned
values of r, s, and N, by Sampling Method A was accomplished in the following manner:
Think of the marginal totals as occupying boxes B; (i= 1,2, ---,r)and B; (j= 1,2, -+, 5).
Now, let p; denote the probability that a ball “tossed at the row totals” will land in B, and let
p.; be similarly defined. Random numbers between 0 and 1 were chosen to simulate the tossing
of balls at (B;) (and (B,)), and n;, (and similarly n ;) was increased by 1 whenever a random
number was in the interval (Pi-1, P;), where P;, = p;. + - - + p;, until each n; was at least 1
and ¥, n; (= Y, n;) = N. Each time we wished to determine a new set of marginal totals, (p.)
and (p.;) were chosen from a uniform distribution and then scaled to force ¥; p;. = 1 =Y, p.;.
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Sampling Method B. Sampling Method A does not give enough examples of flat row totals
so we introduced a Method B in which the margins were selected (for given r, s, and N) by
first setting all row totals equal to N/r, or, if N/r was not an integer, by making the set of
totals as flat as possible. A computer program was then used to create a list of all possible sets
of column totals (with n; = ny = ... = n,) which is a list of the possible partitions of N into
exactly s parts. The margins were then “completed” by randomly selecting a.previously
unselected partition from the list.

Sampling Method C. In Method C, introduced to obtain both flat row and column totals,
the row totals were chosen as in Method B. The column totals were then selected to be as flat
as possible. For this method of sampling there is obviously only one set of margins (up to
permutations of rows and of columns) that can be selected when r, 5, and N are given.

APPENDIX E
The extreme right-hand tails of the distributions of X°, A, and G

In Section 18 we mentioned that the most extreme part of the right-hand distributions of
X2, A, and G were calculated by specialized combinatorial arguments for square r X r tables
with all marginal totals n equal to 3. The problem is clearly essentially solved by counting the
frequencies of the frequencies of the frequencies, that is, by counting the tables with a given
internal frequency count » = (v, b1, - -+, ¥») Where v, is the number of cells containing an
entry of u. Thus ¥, », = r%, ¥, p», = nr. When n = 3, which is the case we are now considering,
unlike the case n = 2, we do not know a neat general formula (like (18.2)) for the number A(»)
= A(v; n, r X r) of tables. But note that »3 3’s can be placed in v3!(5,)? ways and therefore

(El) A(vo, v1, v2, v33 3, F X F) = 131(5,)?A(vo, ¥1, v2, 0; 3, (r — w3) X (r — v3)).

If r — v3 = r’ is small enough it is practicable to evaluate this expression by listing all essentially
distinct * X r’ arrays of 0’s, 1’s, and 2s; and there are the following checks with say r = 4: (i)
3, A(») is equal to the number of r X r tables with marginal totals all equal to 3, and (ii)
Y, A(») F.Y. = 1, where F.Y. denotes the Fisher-Yates probability 627272/ (3r)! (see (4.1)).

For n > 3 the same method can be used but it becomes rapidly more laborious as n
increases, for any given value of r — v,.
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