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D-OPTIMAL DESIGNS FOR POLYNOMIAL
REGRESSION USING CONTINUED FRACTIONS!

By W. J. STUDDEN
Purdue University

Consider a polynomial regression of degree n on an interval. Explicit
optimal designs are given for minimizing the determinant of the covariance
matrix of the least squares estimators of the highest s coefficients. The designs
are calculated using continued fractions.

1. Introduction. Consider a polynomial regression situation on [—1, 1]. For
each x or “level” in [—1, 1] an experiment can be performed whose outcome is a
random variable Y(x) with mean value 37_, 8,x’ and variance ¢ independent of
x. The parameters B,i=0,1,---,n and o2 are unknown. An experimental
design is a probability measure £ on [—1, 1]. If N observations are to be taken and
£ concentrates mass £(i) at the points x;,i=1,2,---,0 and £J)N = n; are
integers, the experimenter takes N uncorrelated observations, n; at each x;, i =
1,2, - -, v. The covariance matrix of the least squares estimates of the parameters
B; is then given by (6°/N)M ~'(¢) where M(£) is the information matrix of the
design with elements m; = [ ! x**/ d¢(x). For an arbitrary probability measure or
design some approximation would be needed in applications.

Let f'(x) = (1, x, x%, + - -, x") and d(x, &) = f'(x)M ~'(£)f(x) when M(£) is non-
singular. It is known for general regression functions, see Kiefer and Wolfowitz
(1960), that the design minimizing sup, d(x, §) and the design maximizing the
determinant | M (£)| are the same. This is referred to as the D-optimal design. In the
polynomial case it concentrates equal mass (n + 1)~! on each of the n + 1 zeros of
(1 — x*)P)(x) = 0, where P, is the nth Legendre polynomial, orthogonal to the
uniform measure on [—1, 1]. The solution of the separate problems for polynomial
regression was discovered earlier by Hoel (1958) and Guest (1958) leading Kiefer
and Wolfowitz to their equivalence theorem.

It is also known (see Kiefer and Wolfowitz (1959)) that the design that minimizes
the variance of the highest coefficient B, concentrates mass proportional to

1:2:2:-+-:2:1 (nearly equal) on the zeros of (1 — x?)T)(x) = 0 where T, is
the Chebyshev polynomial of the first kind. These are orthogonal with respect to
(1 -x»"z,

The purpose of this paper is to consider the D -optimal design which minimizes
the determinant of the covariance matrix of the least squares estimates of the
highest s parameters B8, ,, 8,,5 * * * , B,, where n — r = 5. The estimation of all
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coefficients is the D, ; or D-optimal situation. It will be easily seen below that the
D,-optimal and D-optimal designs are the same.
Let f'(x) = (fi(x), f'5(x)) where fi(x) = (1, x,---,x") and fyx) =

(x"*', - - -, x™) and let the information matrix M(§) have a similar decomposition

M (5 M8
1.1 M) = M 271
(- ©=lr© a0
The covariance matrix of the estimates for 8,,,,- - - , 8, is proportional to the
inverse of
(1.2) 2 =232 = M) — M21(£)Mﬁl‘(§)M12(£).

The problem is to maximize the determinant of X(§). Corresponding to the
ordinary D-optimal situation the design maximizing |2(§)| also minimizes the
supremum over [— 1, 1] of

(1.3) d(x, 8 = (fu(x) - A(§)fl(x))’2_l(§)(f2(x) — A(§)f,(x))
where A(£) = M, M,;'. Moreover for the optimal design &

(1.4) d(x, &) < s.
To find the maximum of |S(£)| we use the result that |S(£)|=|M( £)|| M, (&)~ ".
Note that r = n — s = 0 corresponds to the D-optimal case since M;; = 1. The

quantity d,(x, £) in (1.4) is not, however, equal to d(x, £) defined above. In fact, as
mentioned at the beginning of Section 5, equation (4.5) shows that

d(x,8) = d(x,8) — L.

In the following the moments m;; and the determinants | M(£)| and | M;,(§)| will
be expressed in an appropriate form using certain “canonical moments.” The
maximization of the determinant [2(£)| then becomes very easy. The solution is
then converted back to the moments m,; = [x'*/d§(x) and the design §,. Section 2
contains the maximization of the determinant |3(£)|. The relationship between the
ordinary moments and the canonical moments is described in Section 3. This
relationship involves some simple recursive formulas which also relate the “generat-
ing function” for the ordinary moments with its continued fraction expansion. The
continued fractions are used more fully in Section 4 in obtaining the support of the
D.-optimal design. Some examples are given in each of the sections and in Section
S.

The problem considered here is described for polynomial regression on [—1, 1].
It can readily be seen that it is invariant under a simple linear transformation onto
any interval [a, b]. In the sections below it will be seen that certain expressions are
more readily available and possibly simpler for the interval [0, 1]. We have chosen
the interval [— 1, 1] because the classical orthogonal polynomials are usually given
on this interval and the details of some of our examples are easier to handle
because of symmetry considerations.
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The results in Theorems 2.1, 4.1 and 4.2 provide some simple and useful
D -optimal designs. A comparison of these with others in the literature for poly-
nomial regression is being considered.

2. Maximization of [S(¢)]. The maximization of |2(¢)| defined in (1.2) is done
in terms of simple expressions for |M(£)| using canonical moments. For an
arbitrary design or probability measure £ on [—1, 1] let

¢ = L x*dé(x), k=012"---.
For a given set of moments ¢y, ¢;, - * - , ¢;_, let ¢;* denote the maximum of the ith
moment [x’ du(x) over the set of all measures p having moments cq, ¢, * * - ¢;_;.

Similarly let ¢, denote the corresponding minimum. The canonical moments are
defined by

(2.1) P = —4/—— i=1,2--"

Note that 0 < p; < 1. The canonical moments for the “Jacobi” measure (1 + x)“
(1 — x)#, along with other considerations, are given in Skibinsky (1969). For a = 8
it is shown that p, = 1for i odd and

1

l
p = i)

for i even. Note that the usual arc-sin law or the measure corresponding to the

ordinary Chebyshev polynomials has a = — % and the canonical moments are
1

pi= 2

THEOREM 2.1.  The determinant |Z(¢)| in (1.2) is maximized by the unique design ¢
whose canonical moments are given by

(2.2) P =3 for i odd;
Py =13 i=12--,r
e SRR SRR
=1 i = n

Proor. Let A,,, denote the determinant

o ¢ e G
¢ G e Cm+1

A2m=. . . m=0,1,2,---.
Cm Cm+1 te Com

The maximizing canonical moments can easily be found once we express the
determinant A,, in terms of the canonical moments. These are found using
Skibinsky (1968). First consider transforming the measure £ on X =[—1, 1] to
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Z = [0, 1] using a simple linear transformation x = 2z — 1 and let the correspond-
ing moments on Z = [0, 1] be denoted by b,. It is shown in Skibinsky (1969) that
the canonical moments are invariant and the determinant A,,, for the moments b, is
given by

(23) I 1(712,'— 1"2:)m+ =
where
(2’4) T’O = ‘Io,TIj = qj-‘lpj .] = 1’ 29 cte

and p; + ¢; = 1 for all j. The determinant A,,, for the moments ¢; = f1 | x’ d¥(x) =
Jo(2z — 1y d&(2z — 1) is then a power of two times the quantity (2.3). Therefore,
the maximization of the determinant [2(£)| is equivalent to maximizing

1-i
H7=1("72i-|’12i)n+
rel—i’
1 (25-m2:) A
Some fairly simple algebra shows the answer to be given by (2.2).
The uniqueness is a consequence of the fact that the values p;,i =0,---,2n
uniquely determine c¢g, ¢|,- - -, c,, and the value p,, = 1 implies that
(¢g>¢15° * + 5 ¢,,) is a boundary point of the corresponding moment space for which

the measure £ is unique.

3. Ordinary and canonical moments. The relationship between the two types of
moments is expressed by the use of certain simple recursive relationships which
relate the power series or generating function for the moments to a continued
fraction expansion.

For a probability measure u on [0, 1] with moments b; the power series
(3.1) P(w) = 2 bW
has a continued fraction expansion of the form
omw mw
1- 1 -1 -
where the quantities 7, are given in (2.4). More details of these considerations are
given in Seall and Wetzel (1959) or Wall (1940). All of the series and continued
fractions we consider will be convergent. These questions will not actually concern
us since our interest will be in finite sections of the expansions and the formal
relationships between the coefficients.

Define the numbers S; ;j recursively by So; =1,/=0,2,--- and fori < j

(32)

(3.3) S = Ei-ink—i+lsx’—l,k Lj= 12
The corresponding moments b, are given by
34) b, =S, m=1,2,---.

These are taken from Skibinsky [1969]. The moments c,, of the translated measure
on [—1, 1] can be obtained from the b, by the relation ¢, = [}(2z — 1)'du(z).
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The moments c,, can be found from the n, more directly using (3.3) for the
canonical moments of interest given in (2.2) where the odd values are all p; = 3.
The power series '

P(w) = Z2ocW’
has a continued fraction expansion of the form (see Seall and Wetzel (1959))

1 dw? dw?

ew+1 —ew+1 ~ ew+1 -

where

(3.5) d; = 4m;(1 —m,_),(1 1) i=12,---
e =1—2m_,(1—1_,) = 2(1 =m_y)l i=1,2,--"
m; = pyandl; = py;_, i=12,---.

For the p; given in (2.2) the odd p,;,_, = 1so that ¢, = 0 and d; = g5, P3; = M2

Thus the recursive relations (3.3) can be used to calculate the even moments c,;,
the odd moments being zero.

Consider for example the uniform probability measure on [—1,1] or on [0, 1].
We noted previously that for this measure py; 4| = yand p,; = i/(2i + 1). There-
fore we have

P = %,Pz = %,P:; = %,P4 = %’Ps = %’P6 = %
The first few values for S; in (3.3) give
by =p
b, = pi(p1 + 0172

by = pi[ PPy + @1P2) + @1P(Py + P2+ D223 ]
Substituting the values in gives b, =3, b, =3, by =4, On the interval [—1, 1] the
same three formulas give the six moments cg, ¢}, * * * , C¢ USING €y 41 = 0 and

¢ = P2

¢y = PPy + 42P4)
¢6 = Po[ Po(P2 + 02P8) + 42Pu(P2 + G2Ps F daPe)]-

: : —1 | 1
This gives ¢, =3, ¢4 =3, €6 =7-

4. The moments ¢; and the design £,. In this section we prove the following

two theorems.

THEOREM 4.1. The support of the D -optimal design & consists of the points *1
and the n — 1 zeros of
(4.1) 0,()7 4 1(x) — apry(x)7(x) = O

where r + s = n,

(42) 0‘;=%S_1 s=1,2--+,n
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and p] and 1] have leading coefficients one and are proportional to the derivatives of
the Legendre and Chebyshev polynomials P(x) and T/(x).

THEOREM 4.2. The weights of the D,-optimal design attached to the points
Xg» X1, * -, X, of (4.1) are given by
2

4. i) = i=0,1,--,n,r+s =
(4.3) £.(7) 2”"'1"'Uzr(x.~)l n,r+s=n

where U, (x) is the Chebyshev polynomial of the second kind U,(x)= (sin(k+1)
0/sin ), x = cos 4.

The support points of the D -optimal design in the polynomial in (4.1) can be
expressed in another form. If Q,(x),k =0,1,--- are the polynomials of the
indicated degree orthogonal to (1 — x?)d§(x) then the support points are the
zeros of (1 — x2)Q,_,(x) = 0. See Karlin and Studden (1966), Chapter 4. The
polynomial Q,_,(x) can be obtained by calculating the moments c; from the p; as
explained in Section 3. The required polynomial can be expressed as

Co— €y Cp—C c Cp— G, 1
£ B €7 C Ci—1 " Cut1 x
(44) 0, ,(x) =|.
— e — n—1
-1 Cus1 Cm-3 = Cp_1 X

which must be proportional to the polynomial in (4.1). Our proof of Theorem 4.1
goes directly from the p; value to (4.1) using continued fractions.

ProOF OF THEOREM 4.2. The weights £ (i) are obtained by using the fact that
for each point x; in the support of the optimal design, equality must hold in (1.4).
That is d(x;, &) = s. The quantity d,(x, £) can be rewritten in the form

(4.5) dy(x, § = f(x)M T EAx) — LM Ef(x).
We now change the basis for the two terms on the right-hand side. For the first
term we use the Lagrange polynomials /,(x),j = 0,1,- - -, n associated with the

optimal points x;. The /;(x) are the polynomials of degree n satisfying / (%) =0,
i,j=0,1,--- ,n. If £ has mass £(i) on x; then

I2(x)
S)M Y OfAx) = =g~
M) = Dok
For the second term, note that the canonical moments up to order 2 (those used in
M,)) are p, =;. These correspond to the Chebyshev measure (1 — x2)* with
a = — 3. For the second term use the polynomials, 1, 2'/2T (x),

2!/2Ty(x), - - - which are the orthonormal Chebyshev polynomials. In this case

AEMTEN(x) = 1 + 22, T(x).
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Using the fact that d(x;, £) = s we then find that

1
s = — — (1 +23°_,T*(x,))-
g(,) ( 1 1( ))
The solution £(i) in (4.3) is then obtained using the fact that T;(x) = cos j# where
x = cos @ and (see Jolley (1961)]

, cos(r + 1)@ sin rf
2J'=17;'2(x) = %(r + ( sin)0 )
U.
= %(r "‘%"‘ 2’2(x) )-

Proor oF THEOREM 4.1. For the optimal design £ the canonical moment
Py, = 1 implies that c,, has a maximum value given the set cg, ¢y, * + -, ¢,,_;. The
support points of £ are then x = = 1 and the zeros of the polynomial Q,_,(x)
orthogonal to the measure (1 — x?) d§,(x). See Karlin and Studden (1966), Ch. IV.
These polynomials will be obtained using continued fractions.

Consider a given set of moments c,, ¢;, -+ - corresponding to some £ and take

o it 2 0, O G
IR oW =, + = + e +
in a continued fraction form

1 G e G
Aw+ B, — Aw+ B, — —Aw+ B, —

(4.6)

The polynomial orthogonal to £ of degree k is given by the denominator of the kth
convergent. That is, take the expansion (4.6) only up to the kth term and express it
as a ratio of two polynomials. The denominator is the required polynomial. See
Szego (1959), page 55.

For the optimal design £, we have c,;_, = 0 and =c,,w* has the expansion
1 dw? dw?
4.7) T-"1 -1 -
where d; = m,(1 — m;_,),i=1,2,- -+ ,my = 0 and m; = p,,. The moments for the

measure (1 — x?)d§,(x) are ¢; — c;,,. Using Wall (1940) the expansion for 2(cy;
— ¢,;+2)w% can be obtained from (4.7) and is

1 -1 - 1 -

where a; = m;(1 — m;,,),i = 1,2,- - - and m, = p,;. We require the polynomials in
the denominators of the convergents of the continued fraction expansion of

(4.9) =0

(4.8)

C2i — Cpi42
Wi+l

Replacing w by 1/w in (4.8), multiplying by 1/w and making some “equivalence
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transformations” (see Wall (1948)), we can express the expansion for (4.9) as

(4.10) i‘ﬁ_ﬂ_ﬁ_..._ﬂ_..
w w w w

The proof now involves terminating the expansion (4.10) at £k = n — 2 and finding

the resulting denominator. Basically the a; values break into two parts. Those in the

first part are associated with the Chebyshev polynomials or arc-sin law and those in

the second half are associated with Lebesgue measure. Certain formulas in con-

tinued fractions allow us to write the resulting polynomial in the form (4.1).

A number of facts are required concerning the quantities a; = p,,(1 — py;,,)-
For the Chebyshev or arc-sin measure proportional to (1 — x2)* with a = — %, the
canonical moments are all p; = % (See Skibinsky (1969)). These are the same as the
first part of the canonical moments corresponding to the optimal £,. Thus the
values a;,a,,- - -,a,_, are the same values that would have been obtained by
starting in (4.7) with the Chebyshev measure. The polynomials for the difference
moments as in (4.9) correspond, at least for the classical polynomials, to the
derivative of the corresponding polynomial for the given moments. Thus, if we
truncate the expansion (4.10) at k < r — 1 the corresponding polynomial is T, , ,(w)
with leading coefficient equal to one.

The value a, is given by (4.2). The remaining set of values a, ., ®,,5," - -, &,_,
are related to the uniform measure which has p,; = i/(2i + 1). Let the correspond-
ing a; obtained as above for the uniform measure be denoted by «;. It can then be
checked that the reversed values «,_,,@,_3, - ,a,,, are aj, a5, - -. Thus o) =
a_q_pi=12,-- n—r—2

The proof can now be completed by taking the terms in (4.10) up to k = n — 2,
and applying certain basic formulas in continued fractions. These are given in
Perron (1954) and are as follows. Let

P R
° 7 b, b, B,
and define
a2a3u .. ao
5= Ky 37)
Then
axas---a, a,a,_1°"°ay
@1 Koo ) = *on )
Moreover, if
Ar428r43° " a}\+o)
B, = K
oA (bA+lb/\+2' o b}\+o
then

(4.12) B,ia-1 = By_1B,\_1 + ay\B\_1,B,_, ).
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The polynomial in (4.1) is obtained from (4.12) if we let A=r+ l,v = —r +
l,a;,,, = —a;,b; = w and use (4.11) on the two B terms with double subscripts.

5. Examples. From Theorems 4.1 and 4.2 the D,-optimal design has equal
weight 1/(n + 1) on the zeros of (1 — x2)P/(x) = 0. It was mentioned earlier that
the D, and D-optimal are the same. That is, the design maximizing | M|/| M,,| and
| M| are the same since f, = 1 and M,, = 1. The D-optimal design has the property
that d(x,£&) = f'(x)M~'(§)f(x) < n + 1 while by (1.4) d,(x,£) < n for the D,-
optimal. A small amount of matrix calculation will show that d(x,§) = d,(x,§) + 1
so that one may show the equivalence of the D, and D-optimal designs using the
quantities d,(x, £) and d(x, £).

At the opposite extreme where s = 1, the variance of*the least squares estimator
of only the highest coefficient 8, is being minimized and Theorem 4.1 shows the
support of §,_, to be on the zeros of (1 — x?)T(x) = 0. These zeros are x, =
cosvw/n,v=0,1,- - -, n. For the interior zeros U,,_,(x) = 1 which implies weight
1/n is on each interior point. This leaves 1/2n on =1. This is the design
mentioned in the introduction.

It is easily seen that U, (1) =2r + 1 implying that the weight given to +1 by
£, is

1

(5.1) £J(+1) = 51(—1) = m s = 1,2’...,,’.

Whenever n is even x = 0 is in the support of £, for each s. Since U,,(0) = (—1)"
we find

(5.2) £,00) = 2 — s =1,2,-++,n,neven.
2n+ 1+ (=1)"°

Consider the case n =4 and s = 2, where, for example, we might have a
quadratic regression but are guarding against terms involving x> and x* To
investigate these terms a design using £, might be appropriate. Theorem 4.1 shows
the interior support points are the zeros of

(53) p3(x)75(x) — g75(x) = 0.

Checking the polynomials P, and 7,, say from Davis (1963) page 369-371,
equation (5.3) becomes 12x> — 5x = 0. Using (5.1) and (5.2) and the symmetry of
£, we find that the D,-optimal design £, concentrates mass

(54) 7% 5 % 7
on the corresponding points

1/2 1/2
(5.5) -L-(3)0,(3)" 1

We can reverify that this is the D,-optimal design by checking that d,(x,§,) < 2.
Using the design above or using the results of Section 3, we find that the moments
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of £, are ¢,;,.; =0, and

=1 =3 = 31 = 347
€y = 3504 = §:C = 965C8 = Tis2°
It then follows that
. i 0
M, M, = 1 g B
~% 2
and
1
= 0

My — My M'M,, =

The inequality d,(x,£,) < 2 then becomes
24(x* - 23x)" + 12(x* - 2x2+1)’ < 2.

This can be checked and equality shown to hold for the support points given in
(5.5).
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