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ON MAIN EFFECT PLUS ONE PLANS FOR 2™ FACTORIALS

By SuBIR GHOSH
Indian Statistical Institute

In this paper, we obtain main effect plans with N=m + 1 + (m — h)
(h + 1) treatments for 2™ factorial experiments, m = 2% — 1, k(> 2) an integer,
which permit search and estimation of one possible nonzero effect among two
factor and higher order interactions.

1. Introduction. The problem of finding main effect plus one plans for 2™
factorials, where m = 2* — 1 and A(> 2) is an integer, was first considered in [5]. A
sufficient condition for a plan to be ‘main effect plus one’ stated in Theorem 6.2 in
[5], was incomplete and hence, incorrect, because one case was not taken into
consideration. In this paper, we not only correct the theorem but also present
several new results.

2. Search linear models. Consider the linear model
(1) E(y) = A\ + 45,
(2 (y) = 0211v’
where y (N X 1) is a vector of observations and for i = 1,2, 4(N X »,) are known
matrices, £(», X 1) are vectors of fixed parameters, and o2 is a constant which may
or may not be known. Furthermore, §, is completely unknown, but we have partial
information about §&,. We know that at most k elements of £, are nonzero and the
remaining elements are negligible, where k is a nonnegative integer which may or
may not be known. In this paper, we assume k is known to be 1. However, we do
not know exactly which element of § is nonzero. The problem is to make
inferences about the elements of § and, moreover, to search the nonzero element
of & and make inferences about it. Such models are called search linear models
with fixed effects and were introduced by Srivastava in [4]. We want 4, and 4, to
be such that the above problem can be resolved; the underlying design correspond-
ing to A, and 4, is called a search design.

The case when o2 = 0 is called the ‘noiseless case’, and is of great importance
from the design point of view (see [5]). We now state a result of Srivastava in the
special case for k = 1.

THEOREM 1. Consider the model (1, 2) and let 6> = 0, k = 1. A necessary and
sufficient condition that the search and inference can be completely solved in the
noiseless case, is that for every (N X 2) submatrix A,, of A,, we have

3) Rank[ 4, : dy] = v, + 2.

Received January 1978; revised September 1978.

AMS 1970 subject classifications.  62K15

Key words and phrases. Linear models, search designs, factorial experiments, main effect plans.
922

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%%

The Annals of Statistics. MIK@IN
WWWw.jstor.org



MAIN EFFECT ONE 2™ FACTORIALS 923

By ‘completely solved’, we mean that we will be able to search the nonzero
element of &,, without any error, and furthermore obtain estimators of the nonzero
element of & and the elements of ¢ which have variance zero. We say the matrix
[4, : 4,] has the property Pj if the condition (3) is true for every submatrix 4, of
A,

3. Main effect plus one (MEP.1) plans for 2™ factorials. Consider a 2™ fac-
torial experiment. The treatments are denoted by (x;, x,, * * -, X,,), where x, =0
or ,r=1, 2,---,m. Let the ‘true effect’” of the treatment (x,- - - x,) be
&(x, * - x,,). We write

4) o(x;- - x,) =p+ 27 aF; + 2'1":,i2-1;i,<i2ailai2F i

iyip

+3m oo Fo .+ g, Fip

ip iy iy=1 | <ip<i3 iy iy iy higis
where p is the general mean, F; the main effect of the ith factor, F;; the two factor
interaction between the factors i, and i,, and so on, @; = 1 or —1 according as

x;=lor0i=1---,m Let y(x,--,Xx,) be the observed response corre-
sponding to (x,, * - * , X,,). Then our model for the noiseless case is
(5) y(xl e xm) = ¢(xl te xm)'

Let T be a design consisting of the N treatments (X, X,5 * * * 5 X,,), I =
l,---,N. We shall write T as a (N X m) matrix with the rth row
(X,15 X0 * * * » X,m)- Let y(N X 1) be the observation vector corresponding to 7.
We now define two vectors of parameters §,(v; X 1) and &,(», X 1), where
(6) vy =m+1, v, = 2" — »,

(M § = F, -, F,),

55 = (FIZ’ et ’Fm—l,m’ tte ’F12~~m)'
Consider the model (1, 2) with »,, »,, §, & as in (6), (7), and 4,, 4, as determined
by T and (4). The Hadamard product of two vectors a = (@, a,, * * * , ay)’ and
b = (b,, b, - - - by) is defined as axb = (a,b,, - - - , ayby). It is important to note

that the column of 4, corresponding to the element F, , ..., (/ > 2) of & is the
Hadamard product of the columns of A, corresponding to the elements
F,,F,, - ,F,of§.

The main effect plans (or the designs of resolution III) allow estimation of §,
under the assumption & = 0 in our model.

DEFINITION 1. A search design T for a 2™ factorial experiment is said to be a
‘main effect plus one plan’, when in the search model (1, 2)»,, »,, §,, §, are as in (6)
and (7), k = 1; and 4, and 4, are determined by T and (4).

For brevity, we write ‘main effect plus one plan’ as MEP.1 plan.

4. Conditions on existence of MEP.1 plans for 2™ factorials. We now consider
the problem of obtaining ‘good” MEP.1 plans. Suppose T = T, + T,, where for
i = 1,2, T(N, X m) are designs with N, observations, and T(N X n) with N = N,
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+ N,. Fori=1,2, let y(N; X 1) be the observation vector corresponding to T..
We write

(®) Ey, = A& + Ak,

&) Ey, = A& + Apb,

where for i = 1, 2, 4;, and 4, are (N, X »;) and (&, X »,) matrices. Let T, be such
that Rank (4,,) = »,. We have y' = (y},¥5) and 4] = [4],,45,] for i = 1, 2. We first
take a design 7, with N, treatments which is a ‘good’ main effect plan. We then
consider the problem of selecting a design T,(N, X m) with N, treatments so that
the design T = T, + T, with N = N, + N, treatments is a MEP.1 plan.

Suppose m = 2" — 1, where h(> 2) is a positive integer. We now consider the
classical optimal main effect plan T,(N, X m), where N, = m + 1, for which 4,,
has the following ‘group structure’. Consider the columns of 4,, corresponding to
F,---,F, and the (m + 1 X h) submatrix of 4,,. In this submatrix, the 2*
vectors (x,* * * , X,), X; = + 1 or —1, appear as rows. The other columns of 4,,
are filled by taking the Hadamard product of any two or more of these 2 columns.
Clearly, A4},4,, = NIy, where I is the identity matrix of order N,; and,
furthermore, the district columns of A4,, are the same as the columns of 4,,. We
want T,(N, X m) to be such that the matrix

(10) [4,:4,] =

has the property P5. It can be checked that the matrix in (10) has P if and only if
(iff) the matrix

(1)

(12) LR =[B:B,], say.

We therefore want 7, to be such that for any two distinct columns b,, b, of B,
(13) Rank[ B, b;, b,] = m + 3.

Suppose €;(N; X 1) is a vector whose ith coordinate is 1 and whose other coordi-
nates are zero. Define

(14) B, =

where (N, X 1),i=1,---,N,,dy(N, X 1) and §(N, X 1). We consider two
cases (a) d, # d, and (b) d, = d,, separately. (a) d, # d,. Suppose d;, = e, and
d2 = eiz'
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THEOREM 2. The following are equivalent:
(i) Rank[B,, b,, b,] = m + 3;

[ e,e,d,d,

(11) Rank|. .+« .. .. = 4;

(ii) Rank|0 1 0 1 | =4

o a; 8 5,
@iv) 0 # (8, — a,.]) # * (6, — a,.z) # 0.

Proor. The equivalence of (i)—(iii) is easy to see from the structure of B, and
e(k=1,---,N,). We prove only the equivalence of (iii) and (iv). Denote the 4
columns of the matrix in (iii) by C,, C,, C; and C,. Then consider
(15) 0lCl + 02C2 + 03C3 + 04C4 = 0,
where 6,, 6,, §; and 8, are constants (real numbers). Clearly, 4, + 6, = 0 and
0, + 0, = 0. Thus, we have
(16) 01(61 - a,-l) + 02(62 - aiz = 0.

The rest follows from the fact that the distinct elements of §, — a, k=12, are0,

2 and —2. This completes the proof of the theorem.
(b) d, = d,. Suppose d; = d, =¢;,.

THEOREM 3. The following are equivalent:
(1) Rank[B,, b;, by] = m + 3;

e,d,d

(iv) 0+ (8, — @) #* 6, ~ ;) #0.

PrOOF. Similar to the proof of Theorem 2.

The results stated below are very useful in finding MEP.1 plans.

LemMA 1. If 8, * @; # 8, * @, , i.e., the vectors 8, * a; and 8, » o, are distinct,
and, moreover, 8, * @, * 1 for k = 1, 2, where 1 is a vector with all elements unity,
then

(17) 0+ (8 —«a)**(3—-q)+*0.

PrOOF. We write, for k = 1, 2,
(18) (& — @) = a, * (8 *a, — 1)

The rest is clear.
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LEMMA 2. Suppose 8, * a; and 8, * a; , i.e., two vectors 8, * a; and 8, * a;, are
identical. If there are two treatments in T, for which

(a) the elements in 8, * a; and &, * a; are equal to —1 for both cases, and

(b) the elements in a; and a; are equal in one case and different in the other case,
then,

(19) 0+ (8 — ai,) # + (8, — aiz) # 0.
The converse is also true.

Proor. The result can be seen by considering (18).

LEMMA 3. A4 necessary and sufficient condition that 0 # (8, — a;) # (8, — ;) #
0 is that

@) forj=1,2,8; * a; # 1 (or, equivalently, §, # a;),
and

(b) 8, * a; # 8, * a; (or, equivalently, 8, # 8,).

The set G={p; F, - ,F,; Fpy---,F, Fio s Fp g et m
Fiyse -+ Fiy...,,} forms a commutative group of order 2” in which yu is the
identity element, F,, - - - , F,, can be regarded as generators, each F; is idempotent
(e, F?=p,i=1,- - -, m), and multiplication is defined as in ordinary algebra.
For convenience in notation we denote p by F,. We now consider the factorial
effects, which are elements of §,, so that the corresponding columns in the matrix

-1, m>

Ay, are (1 - - - 1), i.e., the same as the column in 4,, corresponding to u. It follows
from the nature of T, that they are three factor and higher order interactions and
their number is 27" — 1. We shall name these factorial effects as (T My
T s Ty h—t.m—h5 123 ° ° ° 5 T12...m—p) Where the 7’s are factorial effects in
. (Note that 7, ; ..., = m 7, - - - m). The = effects are known as defining con-
trasts. The set H = {pu; 7, * * , Tp_p> M1 * > Tiz...m—p) IS @ commutative
group of order 2™~* in which p is the identity element, 7, - - -, m,_, are
generators, and 72 = p,i =1, - - , m — h. Thus H is a subgroup of G. It can be

easily seen that, fori = 1,- - -, m, FH = {F,hlh € H} are cosets of H in G. The
columns 8, * a;, &, * @, in Lemmas 1-3 are, in fact, the columns corresponding to
the #’s.

THEOREM 4. A necessary and sufficient condition that the design T = T, + T,
with N = N, + N, treatments is a MEP.1 plan is that

(i) the 2™~" — 1 columns in A,, corresponding to w’s are all distinct and, moreover,
none has all elements + 1.

(i) for any m,,,, ...,, and for any two factorial effects F, and F,(0 < u,v < m;
u # v), there are at least two treatments X, = (x,.l, Xip "t x,.m), i =1, 2, such that

(@) Xp Xiw, " * * Xpy, = — 1fori=1,2,

(b) Xy = Xpp and X2u ?&sz.
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ProOF. The pairs whose members are elements in &, can be any of the 4 types:
(T Moy o0y (FuTuy o ois FuTl, o o)
(Furyy o FoTroy o0y (FuTluy oo FoTuy oo )s

where u v, k > 1,/ > 1. The proof is now immediate from Theorems 2-3 and
Lemmas 1-3.

Note that Theorem 4 is a correction of Srivastava’s earlier result where the case
corresponding to the pair (F,7, ..., F,7, ..., ) has been ignored.

COROLLARY 1. Under the conditions of Theorem 4, we have
(20) N, > (m—h)(h+1). "

ProOF. We need at least m — h treatments to satisfy the condition (i) in
Theorem 4. For any =, ...,, we need at least # + 1 treatments to satisfy (ii); the
column in 4, corresponding to =,, ...,, for these A + 1 treatmentsisa (b + 1 X 1)
vector with all elements —1. It is now easy to see that N, must at least be
(m — h)(h + 1). '

5. Equations over GF(2). Consider the equation

(21) Ax = C

over GF(2), where A4 is a known (m — h X m) matrix with Rank(4) = m — h, Cis
a known vector of order (m — h X 1). The distinct elements of the matrix 4 and
the vector C are 0 and 1. The number of solutions of (21) is equal to N, = 2*. Let T
be a (N, X m) matrix whose rows are solutions of (21). We then have the following
result.

THEOREM 5. Consider the equation (21). Then
(i) Rank T'= h, if C= 0,
and
(ii) Rank T=h + 1if C#0.
Consider the case C # 0 and take a set of 7 + 1 independent solutions

X;» Xy, * * » X4 Then the other 2* — h — 1 solutions can be expressed as the
linear combinations of x;(i = 1, - - , h + 1). Consider

(22) Yy = oX + X+, Fo X

where a;’s are either 0 or 1 and the weight of the vector (a;, ay, - * -, @) is an

odd number. (The weight of a vector is the number of nonzero elements in it.) In
fact, y’s are all solutions of (21). Notice that

(23) 2’*=("“1“1)+(’“3“1)+(h;1)+...
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Suppose T, is a (h + 1 X m) matrix whose rows are X;, X,, - * * , X;,;. f C=0,
then we take a set of independent solutions x§, x§, - - - , x} and the null vector
x},,=(@,---,0). We now form a (h + 1 X m) matrix T, whose rows are
x¥, x3, - - -, x} ;. Thus for any C, we form a (A + 1 X m) matrix T, We write

(24) To =[by,by - -+ ,b,],

where b; is a (h + 1) vector.

Suppose the weight of any vector (except the null vector) in the row space of A4
is greater than or equal to 3. Then it is well known that 7'(m X N) is an
orthogonal array (OA) of strength 2 (see [6]).

THEOREM 6. Consider the equation (21) and the matrix T, in (24). Then

@b;,#0,1fori=12---,m,

(i) b, + b, #0, 1 for i,j=1,2,- -+ m and i ¥j, where 0 and 1 denote the
vectors all of whose elements are O’s and 1’s respectively.

Proor. Note that T is a submatrix of T, where T is an OA of strength 2 and
hence, of strength 1. Furthermore, any row in 7, which is not in T, is a linear
combination of the rows in 7. It can now be checked that if (i) and (ii) are not
true, then 7, cannot be an OA of strength 2. This completes the proof of the
theorem.

6. Construction of MEP.1 plans. We now discuss a method of construction of
MEP.1 plans with N=m + 1 + (m — h)(h + 1) treatments for a 2™ factorial
where m = 2* — 1, and & (> 2) is a positive integer. It is well known that there is a
correspondence between the factorial effects for a 2™ factorial and the equations
over GF(2) (see [1]). For example, the factorial effect F;; ..., corresponds to the
equation x; + x; + - -+ +x;, = C, where C is either 0 or 1. Consider the m — h
factorial effects =, 7y, - - - , m,,_, defined in Section 4 and get the corresponding
equation of type (21). We shall consider the equation thus obtained for a specified
m — h values of C. We write

(25) Ax = CO, i=1,---,m=—h,

where C? is a (m — h X 1) vector whose ith coordinate is 0 and the other
coordinates are 1. Notice that the m — h factorial effects m(i=1,---,m — h)
are independent, i.e., Rank (4) = m — h and, moreover, the weight of any vector
(except the null) in the row space of A4 is greater than or equal to 3. For
i=1+--,m— h, we get matrices Tp;(h + 1 X m) as described in Section 5. We
now form 7, = Ty, + Ty + - - - + Ty, With N, = (m — h) X (h + 1) treatments.
It follows from Theorems 4 and 6 that the design T = T, + T, is a MEP.1 plan
with N=m + 1 + (m — h) X (h + 1) treatments. We illustrate the above method
with the following example.
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ExaMpPLE. Consider m = 7 = 2> — 1, h = 3. The main effect plan T,(8 X 7) for
a 27 factorial is

QOO M mm O -
QOO MmO -
O OO O =
—_—_0 O = OO
—_-OoO = OO =O -
—_— OO OO =
O == OO O

Here, the number of 7’s =27 "% — 1 =2 — 1 =15, and 7, = Fp, 1, = Fi35, 73
= F,s, and m, = F\,3,s¢;- Thus we have the following equations over GF(2).

(26)

X+ x, + x, =C,,
X + X, + x5 =C,,
x2+ X3 + x6 = C3,

xXp+ X+ X3+ X4+ X5+ xg+x,=C,,

where for i = 1,2,3,4, C, =0 or 1. The (4 X 7) matrices Ty, (i = 1, 2, 3, 4) are
obtained by interchanging the columns 4 and 7 of the matrices Tg(i = 1, 2, 3, 4),
where

Ts =[1s: U],

[0 1 1] (1 1 0]
|1 o0 1 _|0o o o
Ui 0 0 o’U2 1 0 17

(1 1 0] (0 1 1]

[0 0 O] [0 1 0]
|1 1 0 |1 0o

Us 0 1 1 » Us 0 0 1]
1 0 1 1 1 1

Thus, T, = Ty, + To + T3 + To4 is a design with 4 X 4 = 16 treatments. The
design T= T, + T, with 8 + 16 =24 treatments is a MEP.1 plan for a 2’
factorial experiment.
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