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CONVERGENT DESIGN SEQUENCES, FOR SUFFICIENTLY
REGULAR OPTIMALITY CRITERIA, II: SINGULAR CASE!

By CorwIN L. ATWooD
EG & G Idaho, Inc.

Let an optimality criterion & satisfy regularity conditions, including con-
vexity and possession of two continuous derivatives at nonsingular M. ®{M)
may be minimized at a singular M. A class of design sequences{£,} is shown to
make ®[M(£,)] converge monotonically to the minimum value. An equivalence
theorem for ®-optimality follows. Techniques which are applicable include
vertex direction, conjugate gradient projection, quadratic and “diagonalized
quadratic” methods for changing the design weights, and gradient-based
methods for making small changes in the support peints. Methods are also
considered which approximate ® by a criterion which is infinite for singular M.
The results are applied to an example with D -optimality.

1. Introduction. This paper generalizes to ®-optimality the iterative algorithms
of Fedorov [7], Wynn [22], and Atwood [3] for D,-optimality and of Fedorov [7],
and Tsay [18] for L-optimality. It extends the results of Atwood [5] on quadratic
design sequences and of Wu [20], [21] on gradient projection methods to the case
where the ®-optimal design may be singular, and develops more fully the technique
of sliding support points, introduced in [5]. It generalizes to singular ®-optimality
the equivalence theorem of Kiefer [10] for D,-optimality.

The results are valid for nonsingular as well as singular optimality criteria. In
particular, the use of diagonalized quadratic increments and/or sliding support
points (Sections 3D and 3E) will probably be helpful with nonsingular criteria such
as D-optimality.

Before treating the general results, we summarize the relevant facts about D,-
and L-optimality. These criteria will serve as examples of and motivation for the
results of Section 2.

Consider a regression model with uncorrelated observable random variables Y,
each having mean f7(x)0 and common variance. Here 0 is an unknown k-dimen-
sional parameter and f is a vector of regression functions on the Euclidean space %X
where observations may be taken. A design £ is a probability distribution on %. If
£ can be realized as a distribution of n x’s in %, then the least squares estimator ()
has covariance matrix proportional to M~!(£), where the information matrix M(%)
is defined as M(¢) = [T(x)f7(x)&(dx).

For some designs, e.g., those intended for estimating the first s components of 6,
M may be singular. Let M~ be a g-inverse of M as in Rao [13] Section 1b.5, and
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make the partitions

[2] - 3]l

0, M, M, M2l M2
where 0, is s-dimensional and M,, and M"! are s X s. Define also
(1.1) M* = M, — M,M;;M,,.

It is not hard to show that M* is unique, regardless of the choice of the g-inverse
M_;. (Set X = M;,M,, in Lemma 6.2 of Karlin and Studden [9]).

If M is nonsingular, M~ = M™', If M is singular, M~ is not unique. However, it
is not hard to show that 0, is estimable iff M* is nonsingular, in which case M'" is
unique and equal to (M*)~! and proportional to the.covariance matrix of 6,. (See
Section 4a.4 of Rao [13]). Call M* the information matrix of é,. One way to find
M* or M'! is by taking limits as in Chernoff [6]. Let A be symmetric such that
M + «A is nonsingular for « near 0. Then

(12) M* = lim,_o[M + aA]*

a

M!! = lim, ,[M + aA]".

The limit M* is independent of A and the limit M"! is finite and independent of A
if M* is nonsingular.
To consider the continuity of M*, define the ordering

1.3 M, >M,eM - M is nonnegative definite
1 2 1 2

with strict inequality if M, # M,. For symmetric M + B > 0 it is true that
(M + B)* < M* + C, where C — 0 as B — 0, so that if the limit exists,

limy_o(M + B)* < M*.

Strict inequality can hold if rank (M + B) > rank M. So M* is only upper
semicontinuous in M at singular M, even though it is continuous along straight
paths, i.e., (1.2) holds. As for derivatives, the directional derivative

(14) O[M + aA]*/0a|,—o

is defined. But M* cannot be considered differentiable at singular M, even where
M* may be continuous, because (1.4) is not linear in A at singular M. The
corresponding assertions about M'' hold where M* is nonsingular. These facts are
all stated or implicit in [6] and [10].

Simple examples aid the intuition. As an illustration of discontinuity, consider
estimation of 8, in the model f7(x)0 = 6, + x0, for 0 < x < 1. Let §, and £, be
concentrated at 0 and x > 0, respectively. Then M[(1 — a)é, + af,] > M(§) as
either « — 0 or x — 0. If x > 0 is fixed and a — 0, then M*[(1 — a)§, + af,] =1
— a > M*(&). But if a is fixed and x — 0, then M*[(1 — a)§, + af,] remains
constant. As an illustration of continuity but nondifferentiability, consider M* at
M(£*) in Kiefer’s example on page 309 of [10].
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With this background, we are ready to consider two optimality criteria which
satisfy the assumptions of Section 2. They are D,-optimality:

®(M) = —log|M*|
and L-optimality:
®(M) = tr CM™!
where C is given, symmetric and nonnegative definite. If M is singular, define the
L-optimality criterion as
®(M) = lim,_gtr C[M + aA]™"
where M + «A is symmetric and positive definite for small a« > 0.

There is a representation which is useful for checking that L-optimality satisfies
Assumptions 4 and 5 below. If C has rank s < k, let P be orthogonal such that

r_|D 0
PCP [0 0}

for some s X s matrix D. Then
®(M) = lim,_o+tr C(M + aA]™" = lim,_o+tr PCPTP[M + aA] " 'P”
(1.5) tr D[ (PMPT)*] ™"

if PMPT)* is nonsingular, and ®(M) = oo otherwise. So the L-optimality criterion
can be expressed in terms of the s X s information matrix of (P9),.

2. Main results. Let f, %X, £ and M be as defined above. Let = denote the
class of designs, and E* the (nonempty) class of nonsingular designs, i.e., designs
with M(§) nonsingular. Let M = (M()|¢ € E}, let IM* = (M()|¢ € Z*}, and let
R be the set of all k X k matrices, with the Euclidean topology and some norm
I |l. We will use the convention that M denotes an element of 9 while A and B
are arbitrary elements of &, and that £ denotes an element of = while 7 is a signed
measure. Let @ be the criterion function to be minimized.

ASSUMPTIONS.

1. fis continuous and % is compact.

2. @ is defined and real valued on 9, a neighborhood in R of M *.

3. The first two partial derivatives of ® exist and are continuous in 90, with

0P(M + aA)/da|, .o
and
3°®(M + aA + BB)/3a 38|40, g=0
linearin Aand Bforal M € N, A € R, BeE R.
4. ® is convex on IM*.

5. 3’®(M + aA)/da’|, > 0 for all M € 9+ and symmetric A such that 9&(M
+ aA)/daly # 0.
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These assumptions do not require ®(M) to be defined for singular M. One
approach, followed by Gribik and Kortanek [8], is to call £* “limit optimal” if there
is a sequence {M,} in ON* such that M, - M(*) and ®M,) — infey+P(M).
Gribik and Kortanek define ®(M) = oo for singular M, but they could have
defined it arbitrarily or left it undefined, since limit optimality does not depend on
the value of ®(M) at singular M.

Another approach when M is singular is to define

(2.1) O(M) = lim,_g+infy s _ <. 2(M)
for M’ in OTL*. It is easy to show that with this definition @ is convex on all of 9.
Convexity and (2.1) imply that for (1 — )M + aM’ € O™,

lim, ,®[(1 — &)M + aM’] = ®(M).

Moreover, £¢* is ®-optimal, i.e., M(£*) minimizes ®(M) over I, if and only if £* is
limit optimal. This approach fits our earlier definitions of D,- and L-optimality,
and is the one we will follow.

Now for some further comments about the assumptions. Assumption 1 implies
that = and 9 are compact, so an optimal M(§) exists. Also, inf ®(M) is finite,
since ® is convex on a compact space. The linearity part of Assumption 3 gives the
usual relations between directional derivatives and partial derivatives. Assumption
5 is not required to prove the main convergence theorem, but it is required to
construct the quadratic and diagonalized quadratic increments of Section 3.
Assumptions 4 and 5 cannot be strengthened in any obvious way which is valid for
D,-optimality, since, if M moves along a straight path where M* is constant, ®(M)
is constant and so not strictly convex.

A criterion function ® which may be finite at a singular M will be called a
singular criterion. Singularity of ® is allowed by the assumptions but not required,
so the results which follow also apply to nonsingular criteria such as D-optimality
and L-optimality with nonsingular C.

A condition which implies Assumptions 4 and 5 is given by the following lemma.
Call ¥ an order reversing function of symmetric matrices of a given size if
Y(M,)) < ¥(M,) when M, > M,.

LeMMA 2.1. If ® satisfies Assumptions 1-3, and ®(M) = ¥(M*) for some order
reversing ¥ with

(2.2) C 32¥(M* + aA)/0a?, > 0
for all s X s symmetric A # 0 and all nonsingular M*, then ® satisfies Assumptions 4
and 5.

PrOOF. As shown by Kiefer [10], M* is concave in M, with respect to the
ordering (1.3), so if M, and M, are in 9,

O[(1 — )M, + aM,] = ¥{[(1 — )M, + aM,]*}
Y[(1 - a)M} + aM}‘] < (1-a)¥M}) + a¥(M2)
(1 - a)®(M,) + a®(M,)

N
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by the order reversing property and convexity of ¥ respectively. So ® is convex. In
fact, if M moves in a direction such that the first directional derivative of ®(M) is
not zero, then M* must initially move in some direction. By (2.2), the directional
second derivative of ® must therefore be nonzero. []

This proof imitates Kiefer’s proof [10] of convexity for D,-optimality. The lemma
applies to D,-optimality immediately, and to L-optimality after the reparametriza-
tion (1.5).

The algorithm below gives a class of sequences {£,}, and the accompanying
theorem proves that ®[M(£,)] converges monotonically to the optimal value. First
come the necessary definitions and notations.

Let £, denote the design supported at a point x, and for M(£) nonsingular define
o(x, §) = —8<I>{M[(1 —a) + ouﬁx]}/aoz]0
?(§) = max, ¢(x, §).

If the criterion is D,-optimality, then @(x, §) = d,(x, §) — 5. Assumptions 1 and 3
imply that ¢(x, £) attains its maximum at some x. Since [¢(x, §)§(dx) = 0, we see
that @(x) > 0.

Fix ¢,, ¢,, &, a,, and a, with

0<eg <eg <1

and &, a, and a, all > 0 and < 1. In practice &; will be near 0 and a, near 1. These
constants determine how fast the design sequence may approach a singular design,
how much time should be spent on each iteration searching for the best improve-
ment in a given direction, etc.

Let 4 be any matrix- or real-valued function defined on 9" such that for a > 0,

M, > aM, = h(M,) > ah(M,)
and such that for M, nonsingular and a > 0,
(M € I |h(M) > ah(M))}

is a compact convex subset of M *. Examples are A(M) = M, (M) = |M|'/*, and
AM) = 1/tr(M ™).

Let £, have finite support with M(§,) nonsingular. At every iteration, a nonsingu-

lar design £, and a number ¢, > 0 are generated. Write ¢, for @(§,) and M,, for
M(£).

ALGORITHM 1.

Step 1. Forn > 0, let
m, =& — &,
for some design £ such that
(2.3) IO[M(E, + am,)]/daly < — &,
Then let
(24) A4, = {a0<a <1 and o[M(¢, + ann)] -o(M,) < —ae@,,}.
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Let a, € A, be such that
(2.5) O[M(E, + ayn,)] — ®M,) < g {min,c, O[M(, + om,)] — (M,)}.

Step 2. If M(, + a,n,) is singular, so necessarily a, = 1, redefine a, = a,.
(This increases ®[M(§, + a,m,)] — ®(M,) to at most a, times its original value, by
the convexity of ®@.) Define §,, = §, + a,1,,.

Step 3. If desired, replace §,, by some other £, ,, as long as ®[M(§,., )] <
S[M(§, ,)] and

(2'6) h[M($n+l)] > cnh[M(£n+)]
for some ¢, with 0 < ¢, < 1 and I[gc; > &,;. If no modification of £, is desired, let
$n+l = £n+ and Cn = L

Step 4. Find §(&,, ). If (&, ,) = 0, stop. Otherwise increase n by 1 and go to
Step 1.

The use of a two stage algorithm, where different kinds of design changes are
made in Steps 1 and 3, follows Wu [20], [21].

In Section 3, ways will be given for explicitly obtaining a number of 7, and a,
satisfying Step 1. For now, note that such 7, and a, > 0 exist. For if ¢(x, §,) is
maximized at x,, then the increment 7, = §, — §, satisfies (2.3). And if 7, satisfies
(2.3) then A4, is a nondegenerate interval containing 0; this follows from the
behavior of the defining inequality in (2.4) at a = 0, and the convexity of .

In Step 1, using &, < 1 allows 7, other than £xn — £,. Also, the numbers ¢, and a,
reflect the fact that in practice neither @ nor the minimizing a are known exactly,
but both can be known accurately enough so that (2.3) and (2.4) are achievable.

Step 3 might be used to improve the weights on the support points under
consideration, before taking the trouble to search for a new x which maximizes
@(x, £,,1)- As such it can itself encompass a finite sequence of iterations. Step 3
can also be used to move the support points or to collapse clusters of support
points. If @ is a nonsingular criterion, the restriction (2.6) is generally no problem.
For example, if ®(M) = — logM|, let A(M) = [M|"/*. If ®M) = tr CM~! for
some positive definite C, let A(M) = 1/®(M). Then (2.6) is automatic with ¢, = 1.
In the singular case (2.6) is necessary to keep M from becoming nearly singular
before it is nearly optimal. Ways to use Step 3 will be considered in Section 3.

THEOREM 2.1. Under Assumptions 1-4 the sequence constructed by Algorithm 1
satisfies ®(M,)) — infer+ ®(M) monotonically, and some subsequence of {@,} con-
verges to 0.

If for singular M, ®(M) is defined either by (2.1) or as + co, then infe, + (M) =
infeo, ®(M).

PROOF. Monotonicity is clear from (2.4). Inequality (6.5) of Kiefer [12] says
that for nonsingular £

2.7 P[M(§] — inf @M) < §(§).
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Suppose that ®M,) > inf ®(M) + & for all » and some § > 0. Then
(2.8) ¢, > 6 forall n.

This will lead to a contradiction, proving both assertions of the theorem.

By (2.4), lim ®(M,) — ®(M,) < — ¢2a,p,. Since ®M) is bounded below,
Za,p, must be finite. From (2.8), therefore, Za, is finite. So, for some n, (with
ny = 0 if o; < 1 for all i),

Ip(l—a) > 0.
From now on, n > n, will be understood. Now
hM, 1) > ¢,h(M,,)
> ¢,(1 - a,)h(M,)
> [M6 ][I0 — @) ]A(M,, )

> &[] 7 [I20 — o) ]A(M,,)
= bh(M,,o)

defining b. Note b > 0. Since M, is nonsingular, we have that M,,, , and M,,, are
in 9N, a convex compact subset of ON* defined by IM,; = (M € IM*|hM) >
bh(M,, )}. Furthermore, there is a positive number C such that

IM — M| <C, ME M, M € M = M € IMN*.

Define

29 My, = (M € M| |M — M| < C for some M € I, }.
Then 9N, is a compact convex subset of 9N*. By Lemma 2.1 of [5], there is a
constant U’ > 0 such that for all M € 91, and all n = ¢ — £ for designs £ and §,
3?®[M + aM(n)]/8e%, < [M(n)|*U’
(2.10) < (diam M)V’
= U,

defining U.
Since M, is in 9N,, a sufficient condition for M, + aM(n) € I , is that
a € Ay = [0, a), where a, is defined as the smaller of 1 and C/(diam I).

Therefore
M, — 2(M,) < oM,,) — ®(M,)
< a,a, min, ¢, [®(M, + aM(7,)) — ®(M,)]
< aa minaEA,,[q)(Mn + aM(1,)) + a&,@, — ‘I)(Mn)]
= a,a, mino<a<|[¢'(Mn + aM(n,)) + ae@, — ‘I)(Mn)]
< aa, minaer[q’(Mn + aM(n,)) + a&p, — ‘I’(Mn)]
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< aa minaer[ —a(e, — &), + %“ZU]
(2.11) < a,a, minaer[ —a(e, — )8 + %azU]

by (2.5), (2.4), (2.3), (2.10), and (2.8). But in (2.8), § may be taken small enough so
that (¢, — €)8/ U is in 4,. In that case the minimum of the expression in brackets
in (2.11) is —(e, — ¢)%?/2U < 0. This implies that ®M,) > — oo, which is
impossible. []

COROLLARY 2.1. Under Assumptions 1-4, inf_.@(§) = 0.

Of course, for specific singular optimality criteria, the corollary follows from any
of the iterative results for those criteria, e.g., [22], [3], [18). Without a sequence of
designs with @(§,) — 0, the corollary is not obvious even for D,-optimality.

Corollary 2.1 allows us to prove an equivalence theorem for singular criteria.

THEOREM 2.2. Under Assumptions 1-4, if &* is nonsingular, then the three

conditions below are equivalent.
(i) &* is ®-optimal,;

(i) @E¢*) = infz.p(§);

(i) @E*) = 0.

ProoF. Corollary 2.1 gives (ii) « (iii). Inequality (2.7) shows (iii) = (i). Since
®¢) > 0, ()= (). 0

Although the most useful part of the theorem, namely (i) « (iii), is trivial, the
implication (ii) = (iii), is not self-evident without Corollary 2.1. The proofs of the
D,-optimality equivalence theorem given in [10] and [7] are incorrect at that point,
since they assume, explicitly or implicitly, that inf-.@(£) is attained in =™, which is
false if there is no nonsingular optimal design.

Theorem 2.2 is an analogue of Kiefer’s result [10] for D -optimality. One might
attempt to define @ at singular £ so that (iii) < (i) without the restriction that £* be
nonsingular. Such an extension based simply on defining @(x, ) as a derivative of
O{M[(1 — a)f + af,]} is impossible, as is shown by Kiefer’s example on page 309
of [10]. In that example M*(§) is 1 X 1. If ®(M) is any differentiable monotone
decreasing function of M*, and the parameter b? is greater than 4, then £* satisfies
(iii) but not (i). This example, but now with 1 < b? < 4, also provides a counterex-
ample to the L-optimality equivalence theorem as stated in [7], Theorem 2.9.2,
which incorrectly omits the restriction of nonsingularity. In that theorem ¢ is
defined at singular £ by formal analogy to the expression when ¢ is nonsingular,
using the Moore-Penrose inverse, rather than as a directional derivative.

To date, correct theorems which do not need the restriction that £* be nonsingu-
lar ([11], and [9] as modified in [2]) have defined the needed function ¢ at singular £
in complicated ways which are not written explicitly. For related further comments
see Kiefer [12] Sections 3K and 7, and Silvey [13a].

3. Techniques for changing design weights and support points. Theorem 2.1
gave a class of sequences such that ®[M(£,)] — infor+ ®(M). The present section
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gives explicitly some sequences in the class.

A. Vertex direction methods. As was mentioned just after Algorithm 1, {7,}
satisfies the necessary conditions if 1, = §, — §,, where x, maximizes ¢(x, §,). This
has been called the steepest descent method ([19] and [5]). Wu has pointed out that
@ is a derivative w.r.t. a rather than w.r.t. actual distance traveled in 91, so he
proposes “vertex direction” as a more appropriate term than “steepest descent”.

As in [3], an elementary modification is to consider removing mass at that y,
which minimizes @(x, &) over the support of £,. This can be fitted into Algorithm
1, with a > 0, by letting

g(x) = &(x)/[1 - &()]  for x #y,

gl(y n) = 0‘
Then define n, = ¢ — £,. It is not hard to verify that

3.1 0O[M(E, + am,)]/daly = — (¥, £)E(,)/[1 = &(0n)]-

Condition (2.3) is not automatically satisfied by 7,; it must be checked. If (2.3) is
satisfied then either 7, or m, may be used. One may choose between them by
computing both improvements, or by estimating these improvements with second
derivatives. If the decision is not too time consuming, this may accelerate conver-
gence.

If £,(y,) is very small, so that 1, does not satisfy (2.3), the mass at y, can still be
removed under Step 3 of Algorithm 1, as long as (2.6) is satisfied. However, it is
undesirable to do this often, since ®(M) only improves slightly each time.

B. Gradient and conjugate gradient methods. From now on let X, be a finite
set which contains x, and the support of £,. For £ supported on %, treat ®[M(£)]
as a function of m variables, the m weights w, = & ;) for y, € X,. Let w and u
denote the m-dimensional vectors with components £(y;) and 7(y;). (We use the
notation w, rather than £ to emphasize that only the weights are considered
variable. In Section 3E x, the vector of support points of £ will also be allowed to
vary.) Let g be the gradient vector, defined as the m-dimensional vector with ith
element

D[ M(, + af,)]/3al,.

One cannot use —g as an increment, since it does not satisfy the constraint that its
components sum to zero. However, the projection onto the constrained space could
be used, letting —u equal

(32) g — (m'gle)e
where e consists of m 1’s. This is similar to an algorithm in [17].

Wu [20] considers only nonsingular criteria. Having defined %X, he uses a vertex
direction 7 in Step 1 of Algorithm 1. Then he suggests using Step 3 to adjust further
the weights on %,, and advocates a conjugate gradient projection iterative tech-
nique to do this. Each u is a linear combination of the projected gradient (3.2) and
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the previous u. He continues iterating within Step 3 until uqu”g, is small, where u,, is
defined as the largest number such that w + uyu has all m components nonnega-
tive. See [20] for details.

We mention the method here in order to point out that a restriction of the
method can be used in Theorem 2.1, with possibly singular ® satisfying only
Assumptions 1-4. The restriction is that £, , can be modified by conjugate gradient
iterations as long as the resulting &, ., satisfies (2.6). Roughly, M, , , must not get
too close to singular before we move on to Step 4.

C. Quadratic increment. In Sections C and D, Assumption 5 will be used.

Let us follow the method of [5] and approximate ®[M(£)] by a quadratic Taylor
expansion about w, and choose u to minimize the expansion. Let X, and g be as in
3B, and let the Hessian H be the m X m symmetric matrix with ijth element

(33) 2@[M(&, + ab, + BE,)]/0a 8Blamo,p=0
for y, and y; in %,,. The Taylor expansion to be minimized is
(34) ®[M(4,)] + u'g + ;u"Hu

Expression (3.4) is to be minimized subject to 2y, = 0, i.e., u’e = 0, where e is
the column vector consisting of m 1’s. Let A be a Lagrange multiplier and set the
usual derivatives equal to zero.

(3.5) g+Hu—2e =0
(3.6) u’e = 0.
Since H is not invertible we must invoke, for the first time, Assumption 5:
3.7 viHv = 0 = vig = 0.
Therefore, if C(H) is the column space of H and v is arbitrary

vLC(H) = vvH = 07

=vlg by(3.7).

Therefore, g € C(H). So if A satisfies (3.5), then
(3.8) Ae € C(H).
There are two cases.

Case 1. e € C(H). The solution is formally written as
u=H(-g+Ae)
A = (e"H g)/ (¢"He)
for any g-inverse H™. (See Rao [13] 1b.5.ii.) The component of u which is in C(H)
is unique.
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Case 2. e & C(H). By (3.8), A must be 0. The resulting (3.5) and (3.6) have the

solution
u= -Hg+HH-Iv
where v is chosen such that u’e = 0.

In [5], page 1127 below (2.4), it was incorrectly claimed that if ® is nonsingular,
H must be nonsingular. (The notation of [5] uses n for our u.) If H is singular in [5],
then the explicit formula for n must be changed to that given here for u. This does
not affect the remainder of [5].

If a quadratic increment u is to be used in Step 1 of Algorithm 1, it must be
modified slightly to satisfy the required conditions. Let u, be the largest number
such that w + u,u has all m components nonnegative, where w is the vector of
weights of £,, and u is the solution of (3.5) and (3.6). Define u, = uu and let g,
have weights u,. Then 1, = § — £, for some design £, as assumed in Step 1 of the
algorithm. Condition (2.3) must now be checked. If (2.3) is not satisfied then use of
the quadratic increment in Step 1 is not covered by Theorem 1. Some other
increment must be used, such as a vertex direction increment or a weighted average
of a vertex direction increment and a quadratic increment.

Quadratic increments may also be used in Step 3 rather than Step 1. It may then
happen that the ith component #; is negative when w;, is very small (or zero). In this
case one could minimize (3.4) subject to the constraints u’e = 0 and ¥, = — w,.
The mechanics are similar to what has been done above, but with one fewer
variable. If then a search for suitable a is performed, it should be among
increments with components ay; for j # i, u; = — w;,. In all of this, the conditions
(2.6) and ®[M(, , )] < ®[M(£,, )] must be checked. If they cannot be satisfied, we
must leave Step 3.

D. Diagonalized quadratic increment. Computation of the quadratic increment
may be so time consuming that the method is not economical. A modification is
now given which is much simpler to compute but which still changes £, at many
points simultaneously.

Rather than using the full Hessian matrix H, use only the diagonal terms. That
is, define the m X m matrix J with J; = 0 for i # and

Jy = 3%®[M(¢, + af,)]/3a,
Then find u to minimize
(3.9) D[M(£,)] + u'g + juTJu

By Assumption 4, J is nonnegative definite. If J,; = 0, consider v which has all
components zero except for v,. For this v, v Hv = 0, so Assumption 5 implies that
vig =0, i.e., g = 0. Therefore, g € C(J). Therefore (3.9) is minimized just as (3.4)
is, but now the solution can be written explicitly. Note that e € C(J) iff J is
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nonsingular. So if J is nonsingular the solution is
= (=& +N/J;
A= (S ")/2I
If J is singular the solution is
= —8/Ji if J; #0
and the remaining components of 5 are adjusted so that =, = 0.

The same restrictions as discussed in the last two paragraphs of Section 3C must
be checked and obeyed.

Call this the “diagonalized quadratic” method. It is similar in appearance to
Algorithm II suggested by Titterington [17], and to others suggested there and in
[14], although the motivation seems to be different.

It is instructive to compare the gradient projection, quadratic and diagonalized
quadratic increments from a geometric viewpoint. The gradient projection (3.2)
reflects the geometry of the simplex rather than that of 9. The vector w lies in a
simplex, and every support point y, corresponds to a vertex of this simplex,
regardless of how close M(§,) is to M(¢) or to other M(g,j ). The quadratic method
reflects the geometry of 9 much more closely. The mixed partial derivatives take
into account the interaction of an M(§,) and M(gyj ) which are close to each other,
while the second derivatives w.r.t. each variable help correct for the varying
distances between M(£) and the different M(,). The diagonalized quadratic
method corrects for the distances between M(§) and M(,) but not for the
relationship between neighboring M(§,) and M(§ »)- Wu [20] uses gradient projec-
tions other than (3.2) which apparently are like the diagonalized quadratic method
in this respect.

A comparison of these methods and the vertex direction method in terms of
improvement in ®(M) is not easy. In particular, it is not clear that the use of
second derivatives buys greater improvements in ®(M) than the use of first
derivatives alone would give. The intuitive geometric argument of the preceding
paragraph suggests that (at the cost of more computation time) the quadratic
method should give a greater single step improvement in ®(M), if ®(M) behaves
well. However, in a neighborhood of a singular optimal £*, ®M(£)] is not
necessarily even continuous, much less quadratic.

E. Sliding support points. For simplicity of exposition, we assume here that %
is one-dimensional. In higher dimensions, appropriate generalizations will be ap-
parent.

Let xy, - - -, x,, be the support points of £. Let z,, - - -, z,, be arbitrary numbers
such that x; + #z; € % for ¢ small and positive. Assume that f(x; + tz,) is twice
continuously differentiable for ¢ small and positive, twice differentiable from the
right at # = 0, and that these derivatives are continuous at # = 0. Let £ be the
design obtained by putting (fixed) weight £(x;) = w; at x; + z; rather than at x,.
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Then
M(£) = SH(x; + )7 (x; + tz;)w,.

Let ¢(x, ), ¢(x, £), j;(x) and f;(x) denote the first and second derivatives of ¢ and f;
w.r.t. x. If the derivatives are one-sided, the side will be understood from context.
Let m;; be the ijth element of M.

THEOREM 3.1. Under Assumptions 1-4 and the above assumptions on {z;} and f,
8'1>[M(£,)]/ otly = —Z,9(x;, §)z;w;,
BZCID[M(ﬁt)]/atzh, > —Z¢(x; §)ziw;.

Proor. Define
(M) = AD(M) / dmy, .

Dy, (M) = 3*e(M)/ amy, om,
a(t) = Z, fi(x; + t2)f (x; + tz)z;w;.
It is direct to show that
o(x, §) = jk Jk[M(g)][.ﬂ-(x)fk(x) - mjk(g)]’
from which it follows that
AB[M(£)] /0t = 22,®;,[M(£)]ay(?)
—Z,0(x; + tz;, §)z;w;.

Also,
9 Z‘I’[M(‘ft)]/atz 4% wo P, wlM(E)] aya,, + 2Ejkq);k[M(£t)] da (¢) /0t

The first term on the right is nonnegative, by the convexity of ® in M, and the
second term equals

- Z,9(x; + tz;, gt)zizwi‘ : ]

This theorem says that if ¢(x, £ is not level at an interior support point, then £
can be improved by moving that support point in the direction in which ¢
increases. It would be natural to conjecture the stronger result that if ¢(x, £) is not
locally maximized at a support point, then £ can be improved by moving that
support point in a direction of increasing ¢. A counterexample to this conjecture is
given by linear regression on X = [0, 1], with s = 1 and D,-optimality. If § puts
fixed weight a at some x > 0 and weight 1 — a at 0, then @(y, §) = d(y,§) — 1 =
(1 = a) %%y — x)? — 1, which is minimized at x. However, as mentioned in
Section 1, moving x slightly in either direction does not change ®[M(£)] at all, since
M*@¢) =1— a for all x > 0. Whether the conjecture is true for nonsingular
criteria remains an open question.

Theorem 3.1 may be used in Step 3 of Algorithm 1. Having chosen weights
Wy, -+ * , W, in Step 1, now consider ®[M(£)] as a function of the support points
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Xy, * * * , X,,. The only constraint on the x’s is that they must remain in . Then
all the techniques of optimization theory are available to suggest how to move the
support points. As a function of the x;’s, ®(M) is not convex, but if {x;, - - -, x,,.}
is the set of points which are actually moved, e.g., the interior points, and if ¢(x;, §)
has negative second derivative at these support points, then ®(M) is locally convex
as the points move in some neighborhood.

If, in Step 3, £, is obtained by moving the support points of £,, so that each
support point approximately gives either a boundary point local maximum or an
interior level point of @(x, £, ;), then on the next use of Step 1 no new support
points need to be added which are close to current support points, and clusters of
support points do not form.

As always, adjustments of £, in Step 3 must satisfy the conditions ®[M(§, . )]
< ®[M(£,, )] and (2.6). The first condition will generally not cause much trouble,
but the second condition must be checked. Without (2.6) it would be possible to
“improve” £,, by sliding two support points into each other, thereby perhaps
making £, , ; singular and terminating the iterations too soon.

As described above, changes in weights and changes in support points are done
separately, in different steps of Algorithm 1. We now present one way to vary the

weights and support points simultaneously.
On any iteration, consider all designs supported on some m-element set, and

regard the resulting ®[M(§)] as a differentiable function of 2m variables, namely
the weights and the support points. The tools of optimization theory may now be
used to reduce ®[M($)]. In this form ®[M(§)] is not convex, so care is needed, and
no specific details will be given here. However, the general method can be fitted
into Algorithm 1 as follows.

Suppose some M, , ; has tentatively been obtained somehow from M,, e.g., by
varying the weights and support points of £, simultaneously (perhaps through a
finite number of iterations). As the support points of £ move, M() moves from M,
to M, , along a curved path, so the proof of Theorem 2.1 does not apply directly.
But once M, , ; has been obtained, we can consider the straight path in 9 from
M, to M,,, ;- That is, in Step 1 of the Algorithm set £ equal to the £, , which was
tentatively obtained and set a, = 1. Then check conditions (2.3)—(2.5). If they are
satisfied then £, ; may be used for this iteration, and the sequence of such designs
converges, by Theorem 2.1. If on any iteration the conditions (2.3)-(2.5) are not
satisfied, then the £, , , obtained by varying support points should not be used, and
another £, ;, e.g., obtained from a single vertex direction, should be used instead.
In all of this, Step 3 can be skipped, ie., set §,, = §,,,.

I think that if the optimal support points are not known, then any iterative
algorithm must somehow treat the support points as movable if it is to be
successful after the early iterations. The points must eventually be moved, and it
seems inefficient to do this by adding new points and letting the changes in weights
eventually eliminate the old points.
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4. Barrier methods and compromise criteria. Nonsingular criteria are simpler
than singular criteria, at least in theory, so a natural attack on the singular problem
is to approximate the singular optimality criterion by a nonsingular criterion,
minimize it, and show that the design obtained is approximately optimal for the
original criterion. In fact, this did not work well in the one example I have tried;
see Section 5, and for a fuller discussion see [4]. However, the theoretical basis is so
simple that it is presented here, for possible consideration in other problems.

THEOREM 4.1. Let Assumption 1 hold, let ® be real valued on SNt and convex
and lower semicontinuous on 9. Let ®y be real valued on ON* and bounded below
on 9. Let § be any open set in 9N which contains all ®-optimal M. Then for
sufficiently small ¢ > 0, ®(M) + e®,(M) is minimized only in §.

Usually ®,, the “barrier function”, will be chosen so that M) + ePp(M) - o0
as M approaches a singular matrix in 9. If @ satisfies Assumptions 2—4, then (2.1)
gives the required convexity and lower semicontinuity on 9.

Proor. To avoid trivialities, § % 9. Define v = inf ®M). By the lower
semicontinuity of ® there is some § > 0 such that ®(M) > v + 6 on M — §. And
by the convexity of @ there is some M’ € IL* with

d(M') < v + §/3.
Note that M’ € §. Define vy = inf ®z(M). Let ¢ > 0 be small enough so that
ed,(M) < 6/3
and
evg > —8/3.
Then
inf[ ®(M) + e®p,(M)] < ®(M') + ePp(M)
< v+ 28/3
ButforM € O — G,
(M) + ePz;(M) > v + § + evp
>0+ 28/3,
yielding the conclusion. []
This is readily applied to D -optimality. It is well known that

(4.1) M| = [M* - [My)].
Suppose ®(M) = — log|M*|, and define ®5(M) = — log|M,,|. Then
(42) ®,(M) = —logM*| — & log|My)|

is finite only for nonsingular M, by (4.1).
_ Suppose we want a design £* which is close enough to D,-optimal so that
d(¢*) < s + §, for some 8 > 0. The function ¢, corresponding to @, is

4.3) @ (x, &) = d(x,§) + ed(x,£) — (s + er).

Here d(x, £) = fT(x)M~ (O (x), d.(x, & = £2(x)Mz'(©)f,(x) with f, consisting of
the last r = k — s components of f, and d,(x, §) = d(x, §) — d.(x, £). If € is chosen
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such that
0<er < (1-1)8

for some ¢ between 0 and 1, and iterations to minimize ®, are performed until
@.(¢) = max,[d(x, §) + ed(x, &) — (s + er)] < 15;
this guarantees that at all x
d(x,§) < d(x,4) + ed(x,§)
<s+er+ 18

<s+34é
as desired. Moreover, for such a design and all x
d(x,§) < (s+8)/e._
This gives an indication of how small My,(£) can be, i.e., how ill conditioned M(£)
can be.

Atkinson and Cox [1] propose ®, as an optimality criterion in its own right, as a
compromise between the goals of estimating 8, well and being able to estimate 0,
at all.

Stigler [15] has considered constrained criteria, i.e., minimize ®(M) subject to a
constraint ®z(M) < C for some function ®, and constant C. This is related to the
above considerations by a trivial theorem:

THEOREM 4.2. Let ¢ be positive. If My minimizes ®(M) + e®z(M), and ®z(M,)
= C, then My minimizes ®(M) subject to ®z(M) < C.

5. Example. Consider the problem of estimating the first degree coefficient in
fourth degree polynomial regression on [—1, 1]. Since the parameter to be esti-
mated is a scalar, criteria based on minimizing the variance of the estimator
coincide. We formulate the problem in terms of D -optimality with s = 1. Studden
[16] showed that the optimal design is supported on *+1 and =*.5. For the optimal
weights, see Table 1.

TaBLE I
Optimal design and design obtained by iteration
Support Corresponding
Design Points Weights IM*| d
& *1 2 05635 2.4359
+.6 2
0 2
I *1 .05749 .11109 1.0089
+ .49987 44348
0 1.3 x 1078
& *1 05552 11111 1.00009
+ .49996 .44448
0 1.3 x10°8
Optimal *1 0555 - - - 1111 - - - 1
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A method of iteration was used, as described below, which resulted in always
having designs £, which were supported on exactly five points: 0, 1 and =+ x, for
some x,, 0 < x, < 1. As a result, clusters of support points did not form, and the
dimensions of the Hessian matrix H remained small, only 5 X 5. Moreover, £, had
symmetrical weights, i.e., §,(x) = £,(— x). This symmetry caused H to contain a
row of zeros and a column of zeros, corresponding to the point x = 0. So in the
terminology of Sec. 3C, e € C(M) and Case 2 always applied. Deletion of the zero
row and column of H left a 4 X 4 nonsingular matrix, so (3.9) could be solved
without g-inverses.

In this example the optimal design does not need more points than the initial
design. Of course we cannot expect to be so fortunate in every example. However,
it may often prove to be convenient to add extra support points only reluctantly.

Several initial designs were tried, all uniform on five symmetric points: 0, *1,
and * x,, where on the different runs x, was set to .3, .4, .6 and .7.

Step 1 of Algorithm 1 was used only to change the weights in the current design,
not to move support points or add new support points. Three types of increments
were considered: (1) add equal mass at the two symmetrically placed points where
d(x, &) is maximized (always either *1 or *x,) and subtract mass pro-
portionately from the other three points; (2) subtract mass at the point where
d(x, &,) is minimized (this point is always 0) and add mass proportionately at the
other four points; (3) use the quadratic increment of Section 3C. The improvement
in P[M(£)] was estimated for each of these three directions, based on the first two
directional derivatives of ®[M(§)] at £,, and the apparently best increment was
used. On most iterations, this was type (1). If there had been more support points,
then type (1) might not have looked as good compared to type (3).

The a, to use with the chosen direction 7, was determined by a Newton’s
method line search, usually lasting two or three iterations.

On these test runs, constants ;, &,, &5, and @, were ignored, but examination of
the output can give information on what values would have been appropriate for
strict application of Algorithm 1. All the iterations of types (1) and (3) would have
been performed as they in fact were if ¢; < .22 and ¢, < .30. The iterations of type
(2), subtraction of mass at 0, would have been performed as they were if ¢, and e,
were less than .0036. The line searches all would have been sufficient if a; < .82.

In Step 2, a, = .9 was used.

In Step 3, the points + x, were moved symmetrically to the points which the
second derivative approximation indicated was optimal. The relevant formulas for
the calculation of the derivatives are

(3/0x,)logIM(¢)] = &(x;)d
(22/0x?)loglM(®)] = —2[£(x) [ (d/2)" + fTM—lid] + &(x)d
(3/3x)(d/ axj)loglM(é)l = ‘g(xi)‘f(xj)[zdm(xi’ xj)dlo(xi’ xj)

+2d,,(x; x)doo( %, x,)]
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where throughout
M = M($)

d = (3/3x)|,, d(x, &)
d = (3%/8x7)|,, d(x, §)
f(x) = (3/3x)f(x)

f = f(x)
doo(x> %) = ()M~ ()
doy(x;5 x;) = fT(‘xi)M_lf(xj)
dyo(x; X)) = fT(x,.)M_'f(xj)
dy(x, x) = fT(x,.)M‘lf(xj).

(To reduce clutter, the dependence of d, d, and d on x; is not shown explicitly in the
notation.) Therefore, if x, is to be moved to x, + ¢, and if d,(x, £,) is concave at x,,
then the second derivative approximation of ®[M(£)] says, after some calculation,
touset = — d,(x,, &,)/d,(x,, £,), where dots denote differentiation of dy(x, §) wr.t.
x. To protect against possible wild changes, |#| was never allowed to be greater than
the arbitrary value .15.

The function A(M) was taken to be |[M|'/*. Moving the support points in Step 3
increased A(M) as often as it reduced it, and never reduced A(M) to less than .89
times its former value. In the four test runs performed, the reduction was apprecia-
ble only on the first few iterations.

Iterations were performed until d,(£,) < 1.00005 or until the effect of numerical
inaccuracy became noticeable on a CDC 7600—e.g., when a matrix could not be
inverted or the calculated ® no longer was convex. The process ran for from six to
twelve iterations, depending on the initial design used. The sequence starting with
support points 0, =1, and *.6 is typical. This sequence is summarized in Table I.

The method described near the end of Section 3E, whereby the locations of the
support points and the corresponding weights are changed simultaneously, was also
tried. The design sequences approached the optimal design, but in this example
changing the weights and support points in separate steps seemed to work more
efficiently. ‘

Simple use of the barrier method does not work well in this example, for reasons
discussed in [4]. One important reason is that ¢, given by (4.3), has a local
maximum at 0 which is very sensitive to changes in £(0). Therefore, much effort is
spent adjusting £,(0) up or down slightly. This is wasted effort, since the D -optimal
design puts no mass at 0.
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