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ASYMPTOTIC EXPECTED INFERIOR
SAMPLE SIZE OF A SEQUENTIAL TEST INVOLVING TWO
POPULATIONS

By H. H. PETeER CHENG
National Central University

Let X}, - - - beiid. ~ N(pp,1)and Yy, - « - beiid.~ N(puy1). A symmet-
ric sequential procedure for H, : u; >, vs. H, : p; < p, is proposed in this
paper. The expected number of observations taken from the inferior population
is given in an asymptotic form, which is optimum in Farrell’s sense.

1. Introduction and Summary. Let X, - - beiid. ~ N(g;,1)and Y}, - - - be
iid. ~ N(pyl). A sequential procedure for testing Hy:p, > p, vs. Hpipy < p,
consists of a terminal decision rule for choosing H, or H,, a stopping rule for
deciding when to stop, and a sampling rule for deciding (before stopping) whether
the next observation should be an X or a Y. Let us assume that the X population is
inferior if H, is true and the Y population is inferior if H, is true. It is desirable to
have a procedure not only with controlled error probabilities but with minimized
expected number of observations taken from the inferior population. This kind of
problem has been considered by Robbins and Siegmund [5].

A sequential procedure is proposed in Section 2 and its symmetric nature is
discussed in Section 4. Section 5 gives other properties of the procedure. In Section
6 the expected number of observations taken from the inferior population is
estimated asymptotically as | p, — p,| — 0. The optimum property of this procedure
in the sense of Farrell [1] is discussed in Section 7.

2. The sampling rule, the stopping rule, and the terminal decision rule. Let
f(») = (Iyllog|y|~'(logy| ¥| 7)3)~" for 0 < |y| < e~* and f(y) = O elsewhere. We
write log,x = log log x, log; x = log log, x, etc. Define H(x,f) = [®_ exp(xy —
(t/2yH)f(y)dy. Given 0 < a < 3, set

(1) b= (2w

) A(t) = A(t,b) = inf{x > 0: H(x,?) > b}.
From (2) clearly

3) H(x,t) > b if and only if |x] > A(2).

By the dominated convergence theorem, b = [*_exp(A(Y)y — (t/2y)f(y)dy =
I& exp(A(t)y — (t/2y)f(y)dy + o(1) as t — 0. Arguing as Section 4 of [3], we
have

1
(€)] A(Y) = (2t log, ¢t + 4t log,t + logh +log(w)% + o(l))2 ast — oo.
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LemMMa 1. Let W(f), t > O be the standard Wiener process; then P(H(W(1),t) >
b, for some t > 0) = b~!

Proor. Denote z(t) = H(W(¢), t). It can be verified that {z(¢), B(W(s), s < 1),
¢t > 0} is a martingale. (cf. [3], Section 3). For any & > 0, P(z(?) > 8) = P(|W(?)|
> A(t,8)) > 0 as t — oo by (3) and (4). Since z(0) = 1 and b > 1, this lemma is
proven by Lemma 1 in [3].

Let M, and N, denote the number of x’s and the number of y’s observed at stage
v of the experiment. Hence M, + N, = ». Set X, = Z¥X,/M,, Y, = Z}Y,/N,,
t,= M,N,/v, and

) Z, = Zy,N = tv( Yy, - iM,)~
The stopping rule is defined:
(6) = Firsty > 2suchthat|Z,| > A(t); T = oo if no such » occurs.

Set n(») = (1 + (log; » — 1)*)7! for » > 2. Define the sampling rule: observe
X,, Y, first. When T > » at stage », observe a Y if

™ (N, = M,)/v <Z,[A(1)(1 +2()] 75
otherwise observe an X.
The terminal decision rule is defined on (T < o0): assert Hj if Z, < 0; assert H;
if Zy > 0.
(8) On (T < ©o)setM = Myand N = Ng;
on (7T =o)setM = lim,  M,and N = lim,_, N,.

y—>00 1 4

Set A(») = n(»)/2(1 + n(»)) for » > 2. Clearly A(»)|0 and »A(»)To0 as » — .
LeMMA 2. (T >», M, < vA(»)) C (T > v, M, ., >M,) C (T >», N, > vA(»)).
Proor. Cf. (5.4) and (5.13) in [3].

From Lemma 2 it is easily seen
9) M, > %A(r) and N, > %A(V) on (T >v)forally > 2.

Hence M,N,/v > (v/4N(») — o0 as » > 0 and (T = o) C (lim,_,(M,N,)/v =
). Since » > M,N,/v, (lim,_,, M,N,/v = ) C (T = ). Denoting
lim, , (M,N,)/v by MN /(M + N) on (T = o), we have

LeMMA 3. (T = o0) = (MN/(M + N) = ).

3. Wiener process with drift d. Let d = p, — ;. The definition of a Wiener
process with drift d is in [5] and the following Lemma 4 is the Lemma 1 of [5].

LEMMA 4. Let X,,---;Y,,--+ be as in Section 1, Z, = (mZ7Y, —
nE7X)/(m + n), d = p, — p,, and {W,(1), t > 0} be a Wiener process with drift d.
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For any sequence of pairs (m, n) of positive integers which is nondecreasing in each
coordinate, the sequences {Z,, ,} and { W (mn/(m + n))} have the same distribution.

Lemma 4 suggests that the sequential procedure proposed in Section 2 can be
considered in terms of Wiener process with drift 4 = p, — p,. To be precise, the
following are defined: M, = N, = 1. For » > 2, define N,,, = N, + 1 if

< wi,)
A(3,)(1 + n(v))
otherwise N,,, = N,.Set M, =v — N,t, = M,N,/».

(10) (N, - M,)/»

(11) T = Firsty > 2 such that |Wd(t-,,)| > A(t-,,); T = oo otherwise.

M and N are similarly defined as in (8). Lemma 3 becomes

(12) (T =) = (7 = ).

The M,, N,, A7 JV are random variables; the m, n in Lemma 4 are constants. By
samphng rule (7), M,,, and N, are B(Z, i < v)-measurable; by (10) M, ,, and
N,,, are f( W), i < v)-measurable. Using Lemma 4, it is straightforward to

justify the following
LEMMA 5. {Z,, v > 2} and {W,(1,), v > 2} have the same distribution.

4. The symmetry of the procedure. Let 1 =m, <my---, and 1 =n, <
ny - - - be any sequences of positive integers such that m, + n, = ». Letd = p, —
p, and § > 0 be any positive number. By Lemma 4 {Z,, , } in the case d = § has
the same distribution as { —Z, ,, } in the cased = — 4. By (7) it is direct to justify
Py(M; =m,N,=n,i<v; |Z, ,|<A@)i<v-1; Z, , >A(s)) = P_y(M,
=n,N=m,i<v; |Z, ,|<A(s)i<v-1 Z, , < — A(s,)), where s; =
m;n;/i. From the above equality the next lemma follows easily.

LEMMA 6. Py(M = k) = P_4(N = k), E(M) = E_g(N);
P(T =v)= P_y(T =), B(T < 00) = P_y(T < 0);
Py(reject H)) = P_g(reject Hy).
In the following sections, only d = u, — u; = 8 > 0 and d = 0 are considered.

5. Other properties of the procedure. By the strong law of large numbers
P(lim, ,, Wy()/t =8)=1. By (4 lim,_  A(t)/t =0. With Lemma 5 and
Lemma 6 we have

LEMMA 7. P(T < o0) = 1.
Note Ps(T_" < o0) = 1 by Lemma 5. These kinds of paralleled results will not be
stated explicitly in the following discussion.

LEMMA 8. Py(T = o) > 0; Py(t7 = o) > 0.
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PROOF. By (12), P(T = o) = Py(T = ) = P(t5 = ) = P(|W(1,)| < A(1,),
forall ¥ > 2) > P(H(W(f),t) <b,forallt >0)=1-1/b=1-2a >0, by (3)
and Lemma 1.

LEMMA 9. Py(reject H)) < a.

Proor. This follows from Lemmas 1 and 5 and symmetry.

For all y > 0, (t-]‘- =7)=U;sAT =14, t_, = v) € B(Ws(s), s < v). Hence t-f isa
stopping time.

LemMA 10. [ o (Ws(tp) — A(tp) dP <8 + 1.

PROOF. Cf. Lemma 2 of [6]. Note £,,, — f, < 1 forall i > 2.

LeMMA 11.  Ey(t7) < oo.

Proor. The main idea appears in several places, e.g., [4]; the detailed proof is
omitted.

LEMMA 12.  Ey(15) ~ 28 ~2 (log, 8 “2)Py(t7 = o) as 80.

PROOF. 7 is written as 7 to simplify notation. Ey(T) > tP(T > 1) =
tf roeXp(8Wy(1) — 187 /2) dP, (cf. [4]). By Fatou’s lemma,
(13) lim infy o Es(T) > tlim infyo Ps(T >¢) > tP(T > 1).
Letting ¢ — oo, we have limg o E;7 = oo by Lemma 8. Since Ey(T) < oo, by
Wald’s lemma, Py(T < o0) = 1 and Lemma 10,

8Es(T) = EWs(T) = Ey(Ws(T) — A(T)) + Ey(A(T))
< 8 + 1+ Ej(A(T)).

Arguing exact as in Section 3 of [4] gives that for all e > 0
(14) E(T) < 2(1+ &) 872(log, 8 ")Py(T = o0) as§ > 0.
On the other hand, note that (¢, < T < t,) C (|W;(f)| > A(¢) for some ¢, <t < 1)

and A(1) ~ (2t log, t)%. Arguing as in [6] (cf. Lemma 9, Lemma 12, and (40) in [6])
gives that for alle > 0

(15) lim infs_,, P5s(T > 2(1 — &) 8§ "2log, 8 ') > Py(T = o).
By (14) and (15), this lemma is proven.
THEOREM 1. Ey(MN /(M + N)) ~28 "2 (log, § "")P(T = o) as §]0.
ProOF. By Lemma 5, Lemma 8, Lethma 11 and Lemma 12.
6. The asymptotic behavior of E (M) as 60.
LEMMA 13. Let X, > 0, n > 1 be a sequence of random variables. If lim, _, , EX,

n

=a>0 and for all y>0,liminf, P(X,>1—1v) > a, then for all ¢ >
0’ 1imn—+oof(X,,>l+e)Xn dapP = 0.
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PrOOF. Given & > 0, let ¢ > 0 be such that 1 > eq. Set I, = [(x 51.0X, dP.
EXn > In + f(l+e>X,,>l-—¢q)Xn dpP
> I, + (1 - eq)(P(X,>1—¢q) — P(X, >1+¢))

> I, + (1— eq)P(X, > 1—eq) — 11183 a

As n— o0, a > ¢e(l + g)/(1 + €) lim sup I, + (1 — eg)a. Hence ga > (1 + ¢)/(1
+ ¢)) limsup I,. As ql0, lim, I, =0. To simplify notation, denote f(§) =
26 "2 log log 6 ~! from now on.

LemMA 14. For all e > 0,
MN
f(MN>(l+e)f(8)(M+N))m

dP; >0 as &6 - 0.
ProoF. By Theorem 1, (15) and Lemma 13.
LEMMA 15. If lims o Py(A) = O, then [ MN /(M + N)f(5)) dP, —>0asd—0.

ProoF. Note A c (MN > 2(M + N)f(8)) U (A(MN < 2(M + N)f(8))) and
Lemma 14.

Lemma 16, For all e > 0 limge Py(M > (1 + e)f(8)) = 0.
Proor. Cf. (5.10) to (5.14) in [5] and (7) of [3].
Levma 17. If limyo Py(A) =0, then [, M/f(8)dPy— O as 80, and Ey(M)<co.

PrOOF. Set M, = N, =0.

MN

fA M+ ]vdl)‘s = 23°=2IA(T>”){MVNV/V - Mv—le—l/ (V - 1)} dP8

> Z0 o aws, M,>M,_,)Ny2/"(1’ — 1) dPs (Cf(5.16) of [5])
> k52 ,P(A, T >v,M,>M,_,N,_,>(»—1)/3)

LSS0, P(A, T > 9, M, > M,_)) = 52 Py(4, T >», M,

>M,, N, < »/3)}
= 5 {/4M dP; — 3 ,P,}, say.
Set », = [Kf(8)].
S,P, = SEoSizien
2r v

< VIPG(A) + 2k>]2vP8(Mv+l > M,,, M,, > ?‘, 3

>N, > v}\(v)),

by Lemma 2
< 0(f(8)) + SisiZ, Po( Yo, = Koy, < 0. M,N,/7 >3A(), by (D)
< o(f(8)) + 2k>1f(8)P8( Ws(t,)/t, < 0,1, > %Vk}‘(l’k))
< o(f(8)) + f(8)Z5:2(1 — ¥(8(nA(w)?)). by (7) of [3].
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Note », —> o0 as 8]0 and »A(v) = /(2 log; v) for large » and 8(%1},‘}\(1/,‘))% >
k(2 log 8 1)/(3 log, f(8)))7 = kg(8), where g(8)—> o0 as 810. Z,P, < o(f(8))
+ f(8)/5°(1 — P(x4g(d))) dx = o(f(6)). Hence [, M/f(8)dP;—0 as § -0 by
Lemma 15. Let A be the whole space; it is easily seen Eg(M) < oo.

LEMMA 18.  For all ¢ > 0 lim supg o E5(M/f(8)) < (1 + &)P(T = o).

PROOF. E,(M/f) = [(ucypyM/f dPs + [(remcaraonM/f dPs +
S« +ag<myM/f dPs, where f = f(8) and y > 0 arbitrarily small.

Es(M/f) < vy + (1 + €)Ps(M > yf) + o(1), by Lemma 16 and Lemma 17
<y + (1+¢&P(MN/(M+ N) > vf/4), by (9)
< v + (1 + e)Py(t5 > 1), where £, < %f

lim supyyo Es(M/f) < y + (1 + &) Po(t7 > to)(cf. (13) or (34) in [4]).
Letting ¢, — o0, y|0, we have proved the lemma.
THEOREM 2. Ey(M) ~ 28 % (log log 8 ")P(T = o) as 8}0.
Proor. Note M > MN /(M + N) and Theorem 1 and Lemma 18.

7. The optimum property of the procedure. For any sequential procedure with
P(M’'N’/(M’ + N’) = o0) > 0 (M’, N’ similarly defined as in (8)), we have

lim sups_of EsM’/28 "2 log, 8 7'} > Po(M'N’/ (M’ + N’) = )

(cf. [1]).

The procedure in Section 2 is optimum in the sense that
limy_o{ E;M/28 "% log, 8 7'} = P(MN/(M + N) = ).
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