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SOME THEORY OF NONLINEAR SMOOTHERS

By C. L. MALLOWS
Bell Laboratories

In recent years J. W. Tukey has introduced several algorithms for nonlinear
smoothing of time series, but theoretical development has been slow owing to
the extreme difficulty of obtaining analytical results even in the simplest cases.
We present here some desiderata for smoothers generally, and give a framework
within which some detailed comparisons between different smoothers can be
made.

1. Introduction. A time-series X is a doubly-infinite sequence of real data
{---X_,,Xp X;,- -+ }. A smoother S is an algorithm that operates on X to
produce a new series S(X). We write S(X), for the resulting smoothed value at time
t. We use the general term “smoother” to avoid confusion with “filter”, which we
reserve for a linear algorithm. We do not distinguish between smoothing and
forecasting, and do not intend to imply that the image series is necessarily less
rapidly varying than the original, though this will usually be a prime objective.

Some examples of smoothers of the type we shall be considering are:

(i) digital filters, as described in [4] and in Chapter 46 of [11], for example,
moving averages such as

(1.1) S(X), = %(—=3X,_, + 12X,_, + 17X, + 12X,,, — 3X,,,)
(which will reproduce a cubic polynomial exactly), and

(ii) recursive filters such as
(12) S(X), = aSX),—1 + (1 - &)X,
(“exponential smoothing™);

(iii) the nonlinear smoothers introduced by Tukey [15], for example “3R” in
which we define Sy(X) = X,

(1.3) Ser1(X), = med(Si(X),_1, Si(X)ps Si(X)41)) k =0,1,...
(iterated smoothing by 3-medians), and finally
(14) . SX), = lim,_,, S,(X),; and

(iv) “S3H twice” which is defined as follows: let
(1.5) $i(X); = med(X, 5, X, 1, X, X, 41, X,12) (“5”)
(1.6) $,(X), = med(S,(X);-1, $1(X);, S1(X),+1) (“3”)
(1.7) 83(X); = §82X),—1 + 35:,(X), + §5:(X)44 (“H”)
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and finally (“twicing™)
(1.8) SX), = S3(X), + S3(X — 85(X)),-

Before such a smoother can be applied to a finite stretch of data, rules must be
given for handling the ends of the series. Here we shall ignore this complication,
considering only the result of smoothing indefinitely long stretches of data, with a
stationary probability specification.

Figure 1 shows the effect of these four smoothers (in (ii) « was taken to be 0.8)
on a series used in [15], namely U.S. bituminous coal production (millions of net
tons per year) for 1920-1968. The data appears as asterisks, the smooths as
L, R, 3, 5 respectively. No special end rules were used, except that R was started
with 950 = X950, SO that each smoother gives results over a different range of
years. Several attributes of the smoothers can be noticed. For example R (with this
value of a) is sluggish, slow to respond to changes; the other three are less so. L is
strongly influenced by outlying observations, R less so; 3 and 5 give little weight to
single outliers, but do respond to bursts of two or more. Consider for example
1932-3, where a pair of low values pulls each of L, 3, 5 down considerably; and
1956—7, where a pair of high values pulls up 3 and L, but not 5.

Nonlinear smoothers differ from the classical linear filters in two important
ways; they are insensitive to the presence of occasional outliers in the data (they
are “resistant”), and they are much less tractable analytically. The present work is
the result of an attempt to find ways of describing the properties of such
smoothers, so that objective comparisons and informed choices can be made.
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In this search, we have drawn on the theory of robust estimation, as developed
by Huber, Hampel and others (see, e.g., [1], [6], [9]), and have considered the
relevance of the extensive theory of nonlinear systems (see, e.g., [10]). However, in
neither field have we encountered concepts that bear directly on our concern.
Much of the robustness literature deals with the estimation of one or at most a few
parameters (an exception is [12]); also many of the theoretical developments are
concerned with asymptotic behavior as the sample size increases indefinitely. In
contrast, we are here concerned with algorithms that produce as many numbers in
output as they use in input; also the arguments of S(X), are not treated symmetri-
cally, and it is unclear how an asymptotic theory can be relevant.

The main concern of nonlinear systems theory is the derivation of optimal or
near-optimal algorithms for the detection or estimation of signals in noise, when
the probability specification of the system is given (possibly to within some
parameters to be estimated). In contrast, our emphasis is on describing the
properties of a given smoothing algorithm, preferably in ways that will be as
independent as possible of the specification of the system to which it is applied.
Our reason for believing that such descriptions may be possible in principle, at
least approximately and for certain smoothers, is the observation that a linear
smoother (such as (i) or (ii) above) can be described by its coefficient sequence or
“impulse response function” (i.e., 3z(—3,12, 17,12, —=3) for (L1), (1 — @)
1, a, a% a®- - -)) for (1.2) or, equivalently, by its transfer function (see below).
Further, the transfer function does not depend on the probability specification.

It is thus not unreasonable to hope that for some nonlinear smoothers, namely
those that are “almost linear” in some sense, we may be able to define
“coefficients” and “transfer functions” that are insensitive to changes in the
specification of the process being smoothed.

Given a smoothing algorithm, we thus have the problem of defining quantities
analogous to the coefficients and the transfer function, and of measuring the
degree to which the smoother departs from linearity. We shall also be concerned
with measuring its degree of resistance to outliers. Once these indices have been
defined, we can proceed to search among the possible smoothers for ones with
attractive combinations of properties.

Some basic results are expressed in Theorems 4.2-4.6 below. We find that when
a nonlinear smoother is applied to a process of a certain type (stationary Gaussian
plus independent noise), the resulting smoothed process can be decomposed into
two parts, one part being a linear filtering of the Gaussian component, the other
part being completely orthogonal to this and being nonzero by virtue of the
presence of the added noise and the nonlinearity of the smoother. There is a
corresponding decomposition of the spectrum of the output into a “linear” part
and a residual “nonlinear” part. Subsequent linear operations act separately on the
two components.

We can thus formulate the problem of designing a resistant nonlinear smoother
in the following way. We must arrange that the transfer function of the linear
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component has a suitable shape, while the nonlinear component has small
spectrum (or simply small variance), over a suitably wide range of probability
specifications, while at the same time maintaining suitable resistance properties.

We are not completely happy with our present formulation of the resistance
requirement, which is discussed in Section 6.

Also, we cannot claim that the present formulation leads to excessively simple
computations. We leave to another occasion a discussion of methods for Monte
Carlo computation of the indices we propose; here we present (in Sections 5 and 6)
merely some results relating to smoothers of a special type.

2. The smoothing problem. A natural starting-point for a theory of resistant
smoothing of time series is the theory of robust estimation [1], [6], [9]. However, it is
not clear that smoothing can usefully be formulated as an estimation problem. One
approach would be to write X, = f(§) + 0Z,,¢t = 1,- - - , T where the nonrandom
sequence f = { f(#)} depends on an unknown (multidimensional) parameter #, and
Z = {Z} is an unobservable random sequence. The smoother S provides an
estimate S(X), of £,(8); in general, its mean square error will depend in detail on the
choice of f, the values of ¢, 8, and o, and the specification of Z. Some results of this
kind have been obtained by Velleman [16], who took f,(#) = sin 6¢ and assumed
{Z,} to be either independent Gaussian, independent Tukey-h (Z, = u, exp; hu?
with », Gaussian), or independent Gaussian with intermittent outliers. An extensive
and ingenious Monte Carlo study was performed, in which some 17 smoothers
were compared using 20 values of § and three values of 0. However, it is not clear
how results of this kind can be used to compare the performance of smoothers for
other f’s, or for the case where the noise sequence Z is correlated.

We take a different route, similar to that used in signal detection theory. First we
give a heuristic development, starting from a simple identity. Suppose Y, - - -,
Y,,Z,, - ,Z, are independent random variables, Y}, - - - , Y, being Gaussian
with mean 0, variance 02, and Z,, - - - , Z, having common distribution H (for the
present, assume o and H known; we do not assume that H is centered). Suppose
we observe X;=u+ Y, + Z,i=1,---,n, and wish to estimate u, using an
estimate S = S(X,, - - - , X,) that satisfies

(2.1) S(X;+¢, -, X, +¢) = SXy: -+, X,) + c.

A natural measure of the performance of S is the mean square error E(S — p)°.
We have the following identity.

THEOREM 2.1. Suppose X; = u + Y, + Z, with Y, ~ N(0, %), Z, ~ H arbitrary
(i=1---,n) and with Y|, ,Y,,Z,, -+ ,Z, mutually independent. If S
satisfies (2.1) and E(S — p)? is finite, then

_ap =l —u—T)
E(S — ) e + E(S—-p-7)

where Y = (1/n)2 Y,
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PROOF. Writing S — u =S — u — ¥ + ¥ and expanding the square, we have
only to prove E(Y(S — p — Y)) = 0. Using (2.1), this is E(YS’) where S’ = S(X,
—p—7Y,---,X,— p— Y), which is a function only of ¥, — ¥, - -, Y, — ¥,
Z,,- -+, Z, Using a standard property of the Gaussian distribution, ¥ and S’ are
independent, so E(YS’) = 0.

This lemma shows that for the above specification, the problem of finding a
good estimate of p is equivalent to that of finding a good estimate of u + Y.

This suggests the following formulation of the smoothing problem.

Basic specification.

22) X, =p+7Y+2

where Y = {Y,} is a zero-mean stationary Gaussian process (not completely
deterministic) having covariance function C = {C,}(C, = E(Y,Y,,,)), and where
Z = (Z,} is a sequence of independent random variables having common distribu-
tion H. We make no assumptions on H.

Consider an arbitrary linear filter 4, A(Y), = 3 % Y,_; and regard S(X), as an
estimate of p + A(Y),. We use as a measure of closeness the mean square error
(assumed finite) '

(2.3) (S, 4) = E(SX), - p—3,4Y,_)".

Notice that we are not assuming that Z has finite moments. This specification
reduces to that of the theorem when Y is an independent sequence and a=1/nj
=1,---,n We now introduce the linear filter S that minimizes V(S, S%). In
general, S* depends on u, C, H (and S, of course). It turns out however, as we
shall shortly show, that S* has several very simple properties, which imply,
amongst other things, that

(2.4) V(S,4) = E(SX(Y), — A(Y),)* + V(S, S&).
Thus the adequacy of S(X), as an estimator of A(Y), (for given C) is known once
ST and V(S, SL) are known.

It may be worth reiterating that in our formulation we choose A to minimize
V(S, A) with S fixed, rather than the other way round. SX(Y), is the projection of
S(X), onto the manifold of linear functions of Y, with respect to the usual L,

product.
We shall call S£(Y) the “linear part” of S(X), and define a residual series R by
(2:5) SX), = p + SKY), + ps + R,

where pg = E(S(X),) — p. In the next two sections we explore some properties of
this representation in detail.

Notice that the basic specification (2.2) is flexible enough to cover a wide range
of behavior. Models of special interest arise when C,/C, is close to 1, since it is in
these cases that realizations of Y appear smooth to the eye. If C, =1 and C, is
fixed, C, must lie in the interval (2CE — 1, 1). At the lower limit, realizations of Y
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are exact sinusoids (with frequency cos™! C,, amplitude Rayleigh with variance 2,
phase uniform). The upper limit is less interesting; realizations of Y have Y,, =
Yo Yo = Y, with Y,, Y, bivariate Gaussian (with correlation C;). A more

interesting case is the Markovian model, in which C, = C}. Fort =0, 1,- - -, T,
1

put Y* = (Y, — Y))/(1 — CP):. Then as C,—1, the joint distribution of

Y}, - - -, Y} conditional on Y, = y, approaches that of a standard Gaussian

random walk, with { Y% ; — Y*} approximately mutually independent.

3. Some assumptions. In the following, we apply a smoother S to a series X
having the specification (2.2). Our aim is to establish the validity of the decomposi-
tion S(X), = p + pg + SE(Y), + R, obtained above, and to explore its properties.
Before we can provide a rigorous development, we must make several assumptions
regarding S, namely

Al. S is stationary: S(7X) = TS(X) where T is the shift operator ((TX), =
(x)t+ 1 (T - lx)' = (x)t- l)'

A2. S is location invariant: if B is a constant series ((B), = b), then SX + B) =
SX) + B.

Notice that A2 eliminates many of the linear filters that arise in signal-detection
theory. Under the basic specification (2.2), if u is known and Z is Gaussian with
mean zero and variance V, the optimal (minimum mean square error) estimate 1?,
of Y, is linear, but fails to satisfy A2. For example, if C, = 0 for k # 0, then u + 1?,
is u + (Cy/Cop + V)X, — p). If p is unknown, one obtains a minimum-variance
invariant estimate of u + Y, by using the best invariant estimate of u, which, apart
from end-effects, is simply the mean of all observed X’s. This filter satisfies A2, but
is no longer stationary. Another approach is to assume that p has a prior
distribution; if this is Gaussian the optimal estimate of p + Y, is again linear in X
but again fails to satisfy A2.

However, for the applications we have in mind, in fields such as econometrics,
demography, and industrial production, Assumption A2 seems appropriate. These
are series that at least locally can reasonably be represented by a stationary model,
but that are neither long enough nor stable enough for it to be reasonable to ignore
the problem of estimating the local mean level.

Assumptions Al, A2 imply that S(B), = s, + b for some constant s,; for con-
venience we assume

A3. S is centered; S(0) = 0 where 0 is the constant zero series.

Notice that A3 does not imply pg = 0.

Some further technical assumptions will be needed; so far we have implicitly
assumed that S is well defined for all X, but insisting on this would lead to
difficulties. One approach would be to require that S is well defined as a limit (in
some sense) relative to the specification (2.2), but this is unattractive since it may
turn out that details of the probability specification are important (we are after
properties of S that are as independent as possible of the specification), and
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furthermore we would be faced with having to justify numerous limiting argu-
ments. We adopt the simple strategy of assuming

Ad4. S(X), depends on only finitely many components of X.

Assumption A4 rules out recursive filters like (1.2) and smoothers defined as
limits such as (1.4), but these definitions are only approximate (in practice every
smoother requires a start-up rule) and little relevance is lost by excluding them. It is
convenient to retain the fiction of a strictly stationary probability specification,
however. We define the span sp(S) of S as being the smallest interval of indices
such that S(X), does depend only on {X;: j — ¢ € sp(S)}.

A second detail concerns the assumption

AS. Var S(X), is finite, which we have used above in setting the stage for
our decomposition (2.5). However several of the results to follow do not
require this assumption; if E|S(X),| < oo we can define S” to be the linear
filter (satisfying A1-A3) that minimizes

E|S(X), - u = SHY)),
but if this fails we are in difficulty. We do not regard A5 as being unduly
restrictive, since it is satisfied by all moderately robust smoothers. Notice that we
are not assuming that Z has finite moments. This is the only assumption we make
that involves both the smoother S and the probability specification.

Another property enjoyed by all the smoothers considered in this paper is that
for all real a, S(aX) = aS(X). This property is certainly desirable, from both the
practical and theoretical points of view; without it the linear component S* would
depend on the scale of the process to which S is applied. However, it turns out that
in our general development we do not need to make use of this assumption.

We give a formal definition of a linear smoother.

AL. ‘A smoother S (satisfying A4) is linear if

3.1 S(aX + BX') = aS(X) + BS(X)
for all X, X’ and real «, 8.
4. Properties of the decomposition (2.5). We start by establishing a basic
result.
THEOREM 4.1. If S satisfies A1, A4 and AL, then it also satisfies A3, and
(41) SX), = 52 _.sX,
Jor some sequence of coefficients {s;} (only finitely many of which are nonzero). Then

also S satisfies A2, if and only if Zs; = 1.

ProOOF. By Al, S(0), is independent of ¢; writing 0 = 0 + 0 and using AL we
find S0)=0. Let A= {A,} be the series with Aj=1,A, =0, ¢ % 0. Define
s, = S(A),. Suppose (by Ad) S(X), depends only on {x;: t —a < j <t + b}, ie,
sp(S) = (—a, b). (Then s, vanishes for t < — b, t > a). We define X° by

X =X+ =t X, TA.

j=t—a
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Thus (xo)j =0fort — a <j <t + b. Using AL repeatedly, we find
S(X), = S(X%, + b x.S(T~A),

Now S(X%, = S(0), = 0, and by Al
S(T/A), = TSA), = SA),—; = s,

This establishes (4.1). Finally, by applying S to a constant series we find A2 is
equivalent to Zs; = 1.

—j*

REMARK. We could have chosen to define s; = S(A)_; and obtained S*(X), =
25X, > with s; nonzero for j € sp(S), but this would lead to complications later,
for example in (4.3) and Theorem 4.6 below. On balance, our actual choice leads to
simpler results.

We now establish formally that a unique decomposition of the form (2.5) exists,
prove the very attractive property that S“(Y), depends only on {Y,, »J € sp(S)},
and obtain an explicit formula for S*. Throughout the rest of the paper, X is
assumed to have the basic specification (2.2).

THEOREM 4.2. If S satisfies A1-AS, there is a unique ST satisfying A4 and AL
that minimizes E(S(X), — u — SX(Y),)%, and S* satisfies A1, A2, A3. Furthermore,
sp(St) c sp(S), ST is determined by the equation

(4.2) E(Y,(S"(Y)o — S(X)o)) = O, J € sp(S),
and its coefficients are given explicitly by (4.3) below.

Proor. Fix ¢, and suppose sp(S) = (—a, b). Choose any 4, B with —A4 <
—a, B >b. Write (X"),,, = (X),,; —a <j<b, =0 else; X*),,; = X),4, —
(X™),4;, —A <j < B, = Oelse; and similarly for Y™, Y, Z'*, Z°**. Then S(X), =
SX™), = p + SY™ + Z'), by A2. :

Since Y is Gaussian, there are regression coefficients f, such that W, =Y,
— 2B (Y™), 4« is independent of Y for —4 < j < B, and is zero for —a </ <
b. We write W°" for the series having (W°),,; = W,,,, —4 < j < B, =0 else.
Then for any linear filter S* with sp(S%) c (— 4, B) we have

S(X), — n — SHY), = S(Y* +Z), — SEY™ +Y),

S(Ym + Zin)’ _ SL(yin + (Yout _ Wout))t — SL(WOM),.
Now Y% — W°" is a function only of Y®, so the term SZ(W°™) is independent of
the previous two terms. Hence E(S(X), — u — SX(Y),)* is a minimum when
E(SE(W°™),)? = 0, i.e., when SE(W°™), = 0, i.e., when sp(S*) C sp(S).

Now suppose S* has coefficients {s, —b < j < a}. Clearly E(S(X), — p —
2s5Y,_ j)2 is minimized when (4.2) holds, and the coefficients are independent of ¢
by Al.

To show that ST satisfies A2, it is convenient to put m =a + b + 1, and to
write s, X, y for the m X 1 vectors {s_;}, {X;}, {Y;} G = — a,- - -, b) (notice the
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reversed index in s!); C for the m X m matrix E(yy”); and 0, 1 for the vectors with
0), =0, (1), = 1. C is nonsingular, since, by assumption, Y is not completely
deterministic. Then (4.2) becomes

(4.3) Cs = E(yS(x))
where S(x) = S(X),, so that
1's = E(17C 'yS(x)).
Put y = 17C'1, 5 = 17C~'y/y. Then (using A2)
1's = yE(7S(x))
= YE(y(y +S(x — y1))).
Now Ey(y — y1) = 0, so that y is independent of y — y1-(since Y is Gaussian!),

and hence independent of x — y1. Thus 17s = yE(5?) = 1 as desired.
The following result simplifies several subsequent calculations.

THEOREM 4.3. The same coefficients are obtained if in (4.3) y is replaced by Vi
where y T = (y7, yT), where y, contains arbitrarily many elements of Y (other than

b

those in y), with C and s being augmented to. C,,s, correspondingly. The extra
elements of s, are all found to be zero.

PrOOF. Write

T
C, = E(y,y}) = (g ':).

We verify that (s, 07) satisfies the augmented version of (4.3), i.e.,
4.9 Cs = E(yS(x))

Bs = E(y,S(x)).
Now (4.4) merely repeats (4.3), while (4.5) requires

0 = E((y, - BC'y)S(x)).
However,
E((y, -BC7'y)y') = B-BC!'C =0

so that y; — BC™ly is independent of y and hence of x. The result is established.

We now establish several properties of the “linear component” S% and the
corresponding decomposition

SX) = p + pg + SKY) + R.
THEOREM 4.4. If S satisfies A1-AS and is linear, then S* = S.

PrROOF. By Theorem 4.2, S exists. Suppose S has coefficients s*; in the
notation of the previous proof S(X), = x”s* and (4.3) becomes

Cs = E(yx"s*) = E(y(y + z)"s*) = Cs*

and s = s* (since C is nonsingular).
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Thus when S is linear, our decomposition states merely that S(p + Y + Z), = p
+ S(Y), + S(Z),. Also pg = ES(Z),, and the residual component is R, = S(Z), —
ps- We return now to general (nonlinear) smoothers.

Since by assumption X, Y and Z are stationary, so are S(X) and R; and since, by
AS, Var S(X), is finite, so is Var (R),. Thus we can define spectra Fy, Fg, Fz such
that (all integrals from —3 to 3)

E(Y,Y,4) = [ dFy(w)
E(SX); — p — ps)(SX)p4r — 1 — ps) = erm'kw dFs(w)
E(R1R1+k) = er"”w dFR(w)

(see, for example, [2], Chapter 8). As is well known, if 4 is a linear filter with

coefficients g, and X' = A(X), then dFy(w) = I,"l\(w)l2 dFy(w) where ff(w) (the
transfer function of A) is

A(w) = S® e 2,

The transfer function gives a very useful description of a linear filter. We now
prove an important property of our decomposition.

THEOREM 4.5. If S satisfies A1-AS then for all t, u

(46) E(RtYu) =0
and
4.7) dFg(w) = |SE(w)P dFy(w) + dFg(w).

PrOOF. By Al, we may take ¢ = 0. Let y, be any vector whose elements are
components of Y, containing at least Y, and all of the elements of y. Then

E(y,Ry) = E(y.(SX)o — 1 — ns — ¥584))

which vanishes by Theorem 4.3, so that E(Y,R;) = 0. Hence E(SX), — p —
S, 4 — B = 1) = E(SEY),SH(Y),1) + E(RR,.) and (4.6) follows.

The result (2.4) is a simple consequence of (4.6).

Notice that we have not shown pg = 0; this can easily fail to be true, for example
if Z is a constant (nonzero) series. Some centering assumption on Z would be
required to ensure that pg vanishes.

It is most fortunate (and somewhat remarkable) that the result (4.7), which
involves the serial structures of S(X), S“(Y) and R, is found to hold, when S* was
defined by the minimization of the single scalar quantity E(SX), — & — SZ(Y)p)>
The validity of (4.6) and (4.7) adds appreciably to the usefulness of our decomposi-
tion. A simple consequence follows.

THEOREM 4.6. If A is a (finite) linear filter, S is a nonlinear smoother with linear
component S*, and (AS)(X) = A(SX)), then (AS)- = A(S*).
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PROOF. Suppose 4, S*, (4S)* have coefficients {a;}, {s;}, { p;} respectively. By
Theorem 4.3, for suitably chosen y and C = E(yy”), the coefficients { p;} satisfy
SnCrm Pom = E(Y(AS)X)) = E(Y,2,0,5X)_) = Z,4E(¥,,,SX)) (by
stationarity) = 3,a,(Cs),,, (by Theorem 4.3 again) = 3,3,4,C,,; ;S_; =
2 nCiomZ 45 _ ), SO that p, = Za;s,_; as stated.

Some immediate consequences of this theorem are that (4S)*(w) = 4(w)S%(w)
and (48)(X) — (A4S)X(Y) = A(R). These results add further interest to our decom-
position of S into “linear” and “nonlinear” components; they show that as far as
second-order properties are concerned, if the output of S is acted on only by linear
operations, the two components can be thought of as being independent. This
property holds out hope of greatly simplifying the task of designing a robust
smoother; one uses first a nonlinear smoother to achieve the desired insensitivity to
outliers, and follows it with a linear filter to achieve a desired transfer shape.

5. Some computations. In the proof of Theorem 4.2 we showed that, assuming
A1-AS and the basic specification (2.2), the coefficients {s;} of the linear compo-
nent S (defined in Theorem 4.2) of a nonlinear smoother S which is such that
S(X), is a function only of {X,_,,- - -, X,,,} for some a, b, can be obtained by
solving the linear equations Cs = E(yS(x)) where s = {s_;},y = {¥;}, x = {X;}(j
= —a,---,b),C= E(yy"). The coefficients thus depend (in general) on the
autocovariances of Y through order a + b and the common distribution H of the
elements of the noise component Z. We now examine this dependence in a little
more detail. Let ® be the standard (independent) Gaussian measure on RS,

THEOREM 5.1. If S is differentiable a.e. (), and for some X > 0, e " M*IS(x) -0
as ||x|| = oo, then

(5.1) s = E(ag—g))

PrOOF. Since p(y) = const exp — 3y C™ 'y, we have

sy = 1o 15| = O, b, dH )

and the result follows on an integration by parts.
A simple subclass of nonlinear smoothers, for which we propose the name
selectors, are those for which S(X), is X, ; for some j (depending on X), i.e.,

(5:2) SX), = 2_]1_]( T'X)Xt+j

where each [(X) takes values 0, 1 only, with 2;7,(X) = 1 for all X. Examples are
moving odd medians and iterates of these, such “3” and “53” (= S, in (1.3) above
and S, in (1.5) above, respectively), but not “53 H> (= (1.6) above) since this is not

a selector. “3R” (= (1.4) above) is a selector, but strictly is not covered by our
present theory since it does not have finite span.
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THEOREM 5.2. If S is a selector, the coefficients of S* can be found from
s_; = P(S(x) = X)).

ProoF. From (5.2), 35/0X; = I(x) a.e. (), and the result follows from Theo-
rem S.1.

This result shows that when X is an independent process with continuous
marginal df, (for any H), the linear coefficients of some selectors, namely those for
which (x) depends only on the relative ranks of X, _,, - - - , X, 4, can be obtained
by purely combinatorial methods, since in this case P(S(x) = X)) is distribution-
free. Some numerical results are collected in Table 1.

Table 1 gives the linear coefficients for six selectors of span (—3, 3); the
corresponding transfer functions are shown in Figure 2. Figure 3 gives estimates of
the residual spectra, for the case Z = 0.

We remark that while the results in Table 1 have been derived assuming that X is
an independent process, it is very plausible that the coefficients in Table 1 will
apply to a good approximation whenever X, = M, + Y, + Z, with Y independent
(Gaussian) and M slowly-varying. (This model is adequate for many observed
series.) Our formalism enables us to deal only where the case M is Gaussian. The
following result for the smoother 3 (= §, in (1.3)) typifies what one can hope to be
able to establish for this situation.

TABLE 1

Linear coefficients of some selectors when X is independent.

Selector* Coefficients**
m 1/m1/m,---,1/m
? 2.7,12,7,2)/30 = (.400, 233, .067)
3 (3, 10, 52, 80, 52, 10, 3)/210 = (. 381 , 248, .048, .014)
53 (9, 30, 44, 44, 44, 30,9) /210 = (.210, 210, .143, .043)
35 (10, 24, 45, 52, 45, 24, 10) /210 = (.248, 214, .114, .048)
3%, k large*** (. 383, .244, .050, .011, .002, .001, - - )
WG, 2) (1,1,6,1,1)/10
w(a, 2 1, 1,1,15/1, 1, 1)/21
W1, 4) 2,2,2,9222)/21
7= W(,6) (3,3,3,3,3,3,3)/21

*Notation: m denotes a median of (odd) span m. 53 denotes 5 followed by 3. 3%
denotes k iterates of 3. W(m, 2a) denotes a “Winsorizing” smoother. Let () be the
rank of X; within x. Then if 7(0) is notone of (1,2, - -.am+1—a,- - -, m)we
set S(x) = Xg; if r(0) < a we set S(x) = X, where r(k) = a; iff r(0) >m + 1 — awe
set S(x) = X, where r(k)=m + 1 — a.

**The coefficients are given in decimal form starting with the middle one, which
is underlined.

***For the selector 3R, the coefficients and several distributional results have
been obtained (in the independent case) by combinatorial methods, and will be
reported elsewhere.



TRANSFER FUNCTIONS

SPECTRA OF RESIDUALS

SOME THEORY OF NONLINEAR SMOOTHERS

707

0.8

0.6

4

0.2

0.0

o -0.2

FREQUENCY

Fi1G. 2. Transfer functions of linear components of six smoothers.

FREQUENCY

FiG. 3. Estimates of spectra of residual components of six smoothers.



708 C. L. MALLOWS

THEOREM 5.3. If, in the basic specification 22), Z=0w.p. l and Y=M+ U
where M is Gaussian with covariance C™, U is an independent white Gaussian process
with Var(U,) = C{, and if (C¥ — C}M)/ C¥ is small, then for the smoother “3” we
have

-+

O\

=1 _ =1_ =
So =351 =375

1 c{”—c;’+o(c5"—c{")2
27(3)% Cy Cy
Notice that we do not require C}* to be small.

PrROOF. The proof is straightforward but a little tedious. By symmetry and
Theorem 5.2, we need only consider P(X_, < X, < X|)(=35,). We write this as

EM_.,Mo,M.P(U—l + M_, <Uy+ My<U, + M||M_,, My, M,)
= fdQ(a’ b)fx<y<z¢(x - a)¢o(y)¢(z - b) dx dy dz

where Q is the joint measure of (M_, — My)/(CL)3, and (M, — My)/(CY)3, and
¢ is the standard Gaussian density. We expand in powers of a and b, justifiably
since the derivatives of ¢ are uniformly bounded, interchange the orders of
integration, and finally evaluate several integrals of the form [,_,_,¢"(x)¢(y)
¢(z) dx dy dz, etc.

6. Resistance. In the previous sections we have introduced and discussed the
representation S(X) = p + pg + SE(Y) + R, which is valid (relative to our basic
specification (2.2)) whenever assumptions A1-AS hold. In general, the coefficients
of the “linear part” S*, and the spectrum of the “residual” R, depend on the
parameters (C, H) of the probability specification. The problem of designing a
nonlinear smoother can thus be formalized in the following way. First choose some
linear filter 4, representing the filter that would be desired if the specification were
known to be exactly Gaussian. Choose also sets C, JC of interesting covariance and
noise specifications, and metrics §,, §, on the spaces of linear filters and residual
spectra respectively. (Two simple choices are 8,(4, B) = E(A(Y), — B(Y),)% 6, =
Var(R,) = [fz(w) dw). Then search for a smoother S that makes §,(4, S*) and
8,(fz) small for all (C, H) in € x IC.

An unappealing feature of this formulation is that it involves € and I explicitly.
We now explore the possibility of saying something about the magnitude of the
nonlinear component R for a nontrivial family of H’s, under minimal assumptions.
We search for an index with which to measure the degree to which a given
smoother § is resistant to remote outliers, being guided by Hampel’s observation
[6] that in the location-estimation problem the “breakdown point” is a primary
indicator of satisfactory behavior overall.

The breakdown point is defined in the following way [5]. Given a sequence of
location-estimators {7,,} and a probability distribution F, the breakdown point
B(T, F) is the largest B such that for all distributions G such that 8(F, G) < 8
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(Prohorov metric), there is a compact set K(B) such that Py (7, € K)—>1 as
n — 0. Loosely speaking (and quoting Hampel [7]), “it is the smallest percentage
of free contamination which can carry the value of the estimator over all bounds”.

In attempting to extend this concept to the smoothing context, we encounter
three difficulties. First, Hampel’s definition concerns asymptotic behavior as the
sample size increases, whereas it is not at all clear how a smoother can be (usefully)
embedded in a sequence. Hampel’s definition (in the location case) could be made
n-specific (at the cost of additional complexity) by defining B(n, €) to be the largest
B such that for some compact K, if §(F, G) < B then Pi(T, € K) > 1 — e.

A second difficulty is that application of a smoother to a segment (X, - - - , Xy)
of an observed process produces not just one real estimate, but a sequence
(S, - - -, Sy_p) of smoothed values. Hampel’s definition applies as it stands to the
multidimensional case, but if the probability specification allows remote outliers to
occur, one must expect that as N increases, the probability that one or more
smoothed values will be an outlier will increase to unity. We can avoid this
difficulty, relying on a stationarity assumption, by concentrating on P(S, is an
outlier) for a single ¢ (and perhaps on P(S,, S, are both outliers), etc.).

A third difficulty is that Hampel’s definition involves a metric on the space of
probability specifications, and it is not immediately clear how to define a suitable
metric on specifications of processes (however, see [14]).

The definition that follows presents our best attempt at avoiding these difficul-
ties. We assume the basic specification (2.2), and write H in the form

H = (1 -p)H, + pH,

with H,,, H, arbitrary, but with p fixed. Then the ‘breakdown probability’ is defined
to be

B(p) = B(p; C, Hy) = lim, _,,, supy P(|IS(X),| > k).

As the full notation indicates, in general this quantity may depend on C and H;
however, for many smoothers of interest (including these mentioned in Section 1
above), B(p) is independent of C and H,. A search for necessary and sufficient
conditions that this should happen has not been fruitful. Table 2 gives some
explicit results..

The following observations can be made. First, in all these cases, B(p) is
independent of C and H,, and is a polynomial in p, with leading term ap? with a, 8
integral. The exponent seems to depend only on the maximally-trimming compo-
nent of the smoother. Thus B =1 for linear smoothers; 8 =2 for W(3, 2),
(=3), W(5,2), W(7,2), and for 3%k >2); B=3for W(5,2), W(7,4) and all
smoothers built out of 5 and components of lower exponent, etc. Second, the
coefficient a depends on what components are included with the maximal-expo-
nent one, and in what order. Concatenating components may increase or decrease
.
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TABLE 2

Breakdown probabilities for some smoothers.

Smoothers* B(p)**
Linear, span (— a, b) 1—(1—pytet!
m -

m 2 tme (j »a—pr
3 3p? — 2p?
5 10p3 — 15p* + 6p°
3, k> 2 2p% + 0(p%)
53 79’ + 0(p*)
35 9p° + 0(p%)
53H 13p% + O(p%)
53H twice*** 13p° + 0(p*%)
SIH**** 34])3 + 0(p4)
WG, 2) 4p* + 0(p?)
w(,2) 6p> + 0(p>)
w(l, 4) 15p° + 0(p%
7= W(,6) 35p% + 0(p)

*The notation for selectors agrees with that in Table 1.

“53H” is (1.7). '

**In all these cases, B(p) is independent of C and H,,.

***This result was obtained assuming that in the worst
case H, would put all its probability on one side of the
origin. This may not be correct.

****Here 3 denotes an arithmetic mean (a linear opera-
tion).

As an alternative to the formulation at the beginning of this section, the design
problem can be posed in the following way. Given a linear filter 4, interesting sets
@, 9C, and a metric §,, find a smoother S that makes each of the criteria §,(4, S%)
and B(p) small for all C, H in € X I(.

7. Further comments and some open questions. Clearly much detailed calcula-
tion will be necessary to arrive at an understanding of the trade-offs that are
available among the three criteria 8,(4, S*), 8,(fz), B(p). We have begun some
numerical investigations using Monte Carlo methods to estimate these quantities,
for a variety of smoothers and specifications. However, there are several open
questions of a theoretical nature, on some of which some progress has been made.

(i) Throughout this paper we have assumed that the process X is stationary; yet it
will be important to study the response of smoothers to various kinds of non-
stationarity. A particularly simple and important case arises when the differenced
series AX, = X,,, — X, is stationary; thus when X, is of the form AY, + AZ, with
AY stationary Gaussian and Z independent noise, it appears that the previous
development continues to apply, so that a decomposition of the form S(X), =
SL(Y), + R, where R is stationary with spectrum fp(w) can be defined, even though
X and Y are not stationary and so do not have spectra. However, more complex
kinds of nonstationarity will be harder to deal with.
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(ii) Another direction in which the development needs to be extended is to
consider noise specifications other than independent, with identical distributions.
In practice, outliers often tend to occur in bursts, and smoothers that are otherwise
quite similar may differ in their sensitivity to such outlier patterns.

(iii) Huber [8] introduced the class of M-estimators for the location problem.
Given data
(7.1) X, =pn+ W, i=1---,n
with Wy, - - -, W, independent with common distribution G, an estimate of y is
obtained as ihe minimizer of 3,0(X; — p) for some suitable function p; this is the
maximum-likelihood estimate under the assumption In G’(w) o const.—p(w).
Analogously, an “M-smoother” can be defined as the minimizer of 3 ;0(X,.; — S,)
where, possibly, p,(x) = g;0(x). Do smoothers of this type have any merits?

(iv) Huber established (for the location problem) several appealing properties of
M-estimators, including an asymptotic minimax result of the following form.
Writing ¢ = p’, if G and p are symmetric about zero, the asymptotic variance of the
above M-estimate is 1/nK(y, G) where K(¢, G) = (f¢/ dG)*/[¢? dG. Let S be a
convex set of symmetric distributions such that at least one G € § has finite
Fisher information: I(G) = [(G”/G’)* dG < co. Then, if there is a G, € §, such
that 1(G,) < I(G) for all G € §, and if ¥ is a set of continuous skew symmetric
functions containing ¢, = — G’y/ Gy, then (Y, G,) is a saddlepoint of K, so that

K(y, Go) < K(¥o, Go) < K(¢, G)
for all y € ¥ and all G € §. Thus G, is (asymptotically) a least favorable
distribution in §. Huber applied this result to the family
8, = {G:G=(1—-¢)® +eH)
where ® is the standard Gaussian distribution function, and H is arbitrary,
(symmetric about zero), obtaining a very simple least-favorable G, with density
const. exp — py(x) where py(x) =3x? for |x| < k, = k|x| — 3x? for |x| > k, where
k and ¢ are related by (1 — €)™ ! = 2k~ !¢(k) + 2®(k) — 1.

Our development in Section 2 suggests consideration of the same problem with §
taken to be the set of distributions of random variables that can be written in the
form Y + Z where Y is standard Gaussian, and Z has a distribution in some
symmetric (nonGaussian) family JC. A particularly appealing family is

¥, = {H: H=(1—-¢)d, + eF}

where §, assigns unit mass to x = 0, and F is arbitrary (symmetric). This specifica-
tion differs from Huber’s in that we consider additive noise, whereas he considers
replacing noise. For us, when the true Y is not observed, which occurs with
probability e, it is because some nonzero realized Z has been added to Y; for
Huber, when Y is not observed, which occurs with probability e, it is because a Z is
observed instead. This change might seem to be of little consequence, yet after
much effort I have been unable to determine G in this case. (B. F. Logan has been
able to demonstrate that the worst-case F cannot have a continuous density).
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(v) Several other attempts have been made to describe the properties of nonlinear
smoothers, under a variety of specifications. For example, assuming X stationary,
we have studied representations of the forms

(7.2) S, = Ean,_U- + R,
(7.3) S, = Eajf(Xt+j) + R,
(7'4) St = E.g(Xt+j) + Rt

(7.5) S, = g(Eant+j) + R,

Although some of these lead to interesting and tractable calculations, they all have
serious deficiencies. For example, (7.2) applies only when X is assumed to have
finite variance, which is a very restrictive assumption. (7.5) leads to very com-
plicated analysis.

(7.4), of which (7.3) is a special case, is more interesting, being related to a
concept of central importance in the theory of robust estimation of location,
namely Hampel’s influence function, [6], [7]. This is defined in the following way.
An estimator S (of the location parameter p in the model (7.1)) is thought of as
being a functional on the space of distribution functions, so that S(G) = p, the
parameter of interest, and the estimate obtained from data X, - - -, X, is S(F,)
where F, is the empiric distribution of the data:

1
Fn(x) = ";2_’;,,1-]_,‘](35).

where J,(x) = 0, 1 for x <y, x > y. Then the influence function §,(G, x) of S at G
is defined pointwise by

(7.6) S1(G, x) = lim,o(S((1 - €)G + e J,) — S(G))/e.
The importance of this quantity arises from the relation, valid under certain weak
conditions whenever X, . .. X, are a random sample from G,

S(F,) = S(G) + 2_,8,(G, X)) + o,(n"2).

This expression shows that S(F,) can be approximated by a sum of independent
terms.

To extend this concept to the smoothing context, we need a new definition to
replace (7.6), since an asymptotic formulation is inappropriate. We appeal to a
device of Hajek [3], who introduced a projection approximation Si, of a statistic
S, = S(X,,- -, X,) by writing

S, = E(S,) + =1.,k,(X)
where
B (x) = E(S,|X; = x) — E(S,).

If S is a symmetric function of its arguments, as will usually be the case in the
location problem, #,, is independent of j. Hajek showed that when X, - - - , X, are
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independent with common distribution F, and ES? < oo, then E(S, — = g,(X))* is
minimized by taking g; = 4;,,, and

Var S, = Var §, + E(S, - S,)°

Under regularity conditions, which have not been worked out in detail, we will

have

limn—-»co hn(x) = Sl(F’ X)
so that the function 4, is a finite-sample analogue of the influence function. (For
some other analogues, see [13].)

This suggests that in the smoothing context, where S is not a symmetric function
of its arguments, and these arguments are not independent, a representation of the
form (7.4) might be useful, where the functions { f;} are détermined to minimize the
quantity Q = E(S, — 2 f(X,, j))z. (Particularly elegant formulas result when X is
assumed to be Gaussian).

However, this approach has a serious defect, which we explain by reference to a
special case. Let S be the 3-median selector (= S, of (1.3)), and take X to be an
independent Gaussian process with zero mean and unit variance. Thus we are in
the location-parameter situation, and f_, = f, = f;, and we find that f, is an odd
bounded monotonic function that approaches 777 as x — co0. Now if X is con-
taminated by long-tailed noise as in our basic specification (2.2), it can be shown
that f, remains bounded, but that now fy(x) — 0 as x — 0. Thus f;, responds very
sensitively to changes in the specification, and the value of f, in the Gaussian case
is not a good guide to the effect of the presence of outliers.

In the smoothing case the phenomenon just described increases in strength.
Suppose now that X is a Gaussian Markov process with zero mean, unit variance,
and parameter 4, so that G, = 8 for all k. Putting g(x) = E(S,|X,,, = x), we see
that Q is minimized when f_,, f,, f; satisfy

foi(x) + E(f( X)X,y = x) + E(fy(X,, )IX,_, = x) = q_,(x)
E(f_(X,_DIX, = x) + fo(x) + E(fi(X,, )X, = x) = go(x)
E(f_i(X- )Xy = x) + E(f(X)|Xpsy = %) + fi(x) = gy(x).

These equations imply f_, = f,. For x large, each of the left-hand expressions is
approximately linear in x, being close to x; it is thus very plausible that f, and f,
are also approximately linear for large x. Assuming fy(x) ~ Ax, f;(x) ~ px, we find
A=46(1-6)/(1+ 8),n=26/(1+ 8). Now suppose X is contaminated by a small
amount of additive long-tailed noise. Then for x large, the ¢’s will increase much
more slowly than before, so that the f’s will also. Thus again the f’s respond very
sensitively to such changes in the specification. It is not clear whether anything
useful can be salvaged from this approach.

(vi) An attempt has been made to study nonlinear smoothers analogous to those
considered in this paper in the case of continuous-time processes. For example, if
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X(?) is a stationary Gaussian process one can define a “box-car median” smoother
S,(?) as being the minimizer of [{*3|X(u) — S,(f)| du; a “three-point median” is
simply med(X(¢z — a), X(¢), X(¢ + a)). Such smoothers have proved excessively
difficult to handle, though some explicit results have been obtained for the box-car
median of a Wiener process.

(vii)) We remark that it is easy to define large numbers of nonlinear smoothers.
Tukey [15] has proposed many, using a novel repertoire of elementary operations.
By analogy with the location problem, an “L-smoother” can be defined by

S, = [xb(F,(x)) dF(x)
where b is some specified function and F, is a weighted empirical distribution

F(x) = 2‘Ij"(x - X,_,_j)
for some (positive) constants {a;} summing to 1. The Winsoring selectors of Table
1 are of this form. Another class is the “robustified discrete spline”, obtained for
example by minimizing 3,0(X, — S,) + BZ,(S,,, — S,)* for some suitable func-
tion p. Kleiner, Martin and Thomson [12] have had much success with robust
autoregressive predictors of the form

S, = zjajst—j + Cr‘l’((Xt - ZajSt—j)/ct)

when ¢ is a bounded skew-symmetric function, and where (a,, - - - , @) and {¢,}
are estimated from the observed series.

In the present work we have not attempted to extend this list of smoothers, but
have tried to develop methods for comparing the properties of given smoothers.
Only when suitable performance criteria have been developed does it become
appropriate to search for optimal smoothers and to ask how close to optimal are
various simple ones.
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