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AN ADAPTIVE ORTHOGONAL-SERIES ESTIMATOR
FOR PROBABILITY DENSITY FUNCTIONS!

By G. LEIGH ANDERSON? AND Rutl J. P. DE FIGUEIREDO
Rice University

Given a sample set X}, - - , Xy of independent identically distributed
real-valued random variables, each with the unknown probability density
function f(-), the problem considered is to estimate f from the sample set. The
function f is assumed to be in L,(a, b); fis not assumed to be in any parametric
family. This paper constructs an adaptive “two-pass” solution to the problem:
in a preprocessing step (the first pass), a preliminary rough estimate of f is
obtained by means of a standard orthogonal-series estimator. In the second
pass, the preliminary estimate is used to transform the orthogonal series. The
new, transformed orthogonal series is then used to obtain the final estimate.
The paper establishes consistency of the estimator and derives asymptotic (large
sample set) estimates of the bias and variance. It is shown that the adaptive
estimator offers reduced bias (better resolution) in comparison to the conven-
tional orthogonal series estimator. Computer simulations are presented which
demonstrate the small sample set behavior. A case study of a bimodal density
confirms the theoretical conclusions.

1. Introduction
A. Background. A real random variable (rv) X is characterized by the associated
cumulative distribution function (cdf)

(1 F(x) =Pr{X < x}.
If the measure induced on R by F is absolutely continuous with respect to

Lebesgue measure, then we may define the probability density function (pdf) f(+)
as

@ fx) = S F(x)

the Radon-Nykodym derivative of F.

In the present paper, we wish to estimate f(-) from a given sample
{X,, - -+, Xy} of X, without assuming that f belongs to a specified parametric
family. This task falls in the category of “nonparametric” estimation. Several
techniques of nonparametric estimation have been proposed by a number of
researchers. These will be reviewed below.

The current work is concerned with a modification to one of these techniques,
namely the orthogonal-series estimator. We propose a prior transformation of the
orthogonal series which “tunes” the series to the given sample set. The effect of the
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transformation is to reduce the bias of the estimator for a sample set of a given size
N. The transformation is obtained from a preprocessing step wherein we examine
the sample set before applying the estimator.

One of the earliest and most widely studied nonparametric density function
estimators was introduced by M. Rosenblatt [13] in 1955. He proposed the
kernel-type estimator

19 = gy 5

where K(-) is a given kernel function and 4 = A(N) is a scaling factor depending
on the sample size N. The estimator was further studied by E. Parzen [12] in 1961.
G. S. Watson and M. R. Leadbetter [23] investigated optimal choices for the kernel
shape K(-). A particular kernel shape offering attractive theoretical and practical
properties was obtained by J. O. Bennett, R. J. P. de Figueiredo, and J. R.
Thompson [2] with the use of B-splines. K. B. Davis [6] studied a kernel which is
not L, and demonstrated superior asymptotic properties; numerical trials with
small sample sizes show poor performance, however [17]. Convergence conditions
for kernel estimators [19] and related nearest neighbor estimators [8] were studied
by L. P. Devroye and T. J. Wagner.

Another type of estimator, using an orthogonal series expansion, was introduced
by R. Kronmal and M. Tarter [10], Cencov [5], van Ryzin [18], and Schwartz [15];
they developed error estimates and optimal series approximations. The optimal
results require knowledge of the unknown density f. H. D. Brunk [4] considered
ways of extracting the needed knowledge from the sample itself.

A totally different approach was taken by G. F. de Montricher, R. A. Tapia, and
J. R. Thompson [7]. In this theoretical paper the density estimate is the one which
maximizes a penalized likelihood function. A discretized numerical implementation
by D. Scott [16], gave excellent small-sample performance. An earlier effort along
these lines is that of I. J. Good and R. A. Gaskins [9].

A. Wragg and D. C. Dowson [25] use the information-theoretic concept of
entropy to fit density functions to a truncated moment sequence. Grace Wahba
[20] and P. Whittle [24] employ notions from stochastic processes to obtain
“optimally-smoothed” density estimates, Wahba’s [20] result being, in addition,
data adaptive.

B. Summary of results. In Section 2 we take a close look at the orthogonal
series-type estimator, and develop asymptotic error analysis for the special case of
the Fourier series estimator. In Section 3 we introduce a new data-adaptive
modification of the Fourier series estimator. The series is modified with a transfor-
mation derived from a preprocessing step. The modified series reduces the bias of
the estimator for a sample set of given size N. We develop the asymptotic error
analysis of the estimator and produce consistency results. Finally, in Section 4 we
examine some computer simulations to study the behavior of the estimator on
small sample sets.
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C. Notation and conventions. Throughout this paper we will assume the
following notation and conventions.

(1) X is a real-valued random variable with probability density function (pdf) f(-).

(2) We are given a sample set of size N{X,, X,, - - -, X;} where each X, is an
independent realization of X.

(3) The expected value of X is denoted by E[X] and the square of E[X] by
(E[X]) The notation E[X]? is the same as E[X?).

(4) The asterisk z* denotes complex conjugate.

2. Series-type estimators

A.  Preliminary Considerations. Consider a (Lebesgue) integrable function g de-
fined on the interval (a, b). Let g satisfy g(x) > 0 almost everywhere for x in (a, b)
and f5g(x) dx = 1. We can define L,(g), the class of square-integrable functions
weighted by g.

1) Ly(g) = {s : (a,b) > Rif2s(x)’g(x) dx < 0}.
Furthermore, let there be given {1(:)}¥=¢ a2 complete orthonormal family in
Ly(®).

Suppose that f(-), the pdf of the random variable X, is such that f/g is in L,(g).
Then f may be expanded as
@ J(x) = g(x)ZZobite(x).

By orthogonality, we can see

E[u(X)] = [ou(x)f(x) dx

= fz“j(x)g(x)zf-obk“k(x) dx
=b.

J
Now an estimator for b, is
- 1
3) b, = N ,-1“1:( )
Thus we can construct an estimate of f by
@ J(x) = g(x) - Biue(x)
for some n < N.

It is easy to derive error express1ons for (4) in terms of the coefficients in the
expansion (2). A convenient error measure is

) = fx) 12 ) — 2
E[fx) ~ f)] dx=f3E[M}g(x)dx

a g(x) g(x)
% = Efﬁ[ Temo(Be = B u(x) = 27(0_"+1bkuk(x)]2g(x) dx

=E{ =0l b — bk) + Z¥anb }
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This last expression is just

#(X)
(6) "o Var-[—l‘N—] + 3%, bE

In (6) the first term is the variance term and the second term is the bias term

A desirable property of any estimator is asymptotic consistency, which, loosely
speaking, means that as the size of the sample set increases, the error decreases. To
sharpen this notion, we define several types of asymptotic consistency.

(1) Definition. Let f, be an estimator for f given a sample set of size N. Let x, be
in (a, b).

If E[ fN(xo) = f(x)P =0 as N — oo then fN is “asymptotically consistent in the
mean square sense at x,.”

If (°E[ fN(x) — fix)P dx >0 as N — oo then fN is “asymptotically consistent in
the integrated mean square sense.”

If for every ¢ > O there is an N, such that for N > N, we have P.{|fy(xo) —
Sf(xo)| > ¢} <c, then fv is asymptotically consistent in probability at x,

The definition of the estimator (4) is not complete, since we have not specified
the choice of n. Let us choose n = n(N) as a function of N in such a way that

(8.1) n(N)->o as N - oo;
(82) 1’%—)0 as N — oo.

If we assume that there is a uniform bound B such that
Var[ 4 (X)] < B, k=0,1,2,---,

then a simple argument shows that with choice (8), the estimator (4) is asymptoti-
cally consistent in the integrated mean square sense. The precise dependence of
n(N) is here left deliberately vague. Optimal choices are investigated in [10].

An often-studied extension of (4), first described by Watson [22], is

® J(x) = g(x)Zg-owi(m) B (x)
where {w,(:)} -0 is a sequence of weights parameterized by a positive parameter A.
We choose the weights so that

(10.1) we(h) >0 . as k— oo;

(10.2) wi(h) > 1 as h—0.
Optimal choices of the weight sequence {w,(h)}7., have been studied in [4].

Briefly, the optimal functional form of w,(-) depends on f, and the choice
h = h(N) depends on the sample set size.

B. Fourier series estimators. The Fourier series estimator, a special case of
(2.A.4), has been studied extensively by Kronmal and Tarter [10). They were
interested primarily in infegrated mean square error and optimal truncation point n
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for the estimator. We shall be concerned here and later with the pointwise mean
square error, E[ f(xo) — f(x)I>. The following development in this section is new,
although it follows somewhat in the spirit of [13] and [12].

From now on we will assume that f takes its support on a finite interval [a, b].
The error introduced by this assumption is small in comparison to the bias and
variance components to be analyzed later. Furthermore, we will takea = 0, 5 = 1.
This is done for technical convenience, since a simple linear scaling and translation
will return us to the general case [a, b).

Let {w,(*)}¥- _ be a sequence of (complex) functions of a real positive variable
h. Consider the estimator given by

(1.1) f(x) = 22__  w,(h)b, exp(2mikx),
~ 1
(12) b, = ——1\7255’_, exp(—2mikX;).

We are interested in the behavior of this estimator for large N. In particular, we
will derive asymptotic estimates of Var| f(xo)] and bias [ ﬂxo)] for x, € [0, 1].

It is clear that the behavior of f depends greatly on the choice of {(We( )} o= — oo
and of h. We will now take a digression to study some properties of {(Wie( )= — oo
which we will then use to answer questions about f.

(2) LeMMA. Let {w,(-)}%=_o be a weight sequence. Suppose for each h > 0
S _ | Wi(W? < o0 and for each k, w,(h) = w_,(h)*. Then the kernel K, defined by

2.1 K, (x) = 2. _  wi(h) exp(2mikx)
is a real periodic function in L,[0, 1] with period 1. Moreover, the estimator (1) may be
written as
» 1
(22) f(x) = 52 Ki(x = X)).
ProoFf. Straightforward and hence omitted.

Expression (2.2) has a form similar to that of the Parzen kernel estimator (see
[12]). However, in the present case K,(-) is a periodic kernel and does not depend
on h as a simple scale factor. The dependence on 4 is more complicated, and this
dependence must be conditioned for the estimator to behave properly.

Henceforth we will assume that the weight sequence satisfies the following:

(3) Conditions.

(3.1) {wi(-)}¥-_o satisfies the hypotheses of Lemma (2). Moreover, K,(x) =
2 e — Wi (h) exp(2mikx) satisfies

(3.2) Ky(x) > 0;

(33) K, (—x) = Ky(x);
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(3.4) [11Ky(x) dx = 1;
(3.5) K, (x) is pointwise continuous in # > 0 and x;
(3.6) [21Ky(x)x* dx — 0 as h —0;

(3.7) Let 3>¢> 0. Then
fél(,,(x)x2 dx
P A AN

- 0 as h—-0;
J3K(x)x? dx

(3.8) Let 1>¢> 0. Then there exists B, >0 such that [,3K,(x)*dx < B, as
h—0.

Conditions (3.2)-(3.6) have ready analogues in terms of the weight sequence as
follows:

(3") Conditions

(3.2) For any square-summable sequence {C, },
2, e 1CC* > 05

B3) we=w_4

(B4) wy(h)=1forallh > 0;

(3.5) {kw(h)} is a square-summable sequence;

(3.6) wy(h)—>1ash—0.

Conditions (3.7) and (3.8) are not so easily expressed in terms of the weights.
However, (3.7) and (3.8) are used in the sequel only to establish (4.2) and (4.3)
below.

Through term-by-term integration we can show that (3.7) and (3.8") are equiv-
alent to (4.2) and (4.3):

wi(h) 24

S o — 152 +3 we(h) + %
- k540 2 (21rk)2 k odd (27rk)4 x 2
—1*
goes to zero as h — 0;
—1¥Y \?
/)
-0 as h—0.

3.8)

2
2 Wi
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Evidently conditions (3.7) and (3.8") are difficult to verify for a-given sequence
{w,(-)}. If a closed-form expression for the kernel X,(x) can be found, (3.7) and
(3.8) are much easier to check.

As an example, consider the weight sequence w,(h) = 1/(1 + (hk)?). Using the
fact that

w COSkx _ @ cosha(m—x) 1
“'%24+ 42 2a sinharm 242
we get
K(x) =3, 1 o2miks T cosh 7(1 — 2|x|)/h

1 + (hk)? h sinh 7 /h

Conditions (3.1)-(3.6) are readily verifiable. For (3.7), we obtain, after some
manipulation,

3K (1) d (sinh%(l-—Zs))(l+Zg—3) l‘-(ze cosh (1 — 2¢) — 1)

4

fél(',,(x)x2 dx —}-lf—smhz h

473 h 72

From the fact that x” sinh rx/sinh x -0 as x — oo for 0 < r < 1, we see that the

above expression goes to zero as & — 0. The same fact shows that condition (3.8) is
satisfied.

Under assumptions (3) (or (3)) it is possible to establish the following limits
which will arise shortly in.the asymptotic error analysis. The proof is a consequence
of a straightforward though lengthy analysis and is omitted. (The omitted proofs
may be found in [1].)

(4) LemMA. Under the assumptions of conditions (3), we have
(4.1) [i1Ky(xfdx >0 as h—0;

(4.2) -0 as h-0;

(43) -0 a5 h-0.

Two of the quantities are important enough to merit specific notation which will
be used extensively.
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(5) DeriniTION. For a kernel K, (), let

c(h) = %f%_%K,,(x)x2 dx;

o(h) = [ 1K, (x)* dx.
We require one further lemma about these quantities.
(6) LeMMA.
(6.1) v(h) and c(h) are continuous in h > 0.

(6.2) For every N sufficiently large, there is an hy such that
o(hy) -
¢ (hN)2

(6.3) If hy is chosen by (6.2), then

o(hy)
N
PrOOF. The first statement follows from condition (3.5) and the compactness of
the interval of integration.
Since v(h) — oo and c(h) — 0 as 2 — 0, it is clear that v(h)/c(h)* — o0 and is a
continuous function. Hence (6.2) follows.
With A, chosen by (6.2),
o(hy)
Q) N
Now we are ready to state the main theorem of this section. Although the proof
follows the spirit of Rosenblatt [13], the result is original for Fourier series
estimators. Before now, all error estimates for series estimators were of the integral
type [oE[f(x) — f(x)P dx. The following result gives estimates of local type
E[ f(xo) — f(xo)P. It is an important step in the later construction of the modified
estimator which adapts to the local properties of f.
To aid in the proof we introduce f, the periodic extension of f, defined by

f(x + k) = fx)

where x € [0, 1] and k is an integer.

+ c(hy)*>0 as N oo.

+ c(hy)? = 2¢(hy)* >0  as hy —0. 0

(8) THEOREM. Suppose
8.1) f € C?0, 1] and vanishes in a neighborhood of the end points;
(8.2) fis defined for x €0, 1] and h > 0 by

f(x) = =2 _ w(h)b, exp(2mikx)

~ 1
b, = I_szv" exp(—2mikX));
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(8.3) The sequence {w,(+)} 7= _ o satisfies conditions (3).
Then for x, € [0, 1],
E[f(xo)] — f(xo)
c(h)
If, furthermore, we choose h = hy as a function of N in such a way that hy — 0 as
N — o0, then

(84) lim,_, = f"(x,).

. N Var [ S (x0) ]
th—-»oo_m_— = f(xo)-

ProOF. We can write f(x) = (1/N)EX,K,(x — X;) where K,(-) is the kernel
associated with {w,(-)} ¥ _ - By independence of the samples,

E[f(xo)] = E[Ky(x, — X)]
= [iKy(xo = V)(¥) & = [11K,(9)f (xo + ») b,

where f is the periodic extension of f. Since f vanishes in a neighborhood of the end
points of [0, 1], f also has three continuous derivatives. Hence we can invoke
Taylor’s theorem with remainder and expand

[ fxo)] = f%_;Kh(y)[f(xo) + F oy + L7 (o)

3 3
+ %Tf"’(Z(y))] &

where x, < z(y) <y or y < z(y) < x,. By conditions (3.3) and (3.4), this reduces
to

a 1 3 °
E[ f(xp)] = fxo) + " (xo)e(h) + [L1K, (1) 57/ (2()) .
Now
1 3 o
I3 K37 &

E[f(xo)] = f(xo) _
c(h)

c(h)

f7(x0) =

[P a
c(h)

and this — 0 as # — 0 by Lemma (4). This establishes (8.4).
Again by independence of the samples,

Var[f(xo)] = %Var[Kh(xo - X)]

< 37SUP, o, ulf(x)|:

{13K(xo = 2)f2) & = (E[fx9)])'}-

z|~
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Using the same extension and expansion, we have (for appropriately redefined

z(y))
15K(x0 = YV’ R() & = 11K,V f (x0) + F(xoy + 317 (z(0)?] &
= o(W)f(xo) + 1T LKWV (2(»)) .

Thus
NValfr)] | | HEEODTCEON S (] fx0)])
o(h) fixo)| = o) o(h)
, ) [L1K(yV Y dy (E[ fxp)])’
<Esupxe[o,lﬂf ()| o(h) o(h) .

Now if & = hy — 0 as N — oo, then these two terms go to zero by Lemma (4). This
completes the proof. []
Thus we have approximately for large N,

E[ fx0) = fxo) [~ L0 o) + 77 (e

An obvious consequence is the following:

(9) COROLLARY. Under the hypotheses of Theorem (8), suppose we choose hy to
solve

D(J}:’N) — c(hN)z.

Then f is asymptotically consistent in the mean square sense at x,. That is,
E[f(x) = f(x) >0 a5 N-co.
ProOF. By Lemma (6), v(hy)/(N) + c(hy)* — 0. Thus, asymptotically,

B[ ftxo) = fx0) ]! < (Jx0) + £GP 522 + ()

also goes to zero. []

3. A data-adaptive estimator.
A. Motivation. Recall the simple form of the estimator (2.A.4)

f(x) = g(x)z’;c=05kuk(x)

with the integrated variance

2 Var[ f(x)]
* gx)

Var[u,(X)]

dx = 27‘_0 N
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and integrated bias squared

p(EL)] - f(x)’
¢ g(x)
We see that for fixed N and increasing n, the bias decreases but the variance
increases. For samples of moderate size (say N = 100), we may not take more than
a few terms in the series before the variance overwhelms us. Thus we must hope
that f may be well approximated by the first few terms in the expansion. Ideally, we
would like to choose a family {u,}¥_, for which this occurs.
It is impossible to select a fixed family {u,.}%., which works well for all
functions f. So let us consider the following adaptive strategy. From the sample set
{X,+ -, Xy} we will extract certain information about f. We use this informa-

tion to fashion a family {u,}7_, adapted to f. We will then use this family to
obtain an estimate of f.

dx = 2., 41b;.

B. Construction of the estimator. Let us consider a way of transforming a given
orthogonal family into a new orthogonal family. We start with the Fourier
functions {exp(2wikx)}¥-_, orthonormal on [0, 1]. Suppose that we have a
transformation G satisfying

(1.1) G: [0, 1] -—»[0, 1];

(12) G is one-to-one, onto, strictly increasing;

(1.3) g(x) = (d/dx)G(x) is continuous.
We can then define

2) u(x) = exp(2mikG(x))

for —0 <k < .
It is easily seen by a change of variable ¢t = G(x)
Sou(x)u(x)*g(x) dx = [o exp(2mi(jG(x) — kG(x)))g(x) dx
= [y exp(2mi(jt — kt)) dt = &,
that the family {u}7._. is orthonormal with respect to g on [0, 1]. This im-
mediately yields a series-type estimator considered earlier:
3.1) f(x) = g(x)Z%- - oowk(h)l;kuk(x)
~ 1
(32) b = 5 22w (X)*.

Thus a transformation G provides us with a new estimator. We will show later
that if G(x) ~ (5 f(y) dy (that is, if g ~ f), then the new family {u, }¥._ _ . provides
an improved estimate. We cannot choose G a-priori, of course, since knowledge of
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G is equivalent to knowledge of f. However, we can estimate G from the sample.
We propose the following algorithm.

(4) Adaptive (or two-pass) estimator. Choose h; >0, h, > 0, N, and N, so
that N, + N, = N. Let

4.1) 8(x) = P _ oWi(hy)d, exp(2mikx)
& = —Al,:zf'_'l exp(—2mikX))
G(x) = [360) &

(42) J(x) = §(x)28n _ oWil(hy) B, exp(2mikG(x))

a

1 .
b, = A =N, +1 exp(—27ikG(X))).

REMARK. The choice of the parameters N,, N, and h,, h, is not specified above.
For theoretical analysis, 4;, and h, will be chosen as functions of N,, N, (discussed
below in Section 3.C). In practical application of the estimator, we will choose
N, < N,, h; > h, so that g(x) is a low-resolution estimate of f and f in the second
pass is a high resolution estimate. The reason we split the sample in two parts is to
“decouple” the random functions § and f, in order to simplify the analysis. In an
actual application (Section 4), we will use the entire sample in both passes. Finally,
we wish to note that from the proofs which will follow, it is clear that we need not
choose the same sequence of weight functions w,(-) for ¢ and f (appearing in (4.1)
and (4.2)) provided we require that, in each case, conditions (3) (or (3’)) hold.

C. Asymptotic error analysis. We will now develop asymptotic error estimates
for the estimator (3.B.4). The development will be in two steps. First we will derive
estimates based on the assumption that § = g, a deterministic function satisfying
certain inequalities. Second, we will determine bounds on the probability that &
satisfies these inequalities. Thus the final estimates will hold “in probability.”

Let G(-) be some deterministic function satisfying (3.B.1), and let f be defined by
(3.B.3). We can rewrite the expression (3.B.3.2) for l;k as

. 1 )
6)) e = 1—\,2;?'.1 exp(—2mikT})
where
@ T, = G(X).

We know that the pdf of the transformed random variable T'= G(X) is just (see
[14]) r(-) defined by

(3) r(t) = r(G(x)) =f(x)/8(x).
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We may consider 7, a simple Fourier series estimator for r, defined by

4.1) A1) = 22 _ wi(h)b, exp(2mike)
4.2) b, = -1172}"_1 exp(—2mikT,)).
Since we clearly have

®) f(x) = g(x)H(G(x)),

it follows that

(6.1) Var[ f(x)] = g(x) Var[ #(G(x))]
(6.2) bias[ f(x)] = g(x) bias[ /(G(x))].

Putting this together, we have the following

(7) THEOREM. Suppose f and {Wk}f; — o Satisfy the hypotheses of Theorem (2.B.8).
Let G € C?(0, 1] satisfy (3.B.1) and f be defined by (3.B.3), r by (3), and ¥ by (4).
Then for x, € [0, 1] such that g(x,) # 0,

E[f(xo)] — f(x0)

1imh—-)0 C(h) = g(xO)r”(tO)
where ty = G(x,). Further, if hyy — 0 as N — o, then
N Var[ f(xg) ]
limy_, ,————F—— = f(xg)g(x,).
N o(hy) S(x0)8(x0)

The proof of the theorem is immediate on applying Theorem (2.8) to 7(-).

We can see by the preceding theorem that the quantity r”(¢,) is of interest in the
asymptotic error of f(xo). We will spend some time examining r” and its depen-
dence on the transformation G.

(8) LemMMA. Let f, g € CHO, 1] be pdf’s. Define
G(x) = fo8(y) &y
and for x € [0, 1] such that g(x) > 0
r(G(x)) = f(x)/ g(x).
Let xy € (0, 1) with g(xg) > 0, and ty = G(xy). Then

{8("0)2 "(x0) — &(x0)f(x0)8" (o)

” d2
r(to) = —5 () o

1
g(x0)5
+3£(x0) [ &'(x0) ]2 — 3g(x0)f'(x0)8'(xo) } .

The proof of this lemma, a straightforward calculation, is omitted. We now
establish a bound on r”(#,) under the assumption that g ~ f.
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(9) LeMMA. With the same hypotheses of Lemma (8), suppose further that we have
|g®(x0) = fP(xp)| <A <1 for k=0,1,2.

Let B(f, xo) = max{1, f(xo), | f'(x)l, | f"(xo)|}. Then at ty = G(x,) we have

24A4B(, x,)’

r” <
< oy

Proor. For convenience, we will write f for f(x,), etc. We have by Lemma (8),
l " ’ ’ £
r"(t) = E{ngﬂ — 88"f + 38" — 3gg'f’)

- ;l—s-{g[gf” — ']+ 3¢ f — &)

We will make use of the easily verified inequality

lpg —rs| <3lp—rl-lg+s|+3lp+7r|-|qg—s

First,
|gf” —f8"| < %|8 _f”f” + glll +%|g +f||f// — glll
<14(2B + A) +3(2B + A)A < 34B.
Similarly,
|fg’ — gf'| < 34B.
Moreover,
g=f+g—f<|fl+|g—fl<B+A4<2B
g=f+g—f<B+ A<2B.
Thus
. 2B-34AB +3-2B-34B
[ ()| < 5
g
2
< 24,453 . 1
g

We now collect what we have so far into a theorem giving asymptotic error
estimates.

(10) THEOREM. Suppose

(10.1) f € C30, 1] and vanishes in a neighborhood of the endpoints;
(10.2) {We}r= _ o, satisfies conditions (2.B.3);

(10.3) G e C3[O, 1] satisfies (3.B.1).
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Let g(x) = (d/dx)G(x), f be defined by (3.B.3), and x, € (0, 1) such that f(x;) #
0. Choose numbers 0 <p < 1 and 0 < A < pf(x,). Suppose, moreover, that

|g¥)(x0) — fO(xp)l <4 for k=0,1,2

Then we have
B[] = SOl _, AB(S, %))’

104 limy_ < . .
(104) 1 c(h) (01 = p)

where

B(f, xo) = max{1, |[f®(xg), (k=0,1,2)}
Furthermore, if hy — 0 as N — oo, then
N Var[ f(xo)]
o(hy)
Proor. By Theorem (7) we have

E[f(xo)] — f(xo)

(10.5) limy — f(xo)’| < Af(xo)-

lim,_, (D = g(xo)r" (%)
and
limN_mN—szgli#ﬂ = f(x0)8(x,)-
By Lemma (9) we have
Y 244B*
7" ()] < e
Thus
lim, Ef(x,) — fix)) | _ 244B*
- c(h) g(xo)4
Since
fox) (S0 S 1
g(xp) ~ flxo) — A =~ flxo) = pf(xg) 1-p’
we obtain

E[ f(x)] = f(xo)
c(h)
which is (10.4). (10.5) follows immediately since

| f(x0)8(x0) — f(xo)2| < Af(xo)- ]

24A4B? 1
f(xo)4 1- P)4

lim,,_,
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Now let us return to the adaptive estimator (3.B.4). We know that g(x,) is a
consistent estimator for f(x,), by Theorem 2.B.8 (with proper choice of A, = by )-

The next theorem extends consistency to the first and second derivative. First,
however, we define

(11.1) v (h) = [11Kf(x) dx,  fork =0, 1,2.
where KP(x) = (d* /dx*)K,(x). Note vy(h) = v(h).)
(11.2) V(h) = max{vy(h), v,(h), vy(h)}.
(12) THeOREM. Let g be defined by (3.B.4). Suppose that the kernel K, associated
with {w, }¥-_ is in C*0, 1], and f € C3[0, 1] vanishes in a neighborhood of the
endpoints. Define for x € (0, 1) and k =0, 1,2

(k) dk a

x)=—--1[48(x)].

£9(x) o [£(x)]

Choose hy = hy, to satisfy

V(hy,)

2
N, = c(th) .

Then for x4 € (0, 1), E[ §®(xg) — f®(xp) = 0 as N, - .

PrOOF. We can write §(x) = ]—\II—E}V_',K,,I(x — X)). Since K, € C?[0, 1],
1

89(xg) = 20 KEO(x — X))
exists. Now by integration by parts, we get “
E[ §D(x0)] = [oKi(xo — )f(y) dy
- Kh,(xo =) - f(l)[ - Kh,(xo - J’)]fﬂ)(}’) &y
= [oKy, (X0 = »)fPO(y) dp.

A similar result holds for E[g®(x,)].
Thus for k = 0, 1, 2, we obtain by previous methods

E[ §(k)(xo)] = f(])Kh,(xO = fPy) &

= LK) 900 + 1 €y + 425
AR COT P

= 1) + D xp)elh) + 1K ()% F E+a(r) .
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Thus we have an estimate for the bias

|E[ 8®)(x0) ] = fP(xo)| < e(B)[11%*P(x,)]
+sup, o, | f4* (%) | = c(h)4,
since
ﬁnK()L)iEdy<1%1K 24 = o(h
=35, y 31 2]—-2- h,(y)y ‘b’ = C( l)’
For the variance we have

Var[ £9(x;)] = NLIVar[Kgp(xo - x)]

1
< yv—lféK;‘.f’(xo - »(y) .
Again the Taylor expansion with remainder yields
J5KEP(xo = ¥V A(¥) d = 0(h)f(x0) + 112 1K) YY" (2(3)) .
So

Var[ £9(xp)] < W‘—- {0uB)f(x0) + suP,eqo, vl " (D2 LK)y dy )

< Nll{vkwl)f(xo) + $Up, o, nlf(X)lox(y))

Hence, by the indicated choice #, = th,

E[ §¥(x) = f®(x)]* = |E[ P(x0)] = fP(xo)* + Var[ £¥(xo)]

as N, > 0. []

We can now state the final and chief result on the asymptotic error of the adaptive
estimator.

(13) THEOREM. Suppose
(13.1) f € C[0, 1] and vanishes in a neighborhood of the endpoints;

(13.2) K,(-) associated with {w(h)} 5. _ is in C*[0, 1];
(13.3) f, 8 are defined as in (3.B.4);
(13.4) {hw,} is chosen to satisfy V(hy )/ N, = c(th)z;

{hy,} is chosen to satisfy v(hy,)/ N, = c(th)z;
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(13.5) xo € (0, 1) such that f(x,) # 0.
Choose € > 0,1 > 8 > 0. Then there exists N, such that

PR{limNz_m E[f(t"()}}m—) x| e} <8
and
PR{limN e M — f(xo)| > e} <é.
2 o(hy,)

Proor. Recalling the notation of Theorem (10), let us pick 4 so that 0 < A4
<3f(x0), 0 < A4 < e/f(xq), and

244B(f, x,)*
PRNEE
(%) (1 - E)
Then by Theorem (10), if values {x;, - - - xy,} are observed such that

(13.6) | 8¥(x) — fP®(xo)| < 4
for k =0, 1, 2 then

E\[ f(x))] - f(x
(13.7) limy, o [ fx)] )l
c(hy,)

and

N, Var,[ f(x,)
(13.8) limy, o, MaVenlJo] < e

v(hy,)

where E; and Var, denote the conditional expectation and variance given {X, =
Xy, © 0, Xy, = xy,}. Recall that by Tchebichev’s inequality for a random variable
Y we have

PR{|Y| > 4} < E[Y]*/ 4%
Now by Theorem (12) we have
E[ §®(xo) — f"‘)(xo)]2 -0 as N;— oo
Thus there is some N, such that
E[ §%(x)) — f®(x))]*/ 4> < 8.
Thus, for this N,, bounds (13.7) and (3.8) fail to hold with probability < §. ]

Discussion. We now consider an intuitive interpretation of Theorem (13). For
this purpose, let us denote by f, the simple Fourier series estimator defined in
(2.B.1) and by f, the adaptive estimator (3.B.4).
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We have seen from Theorem (2.B.8) that for large N, the bias | E[ f,(xo)] — S(xo)|
~ | f"(xy)|c(hy). Theorem (13) gives the analogous result

|E[f;(x0)] — f(xo)| < sc(th)'
The factor of proportionality ¢ can be made as small as desired, such as ¢ <
|f"(xo)l, by reserving enough samples X, - - -, X in the first pass. Now if the
ratio c(liN)/ c(hy,) = c(hy)/c(hy_y)—1as N — oo, N, fixed, then the asymptotic
bias of f,(x,) is smaller than that of f,(X).

D. An optimality property of the Fourier basis. The choice of the Fourier basis
simplifies analysis and implementation of the estimation (3.B.4). Moreover, one can
argue that in a certain sense, the Fourier functions are a “good” choice.

It is necessary at this point to introduce further constraints on the class of
densities we wish to estimate. This is necessary, because a particular basis is “good”
only with respect to some particular class.

We begin by generalizing the estimator (3.B.3) by replacing the Fourier family
with {v,(+)}i=¢, an arbitrary family which is orthonormal in L,[0, 1]. Then the
estimator (3.B.3) becomes

(1.1) f(x) = g(x)Z 5w (h) B0 (G(x))
(12) b = %20 10(6(X).

We have seen that the estimator (1) may be viewed as an estimator for the
transformed density

2 r(t) = r(G(x)) = f(x)/g(x)
of the random variable T'= G(X). The corresponding expression is
(3) () = S owi(B)Bo (1)

~ 1

b, = -172?'.10;((7})-

Now the error of 7 is related to the second derivative r”. Furthermore, the intent
of the transformation G(-) is to reduce the magnitude of r”. In this spirit, we will
place a constraint on the densities to be estimated by placing a bound on the
magnitude of r”.

(4) DerinNiTION. The class W,[0, 1] consists of all functions r € C[0, 1] which
have an absolutely continuous derivative (p — 1) (thus r#)(¢) exists almost every-
where) and which satisfy |r(¢)| < 1 a.e.

The class of densities we will try to estimate is W,[0, 1]. We thus seek a family
{vx(+)}¥=0 Which will provide a “good” estimator for densities r € W,[0, 1].

If we simplify the form of the estimator (3) to

(%) LOED XA ()
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then it is possible to pose the problem in such a way that it has a ready solution.
Recall that the integrated bias-squared is

Q S{E[F(D)] = r(0) dt = S ,..82
where we assume r may be expanded
(7 r(t) = ZZ=obivi ().

One approach to selecting {v, } is, for each n, to pick v, so that the maximum (for r
in W,) of (6) is minimized. To make this precise, we must introduce some
definitions.

(8) DEFINITION.

(8.1) Let C c L,[0, 1] be a class of functions and S, C L,[0, 1] be an n-dimen-
sional subspace. The “degree of approximation” of C by S, is

Es,,(C) = sup,cc inf,eg llu — ol L,

(8.2) The n-width of C is
d,(C) = infg Eg (C)
where the infimum ranges over all n-dimensional subspaces in L,[0, 1]

(8.3) If, for a particular subspace S, we have d,(C) = Es.(C) then S} is called
an optimal approximating n-dimensional subspace for C.

Now for our estimation problem, it is clear that the integrated bias-squared (7) is
just the L, approximation error of r in S(vg, v, * * + , v,), the space spanned by
0p» U1, * * * , U, The maximum error for r in W, is the quantity Eg, ,, ..., ,)(C).
We seek the family {v,} which minimizes the maximum error.

We quote the following result, which may be found in [20].

(9) THEOREM. The functions {1, sin 2xt, cos 2xit, - - -, sin 2wnt, cos 2ant} span
a (2n + 1)-dimensional optimal approximating subspace for the class W,.

Thus if we take {v;} to be the Fourier functions, we minimize the maximum
integrated bias squared for densities r in W,.

ReEMARK. The class W, contains many functions which are not densities, since
there is no nonnegativity constraint in the definition of W,. Thus the Fourier
functions may not be strictly optimal when this constraint is included. However, it
is reasonable to suppose that the Fourier functions are “good”, if not strictly
optimal.

4. Computer simulations. In Section 3 we have developed an asymptotic error
analysis for the adaptive estimator which describes large-sample behavior. The
asymptotic approximations made are not valid for small samples. Yet it is the case
of small samples which is most important in practice. Hence we must turn to
computer simulations to demonstrate the behavior for small samples.
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+ + +
-4.0 -2.4 -0.8 0.8 2.4 4.0

FiG. 4.1. True density f.

In the following simulations we consider a mixture of two Gaussians

(1) f(x) = 0.78 fi(x) + 0.22 f,(x)

where f, is N(0, 1) and f, is N(1.6, 0.4). The sample set consists of N = 100
independent variates drawn from this density, generated by a standard (polar
method) pseudorandom number generator.

This pdf was chosen as a test case because it has two closely spaced modes
separated by a shallow valley (see Figure 4.1). The adaptive estimator promises
reduced bias, and hence it should be able to resolve the modes better than the
conventional Fourier series estimator.

In the theoretical (asymptotic) analysis in Section 3, we partitioned the sample
set {X, - - -, Xy} into two parts {X}, - - - Xy}, {Xy,+1,* * * » Xy}. The first part
was used in the first pass, and the second part was used in the second pass. The
partitioning greatly simplified the theoretical analysis. However, in small-sample-
set numerical trials, it was found that performance of the estimator improved if the
entire sample was used in both passes. The numerical trials reported below were
thus conducted.

Specifically, for a sample set {X|, - - - X} (N = 100), the estimator was imple-
mented as follows:

(PR)) £(x) =32 (1 - h)*G, cos 2mkx;
- — 2 N —
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(2.3) G(x) = [38(») dv;
(2.4) f;(x) E-g(x)Zi,_obAk ms(2wké(x));
(2.5) b, = %EF, cos(2mkG(X)) (k>1) by=1.

(The expansions employ only cosines in order to simplify the computer pro-
gram.)

The adaptive estimator f, will be compared to the simple Kronmal-Tarter type
defined by

@3.1) fi(x) = S _oé, cos 2mkx;

32}"_lcoszwkxj (k>1) ¢=1

3.2) & = I

To make this comparison more direct, in (2.4) we have chosen a weight sequence
corresponding to simple truncation. (The truncation point 5 was chosen by trial
and error.) Note that for 4 = 1, the estimator f2 is identical to fl for n = 5. Below
we will observe the effect of varying 4 and n.

The results of the trials will be presented in two ways. First, we will examine the
estimates obtained from one fixed sample set as & varies for f, and n varies for fi-
These estimates are shown in graphical form in Figures 4.2 through 4.7. Second, the
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FI1G. 4.2. Adaptive estimator (h = 1.0).
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integrated square error
J§(fx) = S(x))’
will be computed for 25 sample sets, and statistically reliable conclusions will be
drawn.
Figure 4.2 shows the result for f, and # = 1. This is the trivial case, since for this
choice of h, g(x) = 1; it is identical to a simple Fourier series estimate. Note that
the estimate f, does not resolve the two modes of f. Also we see a substantial
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F1G. 4.3. Adaptive estimator (h = .04).
0.3308E400
0.2973£400 ¢ +
0.2637E400 + L
0.2302E400 o i
0.,1967E400
0.1631E400
0.1296E400 1
0.,9604E=01 \;\ 4.
2
k)
0,6250€£=01 4 N": +
2
3
0.2897€=01 T
=0.4575£=02 + t + + + T
=0.4000E+01 =0+2400E+401 “0+8000E400 0.8000£400 0+2400E401 0.4000E401

Fi1G. 4.4. Adaptive estimator (h = 0.25).
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negative tail at the right of the graph. The negativity is a result of truncating rather
than tapering the series terms in (2.4).

Figure 4.3 shows the results for 4 = 0.4. Now g begins to concentrate mass near
the modes of f. We see that f; begins to resolve the modes and that the negative tail
is somewhat reduced.

In Figure 4.4, h equals 0.25. Now f; does a very good job of resolving the modes,
and the negative tail is almost eliminated.
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F1G. 4.5. Fourier series estimator (n = 5).
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F16. 4.6. Fourier series estimator (n = 7).



ORTHOGONAL-SERIES DENSITY ESTIMATOR 371

0.3386E+400

0.3032E400

0.2679E+00

0.2325E400

0.1971g+00 T

0.16176+00

0.1264E400 T

0.9099E-01

0.5561E=01

0.2024E=01 T

-0.1513E=01 »
=0.4000E*01 =0.2400E+01 =0.8000E+00 0.8000E+00 0.2400E¢01 0.4000E+01

F1G. 4.7. Fourier series estimator (n = 10).

Clearly, Figure 4.4 is a much better estimate than Figure 4.2. By allowing the
estimator to adapt (as 4 varies) we have greatly reduced the bias.

One may wonder how well the simple Fourier estimator (3) would perform if we
vary n. The case of n = 5 is shown in Figure 4.5. (This is in fact the same estimate
as in Figure 4.1.) Now as we increase to n = 7 (Figure 4.6) and to n = 10 (Figure
4.7), the performance is improved. However, even in the best case (n = 10), the
simple Fourier series estimator is inferior to the adaptive estimator. Note in
particular that the simple estimator is able to resolve the modes in Figure 4.7 only
at the expense of introducing spurious modes (and negative values) in the tails.
This behavior is characteristic, since the simple series estimator provides a constant
amount of resolution over the entire interval [a, b]. The adaptive estimator, on the
other hand, tunes its resolution to the data; it provides higher resolution where the
density of the data is higher.

Next, we examine some Monte Carlo estimates of the integrated mean square
error of f, and f; Twenty-five sample sets, each set consisting of one hundred
variates, were independently generated. For the ith sample set (i =1, - -, 25),
estimates fl,,. and f;,i were obtained. For each estimate, the integrated square error

@) i = I foi(¥) = f()) dx (k=1,2i=1,---25)

was computed by numerical integration. These errors are tabulated in Table 4.1.

Column A is the result for the adaptive estimator f, with # = 0.25. The average
&, is 0.0078 with standard deviation 0.0043. Compare this with column B, the result
for the simple Fourier series estimator f, with n = 5. For the latter, & = 0.0099
with standard deviation 0.0028.
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TABLE 4.1
Integrated squared error
Trial A B C D
e, ; for f, e,,; for f; e,,; for fy e,,; for f,
h =025 n=>5 n=10 n=17
1 .0027 0075 .0038 .0036
2 .0120 .0090 0117 .0090
3 .0186 0193 .0160 .0169
4 .0169 0115 0179 0132
5 .0039 .0093 .0141 0073
6 .0086 0118 .0068 .0083
7 .0048 .0087 .0045 0062
8 .0064 .0085 .0039 0055
9 .0072 0099 0118 0061
10 .0063 .0095 .0072 .0063
11 .0063 .0078 .0108 0051
12 .0036 .0073 .0030 .0043
13 .0148 0162 .0169 0154
14 .0034 .0079 .0041 .0040
15 .0042 .0078 .0037 0036
16 .0033 .0072 .0018 .0030
17 .0043 .0071 .0046 .0029
18 0129 .0097 0147 0105
19 .0064 .0084 0125 .0052
20 .0104 .0107 .0202 .0140
21 .0076 0107 .0079 .0074
22 .0096 0112 0144 .0104
23 .0085 .0103 0154 .0074
24 .0058 .0100 .0052 0067
25 .0067 .0103 0063 .0070
Mean .0078 0099 .0096 .0076
Standard
Devia-
tion .0043 .0028 .0055 .0039

For these trials, the average integrated squared error for f, is substantially less
than that for f,. Since n = 5, the only difference between the two estimators is the
preprocessing step (2.1-2.3). This clearly shows the improvement obtained by the
prior transformation éG.

We would like to test the difference in the averages of ¢, and e, for statistical
significance. Since the random variables ¢, ; have no readily identifiable distribu-
tion, we will employ a distribution-free sign test for the median difference (see
[22]). Consider the null hypothesis

H : median(e, — e,) =0
against the alternative
A : median(e, — e,) > 0.
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Clearly if H is true then e, > e, is as likely as e, < e, and f, is no better than fio 1t
A is true, however, then e, < e, is more likely.

Comparing columns 4 and B, we find e, ; <e,; occurs 22 times, with the
reverse occuring three times. Referring to the one-tailed cumulative binomial
distribution we see that H may be rejected with significance 0.001.

Next we compare f; to f, for n = 10 (column C). Here again the average e, < é,.
However, the sign test is not significant for 25 trials. Therefore, another 25 trials
were run and the results are tabulated in Table 4.2. Applying the sign test for the
50 trials yields 34 occurrences of e,; < e,; and 16 occurrences of e,; > e;;. Thus we
may reject H with significance 0.01.

Column D tabulates the results of 25 trials for fz with n = 7. Note that
&, = 0.0076, which is not significantly different from e,. Thus, in mean-square error
alone, f; is not better than f, for n = 7. However, by another performance measure,
£, is substantially better. One important task of a pdf estimator is to resolve and
estimate the location of the modes of the pdf. Thus, let us define another error
measure m equal to the sum of the squared distances from the true modes (located

TABLE 4.2
Integrated squared error (continued)
Trial A C
26 .0032 .0025
27 .0045 .0048
28 0074 .0076
29 .0051 .0060
30 0172 0184
31 .0095 0112
32 0102 0119
33 .0088 0121
34 .0047 .0071
35 .0091 .0145
36 .0064 0101
37 .0034 .0060
38 .0084 .0087
39 .0166 0154
40 .0083 0120
41 .0070 .0105
42 .0105 .0096
43 *.0065 .0065
4 .0094 .0099
45 .0052 .0080
46 .0097 0153
47 .0055 .0083
48 .0031 .0027
49 .0088 .0092
50 0063 .0053
Mean .0078 .0093

Standard
Deviation .0035 .0040
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TABLE 4.3
Error in location of modes
Trial my, for f, m,, for f,
(h = 0.25) (n=T7
1 .06 11
2 .08 2.85*
3 39 4.23*
4 42 34
5 32 1.24*
6 22 26
7 .16 1.31*
8 39 1.16*
9 .03 .13
10 .01 12
11 .03 1.70*
12 .03 .19
13 1.54* 141*
14 .03 d2
15 32 .16
16 26 26
17 33 2.32*
18 .62 .58
19 .08 2.57*
20 34 31
21 .26 34
22 .05 .16
23 32 1.54*
24 1.41* 1.18*
25 .01 1.48*
Mean 0.31 1.04

" * Estimate was unimodal

at x = 0 and x = 1.6) to the nearest modes of the estimate. Thus if f has modes at

= — 0.2 and 1.4, then m = (—0.2 — 0)* + (1.4 — 1.6)*> = 0.08; if f is unimodal
with mode at, say, x = 1.0, then m = (1 — 0)> + (1 — 1.6)> = 1.36. Errors m,, for
f, and m,; for fi(n = 7) are tabulated in Table 4.3 for the 25 trials. The average
m, = 0.31 which is substantlally less than 7, = 1.04. Note that £, failed to resolve
the modes (that is, fl was ummodal) in 12 of the 25 trials; f2 failed to resolve in
only 2 trials. Thus, although fI with n = 7 performs as well as f2 in the “average”
measure of integrated square error, f2 provides greatly enhanced resolution (that is,
lower bias). Applying the median difference sign test to Table 4.3 yields a
significance of 0.02.

5. Summary and conclusions. We have looked in detail at the orthogonal-
series type of estimator and at its asymptotic error analysis. The main contribution
of this paper is the proposal of a new estimator. This estimator is constructed by
means of a prior data-dependent transformation of the basis in order to reduce the
bias of the estimate. We have developed an asymptotic error analysis of the
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adaptive estimator; and to demonstrate the small-sample behavior of the estimator,
we have considered some computer implementations.

As we see from both the error analysis and the computer simulations, there is an
advantage to be gained from performing the data-dependent transformation.
Resolution is improved (bias is reduced) in comparison to the conventional
Fourier-series estimator. This improvement could be of significance in pattern-
recognition applications. As shown in the computer simulations, the adaptive
estimator was able to resolve closely-spaced modes without introducing spurious
modes in the tails of the densities. In pattern recognition we are interested in ratios
of probability density functions. The ability to detect the fine structure of densities
from a limited set of samples can lead to improved discriminant functions (and
hence a lower rate of misclassification).
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