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(k — 1)- MEAN SIGNIFICANCE LEVELS OF NONPARAMETRIC
MULTIPLE COMPARISONS PROCEDURES

By J. H. OUDE VOSHAAR
Eindhoven University of Technology

We consider the nonparametric pairwise comparisons procedures derived
from the Kruskal-Wallis k-sample test and from Friedman’s test. For large
samples the (k — 1)-mean significance level is determined, i.e., the probability
of concluding incorrectly that some of the first k — 1 samples are unequal. We
show that in general this probability may be larger than the simultaneous
significance level a. Even when the kth sample is a shift of the other & — 1
samples, it may exceed a, if the distributions are very skew. Here skewness is
defined with Van Zwet’s c-ordering of distribution functions.

1. Introduction. Consider k samples of size' n with continuous distribution
functions F,, - - -, F,. The projection argument, by which the Scheffé simultaneous
confidence intervals are derived from the F statistic, can also be applied to the
Kruskal-Wallis statistic (see Miller (1966), page 165-172). This leads to the follow-
ing pairwise comparisons procedure, proposed by Nemenyi (1963): conclude F, #
F; for large values of |R; — R |, where R, is the mean of the ranks of the ith sample.
Throughout this paper we shall assume n to be large (except for Section 8, where
finite sample studies are treated) and under the null hypothesis H,: F) = - - - =
F, we have for n —» o«

(1.1) P[max,¢; ;<R — R < g¢ {(k(kn + 1)/12}%] =1-a,

where ¢ is the upper a point of the distribution of the range of k independent
standard normal variables. So for large n the procedure prescribes

(1.2) conclude F, # F, if |R, — Rj| > g2 {k(kn + 1)/12}%

and the simultaneous significance level (sometimes called experimentwise error
rate) is approximately equal to a.

We shall be concerned with the following problem: if H, is not valid, but
F,=-.--.=F_,= Fand F, = G, what will be the value of a(F, G), defined by

(13) a(F,G) = lim P[maxK,.,Kk_,IR,. — R| > g2 {k(kn + 1)/12}3],

n—o0

i.e., what is the probability of concluding incorrectly that some of F,, - - -, F,_,
are different? Usually this probability is called the (k — 1)-mean szgmf icance level.
It is clear that it depends also on G, as the distributions of R, and R (1<ij<

— 1) depend on F,. Dunn (1964) computed a(F, G) for the snuatlon that the
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76 JAN H. OUDE VOSHAAR

distributions F and G have no overlap at all. We shall compare a(F, G) with a, as
we require that probabilities on type I errors should not exceed the overall
significance level a.

In Sections 3 and 4 we shall see that there exist pairs (F, G) such that a(F, G) is
larger than a, even when G is a shift of F. In Section 4 and later sections only shift
alternatives are regarded and it turns out that a(F), defined by a(F)=
sup, cr@(F, F(.—a)), is larger than a only if F is very skewed. Here skewness will
be defined with the c-comparison of distribution functions, introduced by Van
Zwet (1964). If F is less skewed than the exponential distribution, that is, log F and
log(1 — F) both concave, then a(F) < a (Section 6).

If block effects are present, a similar multiple comparisons procedure can be
derived from Friedman’s test (see Miller (1966), page 172-178). Here the situation is
quite similar to the previous one; the (k — 1)-mean significance level may be larger
than a, and more specifically, a*(F) is larger as F is more skewed (Section 7).

An auxiliary result which we shall prove is the following one (see Section 5). Let
X have distribution function F and define

(14) o(F) = sup,cgVarF(X — a)
c(F) = sup,epCov(F(X), F(X — a)).
Then we have:

If F, is more skewed than F,, then v(F,) > o(F)) and c(F,) > c(F)).

The problem, that the distribution of R, — R; is affected by the distributions of
the other samples, has already been noticed by Miller (1966, page 168) and also by
Gabriel (1969, Example 2.3). For that reason Miller recommends the use of the
alternative nonparametric method, proposed by Steel (1960). Here the pairwise
comparisons are based on pairwise ranking, so that the whole problem disappears
and thus the (k — 1)-mean significance level is automatically smaller than a.

A recent paper of Koziol and Reid (1977) deals with the methods of Nemenyi
and Steel in another context.

2. Another expression for a(F, G). Up to and including Section 6 we
shall consider the case where no blocks are present, so let X;,- - -,
Xin5 03X+ + 5 X, be independent random variables (k > 3), where Xj; has
a continuous distribution function F,. Let R; denote the rank of X, among all
observations and define R, by R, = n~'37_|R,.

In order to determine a(F, G), we first must know the asymptotic distribution of
the range of R, * - , R,_, for the case F; = - - - F,_, = F and F, = G. Using
Theorem 2.1 of Héjek (1968), one can easily prove the asymptotic normality of the
vector (R;, * * - , R,_,) under this alternative ( the proof is omitted here).

If we define p, ¢ and r by

p = [GdF

(2.1) q = [G%dF
r = (FGdF,
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then, after a tedious computation, the following relationships can be found for
1<i,j<k-1:

(22) &R, =1(kn + 1) + (p —%)n
(23) VarR =Lkn+(2r—p—Dkn+(4p— 20>+ qg—6r +1)n
+5k—p+pP—qg+2r—;
(249) Cov(ﬁ,.,l_(;) =—Skn+(3p—p2—4r+35)n—3%.
So n‘%(ﬁl, -+ +, R, _,) has an asymptotically normal distribution with covariance
matrix
fa, a . . . . . a]
a

a

9
where a; = k*/12+ 2r—p — Dk +4p —2p* + g—6r+ 1 and a, = — k/12

+3p—p*—4r+ 5.

If we define (see also Miller (1966), page 46) R= (k — )7z 1‘1?, andy=1=
{(ay — a)/(a) + (k — 2)ap))7, then n~3(R, — YR, -+, R,_, — yR) has an
asymptotically normal distribution with covariance matrix (a, — a,)I,_, (where
I, _, denotes the identity matrix of size k — 1). If we set b = a, — a,, then we have
found that the range of (nb)‘%E,, e, (nb)'%ﬁk_l has asymptotically the same
distribution as the range of k — 1 independent standard normal random variables.
Henceforth this last range will be denoted by Q,_,. Since b depends on F and G,

we shall write b(F, G) and we may conclude

@.5) o(F, G) = P[Q,_, > ¢t (K*/125(F, G))7],

where

(2.6) b(F,G) =k/12+ (2r—p — i)k = 1) + ¢ — p* — 5.
REMARKS.

1. If X has distribution function F, then:
2.7) 2r — p = 2Cov(F(X),G(X))
q — p* = VarG(X).

2. If F=G, then b(F, G) = k*/12, so under H, we (naturally) have
a(F, G) < a.

3. Maximum of a(F, G). Now we shall compute the maximum value of
a(F, G), and we want to know whether it is larger than a. Note that this may
depend on k and a.
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From (2.5) we see that a(F, G) is maximal when b(F, G) is maximal. Writing

3.1) 2r — p = ((2F — 1)GdF,
we see that 2r — p is maximal if F and G satisfy the following two conditions:
(32) if F(x) <3, then G(x) =0, and

if F(x) >3, thenG(x) =1;

that is, F =1 on the support of G. Now it happens that ¢ — p? is maximized by the
same pairs (F, G), so from (2.5) and (2.6) it follows that a(F, G) is maximal for the
pairs (F, G) satisfying (3.2). As for these pairs 2r — p and g — p? are both equal to
1/4, we conclude that the maximum value of a(F, G) is equal to

1
PQu_y > g2 {K?/ (K + k + 1)},

With the aid of a table of the cdf of the range of independent standard normal
variables (e.g., Harter (1969)), we can find these values for several values of £ and
a. From Table 3.1 we see that in general max a(F, G) is larger than a.

TABLE 3.1
Maximum values of a(F, G) for a = .01, .025, .05 and .10
k=3 4 5 6 7 8 9 10 12 15 20

a=.01 0153 .0181 .0182 .0178 .0172 .0167 .0162 .0158 .0151 .0143 .0134
025 .0303 .0361 .0386 .0385 .0379 .0372 .0365 .0358 .0347 .0334 .0318
05 0512 .0643 .0682 .0690 .0688 .0682 .0674 .0667 .0652 .0633 .0612
10 .0877 .1123 .1208 .1240 .1250 .1250 .1245 .1238 .1224 .1202 .1172

REMARK. If we keep in mind that b(F, G) = 1lim, ., Var n"3(R, — R)(1 < i,
< k — 1), then it is also clear intuitively, that b(F, G) is maximal if F and G satisfy
(3.2), since in that case the kth sample is expected to receive the midranks.

4. Shift altenatives. From this moment we shall consider only pairs (F, G) for
which there exists an ¢ € R such that
4.1) G(x) = F(x — a) forallx € R,
and again we ask ourselves whether a(F, G) may be larger than a. As now a(F, G)
and b(F,G) in fact depend on F and a, we shall modify our notation: a(F, a) =
a(F, G), b(F, a) = b(F, G), where G is given by (4.1).

If X has distribution function F, then we define

(42)  c(F,a) = Cov(F(X), F(X — a)) = [(F(x) — })F(x — a)dF(x),

4.3) v(F,a) = Var F(X — a).

Now we can rewrite (2.5) and (2.6):

(44) a(F,a) = P{Qc-1 > g8(K*/12b(F,0))?},
where

4.5 b(F,a) = 5k* + (2¢(F,a) — &)(k — 1) + v(F,a) — 3.
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Furthermore we define
(4.6) a(F) = sup,cga(F,a)

and b(F), ¢(F) and v(F) analogously (see also (1.4)).
First we try to maximize ¢(F,a) over F and a. Suppose a > 0. Then F(x — a) <
F(x) for all x € R, and consequently,

47) c(F,a) < f{x|p(x)>%}(F(x) - %)F(x — a)dF(x)
< f{F>%}(F2 —1F)dF =}.

If a < 0, then also c(F,a) <z for all F. On the other hand, 3 tuns out to be the
lowest upperbound, since for F,, defined below in (4.8), we have c(F,,.3) =;,57 -

O(mh.

(4.8) F(x)=x+3 if —2<x<0,
X . m
= +1 if0<x< >
Furthermore we have that limm_,wv(Fm,%) = 7295’5, and hence by (4.5)
(4.9) suppb(Fa) > (K +1k + %))
which implies i
1
(4.10) supra(F) > P[Qk_, > ge{k2/ (K + 1k + ,5—6)}2].
TABLE 4.1
Lower bounds for supga(F).

k=3 4 5 6 7 8 9 10 12 15 20

a=.01 .0079 .0101 .0109 .0113 .0114 .0114 .0114 .0114 .0114 .0112 .0111
25 0175 .0230 .0253 .0263 .0268 .0271 .0273 .0273 .0273 .0272 .0270
.05 .0325 .0431 .0478 .0501 .0514 .0521 .0526 .0529 .0531 .0532 .0530
.10 0612 .0816 .0909 .0958 .0987 .1005 .1019 .1025 .1034 .1039 .1041

From Table 4.1 we see that supa(F) is larger than « for several values of a and
k. However the exceedances, if any, are rather small, much smaller than in the
general case treated in Section 3.

It should be noticed here that (see Statistica Neerlandica (1977), page 189-191,
solution of problem nr. 45) ‘

(4.11) sup,0(F,a) = (3 — (5)1)%,

which value is reached (for m — o0) by the same F,, of (4.8) but for a #%.
However, the value iu (4.11) only slightly exceeds 1%92' and moreover 2(k — 1) -
¢(F,a) is the dominant term in (4.5), so (4.10) is almost an equality, especially for k&
not too small. Consequently the lower bounds in Table 4.1 are practically equal to
sup pa(F).

The next question is, which conditions on F are sufficient to guarantee a(F) <
a? The first result stated here is due to Professor R. Doornbos.
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THEOREM 4.1. If F is symmetrical and unimodal, then c(F) <15, and hence
a(F) < a for the usual values of a and k.

SHORT PROOF. Combining ¢(F) < 55 (proof omitted here) with (4.11), one will
see that in (4.4) b(F,a) is not large enough to make g2(k?/12b(F, ,a))% smaller than
G- 0

We would like to relax the conditions on F in Theorem 4.1, especially since the
symmetry is often not fulfilled in practice. However, unimodality alone is not
sufficient to ensure a(F) < a, since F,, of (4.8) is also unimodal. Theorem 4.1,
together with the extreme skewness of F,, may suggest that a(F) is larger when F
is more skewed. In the next sections we shall see that this guess puts us on the right
track. Here skewness will not be the normed third moment, but it is defined with
the c-comparison, introduced by Van Zwet (1964).

5. Skewness and its relation to c¢(F) and v(F). We shall confine ourselves to
the class % of continuous distribution functions F, for which there exists a finite or
infinite interval I = (x,,x,) such that the following three conditions are satisfied:

(5.1) F(xy) — F(x)) = 1,
(5.2) F is differentiable on I,
(5.3) F’ > 0on I.

On this class § a weak order relation is defined, which is called the c-comparison.

DEFINITION 5.1. If F\,F, € ¥, then F, <.F, iff F, 'F, convex on I.
F, <.F, should be interpreted as F, is more skewed to the right than F;.

PROPERTY (Lemma 4.1.3, Van Zwet (1964)). If f, and f, are the densities of F,
and F, respectively, then

(54) F, <F,iff (F;"Y)/ (F7YY = fi(F7")/f,(F; ") is nondecreasing on (0,1).
For F € ¥ we define F € ¥ by
(5.5 F(x)=1- F(—x)forallx € R.
Then we can prove the following property:
LEMMA 5.1. If F\,F, € F, then F, <.F, iff F, <.F,.
PROOF. '
= : F; 'F,(—x) convex in x implies F,”'F,(— x) concave in x.
Hence (F,)_lfz(x) = — F,"'F,(— x) is convex.
<: Note that 1%= F. 0
Using the c-comparison, we now define skewness on %.

DEFINITION 5.2. F, is more skewed than F, iff F, <.F, <.F, or F, <.F, <.F,.
Notice that, if we only have F;, < F,, F, still may be very skewed to the left.
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Now we want to prove that ¢(F) and v(F) are increasing according as F is more
skewed. But first we have to state two lemmas.

LEMMA 5.2.. Let f and g be real functions on an interval I C R (g positive), such
that f/ g is nondecreasing on I. If furthermore x,, x,, x, x, € I, such that x, < x,
and x, < x,, then

JR2 /128 < [3f/ s
ProoFr. Elementary calculus. []

LeEMMA 5.3. Let f and g be real functions on (0,1) such that:
0) fof = o8 < oo,
(i) there exists x, € (0,1) such that f < g on (0,xo) and f > g on (xy,1).
Then
Joxf(x)dx > [oxg(x)dx.

This lemma is a special case of a theorem due to J. F. Steffenson (see Mitrinovic
(1970), page 114, Theorem 13).

THEOREM 5.1.  If F, is more skewed than F, (F,, F, € %), then

(@) e(F) < c(F,
(b) v(Fy) < o(F).

Proor. First we shall prove (a). After a change of variables (4.2) gives

(5.6) c(F,a) = [Nu —L)F(F~'(u) — a)du.
Suppose

(5.7) F, <.F, <.F,.

We shall start with showing

(5.8) Fy <cFy = SUp,c,00)/8(# — 3)F1(F{ '(u) — a)du

< SuPae(o,eo)f(l)(“ - %)Fz(Fz_l(u) - a)du

which has been proved if for any @, > 0 there exists a, > 0 such that the following
two relationships are satisfied:

(5.9) F\(F () — a)) > Fy(F;7(u) — a,) foru € (0, 1),
(5.10) F\(F7\(u) — a,) < Fy(F;\(u) — ay) foru € (1, 1).
For this we take a, such that we have equalities for u = 1. So
(5.11) a, = Fz—l(%) - F2_1(F1(F1_1(%) - al))'

To prove (5.10) we use Lemma 5.2 with f = (F;" 'Y, g = (F{"'Y, x, = Fy(F{'() -
a,), x, =%, x; = F\(F"'(u) — a,), x4 = u. Then f/g is nondecreasing because of
(5.4) and (5.7). To prove (5.9) we only need an interchangement of x, and x, and of
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x; and x,. Thus (5.8) has been proved. For negative @ we have to make use of
F, <cf;. By Lemma 5.1 this is equivalent to F, <.F,, so (5.8) gives

(5.12) sup,c(o, .,,)f(‘,(u - %)Fl(fl"(u) - a)du

< SUp,e(o, no)f(l)(u - %)Fz(Fz_l(“) — a)du.
Using Fy(F; '(u) — a) = 1 — F\(F7'(1 — u) + a), we have

f(',(u - %)fl(f,"(u) - a)du = f(',(u —%)F,(F,"(u) + a)du.
Hence (5.12) gives

(5.13) Fy <cFy = SUP, (oo, 01 — DF(F\(u) — a)du

< SUPge(o, eo)f(l)(“ - %)Fz(Fz_l(“) - a)du.
Combining (5.8) and (5.13), we see that (5.7) implies ¢(F,;) < ¢(F,). This is also
implied by F, <.F, <.F,, as ¢(F,) = ¢(F,). So the proof of (a) has been com-
pleted.
To prove (b), we take random variables X, and X, with distribution functions F,
and F,. As F\(X, — a) has distribution function H,, defined by H,(u) = F,(F, '(v)
+ a), we have

(5.14) EF\(X, — a) =1 — [oH (w)du = 1 — [\F\(F{ '(u) + a)du,

(515 &{(Fy(X, - @))’} =1 — 2f3uH (u)du = 1 — 2fquF,(Fy"'(u) + a)du,
and similarly for F,(X, — a). First we prove that F, <.F, implies that for any
a, > 0 there exists a, > 0 such that
(5.16) VarF (X, — a;) < VarF,(X, — a,).
For that purpose we take a, such that & F\(X, — a,) = 6F)(X, — a,), that is,
(5.17) JoF\(Fy '(u) + a,)du = [}F,(F; () + a,)du
(a, exists, since F, and F, are continuous). Then (5.16) is satisfied if
(5.18) JouF(F () + a\)du > [SuFy(F; '(u) + a,)du.
This follows from Lemma 5.3 if we substitute
f(u) = F\(F(u) + a,) and g(u) = F,(F; '(u) + a,).
Condition (i) is satisfied by (5.17) and condition (ii) is satisfied because:
(1). According to (5.17) there exists u, € (0, 1) such that F,(F,"'(u,) + a,) =
Fy(Fy (up) + a,), as F, and F, and their inverses are continuous.
(2). As F, <.F,, we can use Lemma 5.2 in the same way as in the proof of part
(a) with § replaced by u,. This gives F)(F;"'(u) + a,) < Fy(F; '(u) + a,) for
u € (0, up) and the reverse inequality for u € (1, 1).
Hence we now have

(5.19) F) <cF, = sup,c(, wyVarFy(X, — a) < sup,c, ) VarFy(X, — a).
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For negative a again we use F, <.F, (or F, <.F,). As —X, has distribution
function F, and furthermore

VarF\(— X, — a) = VarF,(X, + a),
we find
F, <.F, = SUP, (- o, 0) VAT Fi(X| — @) < SUP, (o, o) VarFy(X, — a).
Together with (5.19) this completes the proof of Theorem 5.1. []

6. Sufficient conditions on F such that a(F) < a. Now an application of
Theorem 5.1 to our multiple comparisons problem is given. Let F, be the negative
exponential distribution (which is rather skewed), so F,(x) =1 — e~ *
(x > 0). Since ¢(F,) = 33—2 and v(F,) = %, we have by (4.5)

b(F,, a) < k*/12 + (2¢(F,) —§)(k — 1) + o(F,) — & = (K* + k/4 + ) /12

and substituted in (4.4), this gives the upperbounds for a(F,) in Table 6.1 (see
below). In that table we see that a(F,) is smaller than « for the usual values of a
and k. As F, € ¥, we now have, by Theorem 5.1, that (k> + k/4 + )/12 is also
an upperbound for b(F, a), for all F € ¥ which are less skewed than the exponen-
tial distribution. Translation of “F less skewed than F,” gives

THEOREM 6.1. If log F and log (1 — F) are both concave, then a (F) < a (for
a = .01, .025, .05 and .10) and upperbounds are given in Table 6.1.
TABLE 6.1
Upper bounds for a (F) when log F and log(1 — F) both concave
k=3 4 5 6 7 8 9 10 12 15 20

a=.01 .0053 .0073 .0083 .0088 .0092 .0094 .0095 .0097 .0098 .0099 .0100
025 .0127 .0176 .0200 .0214 .0223 0229 .0234 .0237 .0241 .0245 .0248
05 .0249 .0345 .0393 .0422 .0440 .0453 .0462 .0468 .0478 .0486 .0493
.10 .0496 .0682 .0777 .0834 .0870 .0895 .0914 .0928 .0947 .0965 .0979

To show that this class of distribution functions is not too small, we remark that
it contains all the strongly unimodal distributions.

COROLLARY. If F is strongly unimodal, then log F and log (1 — F) are both
concave, so Table 6.1 is also valid for strongly unimodal F.

ProoF. Prékopa (1973) proved that strong unimodality (that is, log f concave)
implies the log-concavity of F. F is strongly unimodal if and only if F is strongly
unimodal; hence log (1 — F) is also concave. []

REMARKS.

(1). This corollary is the other version of Theorem 4.1 we were looking for at the
end of Section 4. Symmetry is not required but unimodal is replaced by
strongly unimodal. Nevertheless Theorem 6.1 is more general.

(2). Again the situation of Section 4 occurs: ¢(F,, a) and v(F,, a) are not
maximal for the same value of a. However, since v(F,, a) is almost maximal
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when ¢(F,, a) is maximal (& versus 3), we see that the values in Table 6.1
are practically equal to a(F,).

7. Friedman-type simultaneous rank tests. Now we shall treat a multiple com-
parison procedure, also proposed by Nemenyi, but for another model, namely,

when blocks are present. Let X, i=1,---,k; j=1,---,n be independent
random variables, with continuous distribution functions F;, where we assume that
there exist numbers 6, - -, 6, By, - - , B, and a distribution function F such

that Fj(x) = F(x — 6, — B). The B’s are called block parameters and we want to
know which 8’s are different.

Let R; denote the rank of X;; among the jth block (X, - - -, X). Then we
define R, = n~'Z7_|R;. Again n is assumed to be large and under the null
hypothesis H, : 8, = - - - = 8, we have for n — o

() P[maxiq il R - Rl < gf(k(k + 1)/ (120)}3] =1 - o

We are interested again in the (k — 1)-mean significance level. Suppose 8,
=-...=§._,and 6, = 0, + a (a # 0). What in that case is the value of a*(F, a),
defined by

— —_ 1
(72) a*(F, a) = lim, . P[max,q; ;1| R — K| > ¢ {k(k + 1)/ (12n))],

and is it larger than a for some a,k,F and a?
To answer this question we shall compute the supremum of a*(F, a) over F and

a. The vectors (R, - * - , Ry)) forj=1,- - -, nareiid, so (E,, <., Ek) has an
asymptotically normal distribution for n — co. After computation of the variances
of Ry, -+, R,_, the same arguments used in Section 2 lead to

1
(1.3) a*(Fa) = p[ Qi1 > gt {(K* + k)/ (K* + (2¢(F, a) —,Lz)k/lz)}Z].
Since 3 is the supremum of c(F, a) over F and a (see Section 4), we have

(74) supy, ,@*(F, a) = P[ Our > a2 { G + 1)/ (2 + %k)}]

whose values are given in Table 7.1.

TABLE 7.1
Supy, ,a*(F, a) for several values of o and k.

k=3 4 5 6 7 8 9 10 12 15 20
a=.01 .0060 .0084 .0096 .0101 .0105 .0107 .0108 .0109 .0110 .0110 .0109

025 0141 .0198 .0227 .0242 .0251 .0257 .0260 .0263 .0265 .0267 .0267
05 0271 .0380 .0435 .0457 .0483 .0498 .0506 .0511 .0518 .0523 .0524

.10 0530 .0738 .0843 .0904 .0942 .0967 .0985 .0997 .1013 .1025 .1032

We see that a*(F, a) may be larger than a, but the exceedance is never large.
Once having this result, again the following question arises: if we define a*(F) by

a*(F) = supaena*(F, a)’
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what conditions on F are sufficient to guarantee a*(F) < a? From (7.3) and
Theorem 5.1, one can conclude:

THEOREM 7.1. If F, is more skewed than F,, then a*(Fy) > a*(F\)(F,, F, € %).

Note that such a conclusion is not right for a(F), since a(F, a) depends on both
¢(F, a) and o(F, a), which are not always maximized by the same value of a
(although in practice they almost are!).

Again the comparison with the exponential distribution gives:

THEOREM 7.2. If log F and log (1 — F) both concave, then a*(F) < a for the
usual values of a and k.
It turns out that a*(F,) is slightly smaller than the values given in Table 6.1.

8. Finite sample studies. In order to investigate how far the asymptotic results
are valid for finite n, Monte Carlo studies have been made for n = 5 and
k=3,---,10 in the situation where block parameters are absent. Here I am
much indebted to Kees van der Hoeven, who wrote the computer programs.

Firstly the exact critical values have been estimated (from 40,000 simulations
under H,, for each k) in order to make the simultaneous significance level equal to
a. It turned out that for n = 5 the critical value used in (1.2) is an acceptable
approximation. Its exact significance level was systematically somewhat smaller
than a, so it seems to be safe to use the asymptotic approximation of (1.1), if exact
critical values are not available. Another critical value, which is sometimes used,
namely {hZ_k(kn + 1)/ 6}%, where h_, is the upper a point of the distribution of
the Kruskal-Wallis statistic, proved to be bad; the significance level is much
smaller than the nominal one, especially for larger k.

Once having obtained the exact critical values (of course randomization was
necessary), the (k — 1)-mean significance levels have been estimated for the pair
F,G given in (3.2) and also for a shift with an amount } of F,, defined by (4.8),
where m — . For both alternatives also 40,000 simulatiohs were made for each k.
In both cases the (k — 1)-mean significance levels for n = 5 are systematically a
little bit larger than the values given in the Tables 3.1 and 4.1, but the difference
was so small that one may conclude that already for n = 5 these levels behave as if
n were infinity.

9. Final remark. As the (k — 1)-mean significance levels of both multiple
comparison methods do not exceed a very much, these results may not appear very
alarming to a practical statistician, the more so as (for shift alternatives) a(F) and
a*(F) are smaller than a for a large class of distribution functions (Theorems 6.1
and 7.2). However, the most serious disadvantage of the methods remains, namely,
the dependence of the distribution of R, — I?J on the other F;’s respective 8,’s.
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