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MONOTONICITY OF BAYES SEQUENTIAL TESTS!

By L. D. BROwWN, ARTHUR COHEN, AND W. E. STRAWDERMAN
Rutgers University

Consider the problem of sequential testing of a one sided hypothesis when
the risk function is a linear combination of a probability of an error component
and an expected cost component. Sobel’s results on monotonicity of Bayes
procedures and essentially complete classes are extended. Sufficient conditions
are given for every Bayes test to be monotone. The conditions are satisfied
when the observations are from an exponential family. They are also satisfied
for orthogonally invariant tests of a mean vector of a multivariate normal
distribution and for scale invariant tests of two normal variances. Essentially
complete classes of tests are the monotone tests for all situations where these
sufficient conditions are satisfied.

1. Introduction and summary. Consider the problem of sequential testing of a
one sided hypothesis. If the observations are drawn from an exponential family and
if the risk function is the sum of the probability of an error component, and an
expected cost of observation component, then Sobel [8] found an essentially
complete class of tests. These tests are what we call monotone tests. In finding the
essentially complete class, Sobel proved that for every prior distribution there is a
monotone procedure which is Bayes with respect to this prior.

In this paper we extend Sobel’s results in several directions. Sufficient conditions
are given for every Bayes test to be monotone. The conditions are satisfied when
the observations are from an exponential family, but work in other cases as well.
For example, they are satisfied for orthogonally invariant tests of a mean vector of
a multivariate normal distribution, where the maximal invariant sufficient statistic
has a noncentral chi-square distribution. Another example is a test for two normal
variances where the maximal invariant sufficient statistic is scaled central F.

The essential completeness of the class of monotone procedures will in all our
cases follow from the arguments of Sobel and will not be repeated here. The basis
of this argument is that the limits of Bayes procedures form an essentially complete
class and that limits of monotone procedures are monotone. A complete class, as
opposed to an essentially complete class, for this problem is discussed in Brown,
Cohen, and Strawderman [3].

We remark here that the main results apply to symmetric two sided hypothesis
testing problems. Also no assumption is made requiring the sum of the costs of
observations to tend to infinity as the number of observations tends to infinity.
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In the next section we give preliminaries and define monotone procedures. At
the end of Section 3 we prove the main theorem which states the conditions under
which Bayes tests are monotone. Section 4 contains examples.

2. Preliminaries. The elements of the problem are as follows: The parameter
space is © with typical element #. The null space is ©®, C ® and the alternative
space is ©, C ©. The action space @ consists of pairs (n,7), where n =
0,1,2,- - -, o0 is the stopping time and 7 is 1 or 2, depending on whether the null
hypothesis is accepted or rejected. The loss function is denoted by L(, (n, 7)). For
0 €0, L@, (n, 1)) = C(n). For § € ©,, L(0, (n, 1)) = C(n) + d,. For 8§ €
0,, L8, (n,2)) = C(n) + d,. For § € ©,, L(0, (n, 2)) = C(n). Here C(n) repre-
sents the cost of taking n observations. Let ¢; represent the cost of taking the jth
observation so that C(n) = Z7.,c,. We assume ¢, = 0 so that all procedures take at
least one observation. (We could avoid this assumption by stating what Bayes
procedures do at stage 0.) Also assume ¢ >0, for j=2,3,---. It will not be
necessary to assume that C(n) — o0 as n — o0, so we will be considering proce-
dures that do not stop with a finite number of observations with probability 1. For
such procedures we continue to require that a terminal decision * be made. When
lim,_,, C(n) is finite, we will assume that the observations, to be discussed below,
can provide a strongly consistent estimate of #. This will insure that the closure of
the class of Bayes solutions is an essentially complete class by virtue of an
application of Brown [1], Theorem 3.18. The constants 4, and d, are positive.

Random variables available to the statistician for observation are a set X =

(X1, X, ¢ -+, X ). X lies in an infinite product space. Assume that there exists a
sequence {S;},j=1,2,-+-, 00, where §; is a real valued function of X; =
(X}, X5, + * -, X)), such that { §;} is a sufficient, transitive sequence for §. The point
S =(8,8,""",8,) lies in an infinite product space. We assume that there is a

o-finite measure p defined on this space which dominates the family {Py(-), § €
©} of probability measures for S in the following sense: For eachj = 1,2, - -,
over the o-field generated by (S), Sy, - * -, §)), the measure P, is dominated by p.
Write (s, s, - * * , 5) = dPy/dp, where the Radon-Nikodym derivative is taken
relative to this o-field.

A prior probability measure on ® dentted by I'(-) will be represented by a
mixture expressed as mI';(+) + 7,I'y)(+). Here, if T is a random variable with
distribution I, then =, is the probability that 7" € ©,, and T, represents the
conditional distribution of 7, given 7 € ©,. Similarly for I',, We assume 0 < 7,
<1

We consider only procedures based on {S;}. (See Ferguson [7], Theorem 4, page
337.) A decision function § will consist of a set of nonnegative functions §; (s;),
(i=0,1,2;j=1,2--,00) defined for all s, such that 33_43;(s) = 1. The
quantities §,(s;) represent, respectively, the probability of taking another observa-
tion, accepting H,, and accepting H,, when j observations have been taken.
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The risk function is denoted by R(#, 6) = E,{L(4, 8)} and the expected risk is
R(T, ) = ER(4, 5).
Now we define monotone tests.

DErFINITION 2.1. A sequential test of a one sided hypothesis is said to be
monotone if for every j, there exist numbers (q,;, ay), —© < ay; < ay < oo, such
that &,,(s;)) = 0 for 5, > a5 8; = 0 if 5; < ay; or 5; > ay; 8,(s) = 0 if 5 < ay. If
5; = ay;, then 8,(s;) = 0 but 8, and §,; are arbitrary. Similarly if 5, = ay, 6, =0
and §,; and §,; are arbitrary.

DEerINITION 2.2. A sequential test of a two sided hypothesis is said to be
monotone if for every j there exist numbers (ay;, ay;, ay;, ay;), —© < ay; < ay < a;
< ay < o, such that §,(s;) = 0 for 5; <ay; or 5, >ay; 8(s) =0 if a; <s; <
ay;; 8gi(s) = 0if 5; < ay;, 5, > ay;, or ay; <s5; < a@,;. Certain obvious randomizations
are permitted when s; equals some g; pi=1234

3. Bayes tests are monotone. Before stating the main theorem, we offer a
series of lemmas. The first lemma is concerned with the existence of a dominating
probability measure having a Markov chain property, and with the resulting form
of the densities of the sufficient statistics. The second lemma shows how the
composite vs composite hypothesis testing problem is reduced, for purposes of
determining Bayes tests, to testing a simple hypothesis against a simple alternative.
Two of the last four lemmas require the conditions for Bayes tests to be monotone
and the four lemmas are offered to facilitate the proof of the main theorem. Now
let

(3.1) f(({')’(sp Syttt S,) = fe,fy)(sv S0t 7 sj)ri(do)a
i=1,2=12----.

Note f(s, 55, - + , 5,) are densities equal to dP,/dp over the o-field generated
by Sy, Sy - - -, S, where P(-) = Je,Po(+)Ti(d6).

LemMaA 3.1. S, S, - - -, S, is a sufficient transitive sequence for the probability
measures P ), P . These measures are dominated by the probability measure v(-) =
T Py(*) + mPo)(+). The probability measure v represents a marginal probability law
Jor (Sy, Sy -+ ,S8,) and the process it defines is a Markov process. (i.e.,
(S, Sy + . Sy) is transitive for this process as well.)

PrOOF. The proof is omitted.

At this point it is essential to introduce some further notation and make some
observations that will be used later. Let g((,.’))(s,, Sy, 8) =dP,/dv,j =
1,2, - -, 00, over the o-field generated by S, S,, - - -, S;. Relative to the o-field
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generated by S, S, - - -, S, [dv/dp] = 7 f{)(sp, 50 - - -, 8,) +
"Zf((;))(sv Sy ,s)forn=1,2,---, and

8 (51,82 + + +»'8,) = dPgy/dv =[dP,/du][dp/ dv]
=[50 52+ - -5 8) /[ MR (51 83+ 1 8) + T fE (51 53 -+ 5,)]
= of(s,) /[ m0{(s,) + moE(s,)]
= g{"(s,), say, where

(3.2)

v{(s,) =Je,05"(s,)T»(d0), i=1, 2, and fo(")(sl,sz, oy 8) =0, h(sy, 0+, 8,),
for some function 4. Note that T g(,) + wzg(z) = 1. For the process deflned
by P, the conditional density of S,,, given S, =5,---,8, =3,
relative to »@*+VI(.|5) is given by g(("“)'")( nelS) = 857G, +1)/g(,)(s)
Note that Lemma 3.1 permitted us, to write the conditional measure

y(("*‘)"‘)(-]sl, Syt 8, as v«"“)l")(-|sn).

Consider the Markov process S, S,,* * - , S, governed by the measure v. The
functions g{(s,), g3(s,), - - + , i = 1, 2, define two bounded martingales over this
process since
(33) J8EF (s, OIS, [s,) = g)(s,)-

It will prove useful to define ¥(-) on the infinite product sample space by
(3.4) V)(s) = infy,, min,_, , dm,8{5(s;).
Note that lim,_,,V*(S) = lim,_,, min,_, , dm,g{)(S,) with probability one (»)

by the martingale convergence theorem. As a consequence

(3.5 limk-—»ooE{mini-l,Z Wzgéx))(sk) - V“"(S)lSk = Sk} =0

with probability one. Note also that the g5 = dP,/dv satisfies g{7(s) = g{3(s,,)
= lim g{{)(s,) with probability 1.

LEMMA 3.2. The Bayes test for H,: 8 € ©, vs H, : 0 € O, with respect to
T(:) = mI() + mI')(+), is the same as the Bayes test of H{: P(-) = P\(-) vs
Hj; : P(-) = P,(-) with respect to the prior (m,, 7).

ProoF. The proof is omitted.

Note that the combination of Lemmas 3.1 and 3.2 implies that for a given prior,
T = «,T'; + =,I,, the Bayes test of ©, vs ©,, is the same as the Bayes test of {ggg}
vs { g}, with prior (7, 7,). Now assume
(3.6) Foreachn =1,2,- - -, g{}(s,) has strict monotone likelihood ratio

(sm.lr)ins,andi = 1, 2.
3.7 P+ DI(-|s,) is stochastically strictly increasing in s,,.

That is, for s, < s;, P P((c, 0)[s,) < PS*P((c, o0)|s;), with strict inequality
unless P P((c, 0)[s,) = 1 or P§* (e, o0)|s;) = O
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In connection with (3.6) we note

LEMMA 3.3. Suppose ©, C (— 0, 8], ©, C (8, o0) and the family of distributions
of S; has s.m.lx. in 8. Then the densities g(({))(sj) have sm.lr. ini =1, 2.

Proor. The lemma is easily verified using (3.2) in the definition of g¥)(s;), and
using the definition of s.m.Lr. []

LEMMA 3.4. Under assumptions (3.6) and (3.7) v@*VI(-|s) is stochastically
strictly increasing in s,.

Proor. Fix ¢ and n and note
(3.8) p*+1((c, 00)|s,) = P{"*VIP((c, o0)ls,)Pr{i = 1ls,}

+ P{"*DIM((¢, 00)|s,)Pr{i = 2|s,}.
Use (3.6) and (3.7) in (3.8) to find

(39 D = »((c, ©)|s;) — v((c, )|s,) > 0.

By delineating all possible cases it is verified that in fact D > 0. []

Now for given prior I'(+) with a o, such that 0 <=, <1, let B,(s,) be the
minimum conditional expected risk given S, = s, is observed at stage n and
sampling continues at least to stage (n + 1). In light of Lemmas 3.1 and 3.2 we
have

(310) Bn(sn) = fmln[ Bn+l(sn+1)’ C(n + 1) + d27f2g8')+1)(5n+1),
C(n+1) + dym g((?)ﬂ)(snﬂ)]V«nﬂ)ln)(dsnﬂlsn)-

Similarly define ,B,,M(s,,), n=12"---,M—1, to be the minimum conditional
expected risk given S, = s, is observed at stage n and sampling continues at least
to stage (n + 1) but only procedures that sample at most M observations are
considered. Forn = 1,2, - - - , M — 2, determine 8M(s,) as in (3.10). Forn = M
— 1,

(3.11) BAAI{—I(SM-—I) = C(M) + fmin[dzﬂzgfé‘)”(su), dl'”lgg‘)l)(sM)]V(dngsM—l)'
Let us study, forn=1,2,- - - , M — 1,

(3.12) DM(s,) = BM(s,) — C(n) — dym,85)(s,)
and
(3.13) EM(s,) = BM(s,) — C(n) — dym,g)(s,)-

LEMMA 3.5. Let assumptions (3.6) and (3.7) be satisfied. Then D(s,) in (3.12)
(EM(s,) in (3.13)) is nonincreasing (nondecreasing) in s, and is either strictly
decreasing (strictly increasing) or nonincreasing and strictly positive (or nondecreasing
and strictly negative).
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PrOOF. We use backward induction. Assume that for n=N+1< M —
1, D, is strictly decreasing in sy, , or is nonincreasing and strictly positive. From
(3.10) and (3.12) and (3.3) we have

(3.14)  BY'(sw) — C(N) — dymy 83 (sn)
=Cya t+/J min[ Byii(sye) — C(N + 1) — dz”zgégﬂ)(szvu)’ 0,

dlwlgé{\),+l)(sN+l) - dz"zgfgﬂ)(sNH)]
Xy DI (dsy [sy).

Observe that since gy*'(sy.;) is smlr, it follows that [dym, g{* (sy.,) —
dymy 8" Y(sy+1)] is strictly decreasing. The induction hypothesis implies that
Byt i(sy41) — CN + 1) — dym, g3 V(sy ) is strictly decreasing or nonincreasing
and strictly positive. Hence the integrand in the final expression for (3.14) is either
strictly decreasing or is 0 for sy,, < s¥,, say, sx,, < oo, and then strictly
decreasing. If 5%, , = oo, then D(sy) = cy.,- Now apply Lemma 3.4 to conclude
that (3.14) is strictly decreasing in s, or is nonincreasing and strictly positive. To
verify the conclusion for n = M — 1, use (3.11) instead of (3.10) in the above
argument.

Similarly it can be shown that E(s,) is nondecreasing and is either strictly
positive or strictly increasing. []

THEOREM 3.1. Consider the one sided hypothesis testing problem under assump-
tions (3.6) and (3.7). Assume only procedures that sample at most M observations are
considered. Then every Bayes test is monotone.

PrOOF. Let the prior distribution be denoted by I'(-) with 0 < 7; < 1, and use
Lemmas 3.1, 3.2, 3.3 to reduce the problem to testing H{ : { g{}} vs Hj : {g4)}. It
can be verified that every Bayes procedure at stage n is as follows: Continue
sampling if for the observed sy, (3.12) < 0, and (3.13) < 0. Stop and reject H if
(3.13) >0 and d,m,g{}(s,) < dym,83)(s,), while -acceptance of H| occurs if
dym, g§)(s,) > dym, g%)(s,) and (3.12) > 0. Randomizations may occur if equalities
occur. Lemma 3.5 and the fact that g{j)(s,) has s.m.Lr. imply that every Bayes
procedure is monotone according to Definition 2.1. []

The main theorem will follow

LEMMA 3.6. For every n=1,2,- - -, BM(s,) converges to B,(s,) with probability
one as M — .

ProoOF. The proof follows from Theorems 4.4 and 4.7 of Chow, Robbins, and
Siegmund [5].

THEOREM 3.2. Consider the testing problem of H| vs H; under assumptions (3.6)
and (3.7). Then every Bayes test is monotone.
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Proor. For any prior a Bayes test exists. (See Brown and Doshi [4]). Any Bayes
test must satisfy the relations concerning (3.12) and (3.13), with 8 replaced by 8,,
given in the proof of Theorem 3.1. By Lemmas 3.5 and 3.6 we have D,(s,) is
nonincreasing and E,(s,) is nondecreasing. By the s.m.Lr. property, D,(s,), for
n = n*, is strictly decreasing or strictly positive unless D ., (S,+1) = K,», |, Where
kys+1 € — Cpey- Continuing by induction this can be true only if D(s) =k; <
=416 = — (C(0) — C(n*)) <0 as j— co. However D(s)) > E{VY(S) —
min,_; ,dm,g{)(s)|S; = 5;} — 0 with probability one as j — oo by (3.5). This con-
tradiction shows that the conclusion of Lemma 3.5 holds for D, and similarly for
E,. The proof of Theorem 3.2 can be completed just like the proof of Theorem 3.1.

0

We conclude this section with four remarks.

ReMARK 3.1. The fact that the monotone tests form an essentially complete
class depends strongly on the loss function being a linear combination of cost plus
loss due to terminal decision. If the risk function is a pair of components, namely
expected sample size and probability of error, the monotone tests are not neces-
sarily an essentially complete class. In Brown, Cohen, and Strawderman [2] an
example is given when P, is normal with unknown # and the monotone tests are
not essentially complete.

REMARK 3.2. Consider a two sided hypothesis problem in which the hypothesis,
distribution, loss function, and prior distribution are all symmetric. Then the
development of Section 3 implies that every such Bayes test is monotone according
to Definition 2.2.

REeMARK 3.3. The constant losses d; and d, can be replaced by special mono-
tone functions of @ as in Sobel [8] and DeGroot [6]. The monotone procedures still
form an essentially complete class.

ReMARK 3.4. Generalized Bayes tests with respect to generalized priors such
that the integrated risks are finite, are also monotone.

4. Examples. In this section we offer three examples. In all examples we verify
assumptions (3.6) and (3.7). The first example considers the exponential family.
The second is concerned with testing a multivariate normal mean by an orthogo-
nally invariant test based on a statistic which has a noncentral chi-square distribu-
tion. The third example is appropriate for testing two normal variances.

For all succeeding examples assumption (3.6) is easily verified using the fact that
in all cases the underlying densities f;X(s;) have s.m.Lr. in 5, and 6.

EXAMPLE 4.1. Exponential family. Let X,,i = 1,2, - - be independent, iden-
tically distributed according to a distribution in the exponential family; i.e., the
density is of the form f(x|0) = c(8)e*®du(x). The problem is to test H, : 6 < 6,
against H,: 0 > 6, Let S, = =*_,X,. For this model Sobel [8] proved that for
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every prior distribution, there exists a monotone procedure which is Bayes. We
prove

THEOREM 4.1. Every Bayes test for the problem described above is monotone.
Proor. The proof is omitted.

ExAMPLE 4.2. Noncentral chi-square. Let X(px1) be multivariate normal with
mean vector 0 and covariance matrix /. We wish to use a sequential invariant test
to test H, : 0 = 0vs H,: 0 # 0. The problem is invariant under the orthogonal
group. We let X; be independent observations on the process and define S, =
Sk X;. Also let T(#) denote an invariant prior distribution. It is clear that the
sequential Bayes invariant test depends on the invariantly sufficient transitive
sequence x? = S,S, = ||S,||%, whose distribution depends on ||8]|. Our claim is that
every such Bayes invariant test is monotone. To do this we apply Theorem 3.2 to
the process ||¢]], ||%,ll, - - -, where ¢, = S,. To verify the claim we need to verify
(3.7) for this process since it is clear that (3.6) is true for this process. Lets = S, _;.
Assumption (3.7) will follow from the fact that for every 0 < ¢ < oo, P{||¢|| >
c|||s||} is increasing in ||s||. (Note that there is no dependence on @ in the above
statement.) To show this we first prove

LeMMA 4.1. The conditional density of t =S, given S,_, = s is exponential
Jamily of the form

4.1) h(tls) = c(lIsIDq(litl)e”.

ProOF. The proof is omitted.

By analogy to the relation of the noncentral chi-square to the multivariate
normal, Lemma 4.1 implies that the conditional density A(||¢]|]||s|]) is s.m.lLr.
Therefore let r(||¢]])) = 1, if ||¢]| > ¢, and r(||¢]])) = 0 if O < ||¢|| < c. It follows that

(42) Pl > ellisly = frClieACANIsID,

is increasing in ||s|| since r(]|¢]|) is increasing and 4 is s.m.l.r. This completes the
verification.

EXAMPLE 4.3. Central F. In this example we assume (X, Y,) are independent
observations on a bivariate normal distribution with mean vector O and covariance
matrix with off diagonal elements o and diagonal elements ¢ and af. We test
H, :02 > 0olvs H,: 0o} >al We seek the test which is Bayes among scale in-
variant tests. That is, limit consideration to tests which depend on the maximal
invariant, transitive sequence (reduced by sufficiency), S, = 3"_,Y;?/="_ X2 Let
T be any invariant prior distribution on (o2, 67) and find the test which is Bayes
among all those depending only on §,. (This test really depends only on the prior
distribution of the maximal invariant ¢2/ oyz.) The distribution of S, is scaled F,
where the scale factor is 0?/0;. Hence assumption (3.6) is satisfied.
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To verify assumption (3.7) note
(4.3) S, =S,(Vi/Vy), where V,=[ZiI1X?/Z7.X}]

i=1 i=1

and V,=3S"ClY2/Sn_\Y2/3h., YA

i=1

Since S,, V,, and V, are independent and V|, V, are a pair of beta variables it is
easy to derive the conditional distribution of S,_, given S,. This in turn makes it
easy to derive the distribution of S, given S,_, and to verify that (3.7) holds.
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