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A NEW DYNAMIC STOCHASTIC APPROXIMATION PROCEDURE

By DAvVID RUPPERT
University of North Carolina, Chapel Hill

This paper considers Robbins-Monro stochastic approximation when the
regression function changes with time. At time n, one can select X,, and observe
an unbiased estimator of the regression function evaluated at X,,. Let 6, be the
root of the regression function at time #. Our goal is to select the sequence X,
so that X, — @, converges to 0. It is assumed that §, = f(s,) for s, known at
time n and f an unknown element of a class of functions. Under certain
conditions on this class and on the sequence of regression functions, we obtain
a random sequence X,, such that | X, — 8,| converges to 0 in Cesaro mean with
probability 1. Under more stringent conditions, X, — 6, converges to 0 with
probability 1.

1. Imtroduction. This study has been motivated by practical situations in
which a process is controlled by a variable X and it is desirable to choose X in such
a manner that the response, R,(X), at time » is close to 0. If 8, satisfies R,(6,) = 0,
it would be enough to choose X,,, the value of X at time n, equal or close to §,. The
basic information is provided by the process itself; for any choice of X, we can
obtain an unbiased estimate of R,(X,,).

If R,, or at least §,, is independent of » and some regularity conditions are
satisfied, then the stochastic approximation procedure of Robbins and Monro
(1951) provides a method of selecting a sequence {X,} such that X, — 6, almost
surely.

We are concerned here with situations where #, does change with n. Dupad
(1965, 1966) and Uosaki (1974) studied such situations, but their model is substan-
tially different from ours; both models shall be compared later.

In our model we assume that 6, = f(s,) for an f in a family T of functions on a
set S and for a sequence {s,} in S. Initially, only T is known, not f and not {s,}. At
time n, the value s, becomes known, and, after X, is selected, an unbiased estimate
of R,(X,) is observed.

The interpretation is that s, summarizes the knowledge about the process at time
n. For example, in the case of a process involving a chemical reactor, s, can
describe the age of the filter, the quality of the catalyzer, and the impurities of the
input. In another example we may have s, = n and then the assumption concern-
ing 6, means simply that the function n ~» 8, is in T.

We propose an approximation method, for which X, — 8, approaches 0 in a
certain sense, for some families 7. For example, T can be the family of all
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functions f on [0, 1] such that, for some K and a > %, depending on f,

| f(x) = f)| < K|x = y/*
for all x, y in [0, 1] (cf. Theorem 3.7).

Another example, admittedly simpler, yet of considerable practical importance,
is the case when 7T is the family of all linear combinations of k functions
fo s fe

Both these examples are special cases of the more general condition (see
assumption 2.3) that there exists an inner product space 3 and a function U on the
set S into 9 such that T C { fz; B € I} where f; denotes the function defined on
S and assigning to each s in S the value (B, U(s)).

Under certain additional regularity conditions we shall show that the proposed
approximation procedure yields {X,} for which |X, — 6,| — 0 in Cesaro mean with
probability one; under more stringent conditions X, — 8, — 0 with probability one.

Dupaé (1965, 1966) considered Robbins-Monro type stochastic approximation
methods when the root changes during the approximation process and Uosaki
(1974) generalized his work. In these papers, the basic assumption is that g, , is
equal to g,(8,), with g, known, plus an unknown but small v,. The procedure then
is similar to the original Robbins-Monro procedure except that where the latter
obtains the estimate X,,, by adjusting X,, the former adjusts g, +1(X,) (and
neglects v,).

In our model, the procedure estimates the function f; by estimating 8. If 5 is
infinite dimensional the procedure allows us to keep the estimates finite-dimen-
sional in order that the procedure can be practically realizable.

In addition to the above problems we also consider, in Theorem 4.5, the case
where U(s,) is a random variable with values in R,

In summary we will show that under conditions similar to those used to prove
the convergence of the Robbins-Monro method, |X, — 6,/ =0 in Cesaro mean
with probability one, where 6, is the unique root of R,(X) =0 and X, is our
estimate of 6,. Of practical importance are similar generalizations of the Kiefer-
Wolfowitz (1952) method of maximization (or minimization) of functions on R and
Blum’s (1954) multi-dimensional version of the Kiefer-Wolfowitz method. One can
expect that the methods obtained by such generalizations would have a property
analogous to the almost sure Cesaro mean convergence of | X, — 6,[ to 0.

2. Notation and assumptions.

2.1 NortaTiON. The conventions introduced here hold throughout. Let R* be
k-dimensional Euclidean space. The space R' will be denoted simply as R. Denote
the transpose of the matrix 4 by 4 7. Then the inner product on R* is defined by

(x,y> = xTy forx,y € R*.

If 4 and B are sets, then A 2 is the set of all functions from B to 4.
Let (Q, F, P) be a probability space. If F € ¥, then I is the indicator of F.
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If V is a normed vector space, then let ¥ be the smallest o-algebra containing all
open balls, that is all sets of the form

(X €EV:|X+a||<e}fore >0anda € V.

All relations between measurable transformations are meant to hold with proba-
bility one.

If h, is a sequence of numbers, then O(h,) denotes a sequence g, of numbers
such that for some K

|k, 'g,| <K foralln.

2.2 AssuMPTION. (i) Let S be a set and suppose T C RS. Suppose f € T.
(ii) Let R, € R%, 8, € R, and 4 > 0. Suppose

(1) (X = 8,)R,(X) >0
and

() IR, (X)| < A(|X — 6,| +1)
for all X € R. Let s, € S and suppose

(©) 6, = f(s,)-

2.3 ASSUMPTION. (i) Assumption 2.2(i) holds. Let JC be a real vector space
and suppose < -, - ) is an inner product on I, i.e. { -, +) is a map from ¥ X I
to R such that if x,y, z € 3 and a € R then

lax + y,z) = alx,z) + {y,z),
x,p) =<y, x),
x,x) 20,
and
{(x,x) =0 implies x =0.
For x € I define || x|| = <{x, x)é. Suppose there is a function U in ¥° such that
for each f in T there exists a 8 in JC satisfying
f(s) = (B, U(s)> forall s € S.
(ii) Assumption 2.2(ii) holds. Let U, = U(s,).

2.4 REMARK. We shall now consider the problem of estimating the sequence
{8,}. The experimenter knows JC, ( -, - >, and U and he knows that Assumption
2.3 holds. At time n he estimates 8 by an estimate §,. Also at this time he learns the
value of s, and therefore of U,; he uses U, to estimate 8, by X, = (B,, U,>. He

can also observe a random variable Y,, an unbiased (conditionally, given the past)
estimator of R,(X,). He then forms his next estimate

Bn+1 = Bn - anYnU:

with a, a suitably chosen nonnegative number and U} either equal to U, or a
suitable approximation to U,. For example, if JC = /,, then the experimenter may
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wish to use a finite dimensional approximation, U}, to a U, in /,.
We shall reformulate the construction of the B, in the following assumption,
where & is the o-algebra associated with the “past” at time n.

n

2.5 AsSUMPTION. (i) Assumption 2.3 holds. (ii) Let %, be an increasing sequence
of o-algebras contained in %. Suppose { B8,}, {Y,}, and {U}} are sequences of
measurable transformations into JC, random variables, and elements of JC, respec-
tively, such that with X, = (B,, U,),

€)) Bus1= B, — a,Y, U forsome a, >0,

o(By- -, B C @f_", and

) E%Y, = R(X,) and E%(Y, — R(X,))’ <o® forsome o>
(iii) Assume that

3 (B, U, — U*> = 0.

2.6 REMARKS. Suppose we wish to choose U¥ not equal to U,. Then (2.5.3)
will still hold if for an increasing sequence of subspaces, {J(,}, 8, € ¥, and U} is
the projection of U, onto ¥, ,, for then by (2.5.1) B, € I(, for all n.

Although we have chosen X, = {g,, U,>, assumption 2.5 (iii) implies that
X, = (B, UF> as well.

2.7 ExampLE. Here we show that the Robbins-Monro procedure is a special
case of our procedure. Recall that for their procedure R, = R, and §, = 4, for all
n. We can choose S and {s,} arbitrarily and then let

f(s) =0, forall s€S.

Then by choosing 3 = R, 8 =6,, and U(s) = 1 for all s € S, we have that
X, (= B,) is the usual Robbins-Monro sequence of estimators of 4,.

2.8 ExAMPLE. As a concrete example of a possible application of this proce-
dure, suppose that the expected percent yield of a chemical reactor is determined
by the pressure and temperature, the temperature can be measured but not
controlled, the pressure can be controlled by the experimenter, and percent yield
should be kept at p (known). Let s, be the temperature during the nth run of the
reactor (S = R or a suitable subset of R) and p + R,(X) be the expected percent
conversion when temperature is s, and pressure is X. Suppose for each n thereis a
0, satisfying, (X — 6,)R,(X) > 0 and 6, = f(s,) where f is known to be a kth
degree polynomial (with unknown coefficients). Then write

f(s) = ZiooB(i)s’, set I = R*,
let U be the map

sas (s, 89T
and let

B =(BO),- -, Bk)".
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3. General results. We will be interested in the convergence to 0 of the
sequences {|| B, — B||} and {X, — 6,} defined in Assumptions 2.2, 2.3, and 2.5.
These two sequences are closely connected for under these assumptions X, — 4, =
{B, — B, U,». For practical purposes {X, — 8,} is of primary importance since X,
would be the value of the control variable at time n while 8, would be our intended
value of the control variable at time 7.

3.1 LeMMA. Suppose Assumption 2.5 holds and

(1) 2a,(1 + |UIDKB, U, — UH| <
and
@ Za|UIP(1 + | U,)) < oo.
Then,
(3) | B, — Bl has a finite limit
and
4) 2a,R(X,)(X, — 6,) < .
Proor. By (2.5.1) and (2.5.2)
(%) E™| By = BI> < 1B, = BI* - 2a,R(X,){B, — B, U*)

+a?| UXI(RX(X,) + o).
Now by (2.2.2),
IR,(X,)| < A(KB, = B, Ul + 1) <A B, — Bl U]l + 1),

whence

(6)(i) IR(X,) < A((I B, = BI? + 1)||U,|| + 1)
and

(6)ii) (R.(X,))* < 24(|1 B, — BIPIIU, I + 1).

Also by (2.5.3)
B =B U = (X, - 8,) —<B U = Up.
Therefore using (6)(i)
(7) R,(X,XB, — B, Up> > R,(X,)(X, — 6,)
— KB Uy = U lA((I1B, = BIP + DG, || + 1),
Substituting (6)(ii) and (7) into (5), one obtains
(®)  E™| B,y — BI* < |18, — BIP(1 + £,) - 2a,R,(X,)(X, - 6,) + g,
where

Jo = AGIUIPIURIP + a,[<B, U, = U||IU,]I)
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and
g, = (@I UX|* + a,I<B, U, — U|(1 + ||U,|))) and f,, g, > O.

By (1) and (2), 2 f, + g, < <. Thus (3) and (4) hold by Theorem 1 of Robbins
and Siegmund (1971). For the reader’s convenience we state the theorem: let

(R, ¥, 9P) be the probability space and %, C %, C - - - a sequence of sub-o-alge-
bras of %. For each n=1,2,--- let z,, B, & and {, be the nonnegative

% ,-measurable random variables such that
Eg"(zn) < Zn(l + Bn) + gn - gn'
z, exists and is finite and Z°¢, < oo a.s. on

{278, < o0, 2P, < 0}.

Then lim

n—» 00

3.2 REMARK. Condition (3.1.1) involves 8 which, of course, is unknown. How-
ever 3 depends on f and f is known to be in the class 7. Thus it may be possible to
verify condition (3.1.1) by using properties of 7.

3.3 THEOREM. Let assumption 2.5 hold. Let a, vy, and € be numbers satisfying

Yy >0,
i+2y<ac<l,
and

a+e>1
Suppose for a > 0,
a,=an" ",
ULl + Ul = 0(n?),
and
(I + U, IDKB, U, = UrH| = 0(n™").
If for allm > 0

9) lim inf,,_,w(infn<x_0n||R,,(X)|) >0
or if y =0and for allm >0

(10) hm infn—-»oo(infn<|4;’—0n|<11_1|Rn(X)|) > 0
then

n 3% _ 11X, — 6,] = 0.
Proor. First, (3.1.1) holds since
a,(1 + [|U,IDKB, U, = Upd| = 0(n=*9)
and a + ¢ > 1. Next (3.1.2) holds for
U1 + | U,)7) = 0(n~ @)
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and 2a — 4y > 1.Thus by Lemma 3.1, 2a,R,(X,)(X, — 8,) < o0 and lim| 8, —
B|| exists and is finite. From now until the end of the proof we look at an w for
which the two properties hold and write £ instead of £(w) for any random variable
. For every n > O there is a §() > 0 and n(n) such that
any |x,—-0,>n implies |R,(X,)| > 8(n) forall n > n(y).
This follows directly from (9); if (10) holds and y = 0 then since X, — 8, = {8, —
B, U,> and ||U,|| and || B, — B|| are bounded sequences, |X, — 6,| is a bounded
sequence and (11) holds again. Let n >0, set I, =1 if |X, — 6,|] >n and 0
otherwise. Then since R(X,)(Y, — 8,) > O the finiteness of Za,R (X, )X, — 6,)
and (11) imply

Sn L)X, — 0, < oo.
By Kronecker’s lemma (see Loéve (1963), page 238)

n= 3% 1| X, — 6|1, = 0.
Since a < 1,
lim sup,_,n " 'S} 1| X, — 6] <n +limsup, , n"'S;_\|X, — O /L, =7

for alln > 0.

3.4 ReMARks. The conclusion n~'S}|X, — 6,| > 0 is of practical importance
since if n7'S}|X, — .| is small then the process would have run at near optimal
conditions for most of the first n runs.

Without additional assumptions, the conclusion of Theorem 3.3 cannot be
strengthened to (X, — 8,) - 0, as can be seen in Example 4.8 below. Moreover,
Example 4.9 below shows that under the hypotheses of Theorem 3.3 (8, — ) =0
may fail even if (X, — 4,) > 0.

Since U} is intended to be an approximation to U, we can expect that || U¥|| =
0()| U,|) and in that case the condition

(1) 1T+ 1UZ] = 0(n)

would be known to hold with y = 0 if ||U|| is bounded. If U is unbounded then it
might be difficult to verify that (1) holds; however, the theorem has been for-
mulated to allow y > 0. '

3.5 AsSUMPTION. Let D be a countable set. Define the real vector space /2 and
the inner product < -, - >, on I3 by

I3={g€R?:3,.,8%d) < o }
and
(& h>p =Z,epa(d)h(d) for g heEI]
For f € I2 define || fI|, = <f, />3
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Let {D,} be a sequence of finite subsets of D with D, C D,,,. Suppose
Assumption 2.2 holds. Let U be a map from S to /2, let U, = U(s,), and define U*
by

UNd) = U(d) ifd €D,,,
=0 ifd & D,,,.
Suppose Assumption 2.5(ii) holds with a, = an™* for some @ > 0 and « >%.
Suppose
B(d)=0 if d&D,

3.6 ReMArk. If Assumption 3.5 holds, then it can be easily shown by induc-
tion (see Remark 2.6) that Assumption 2.5(iii) holds.

3.7 THEOREM. Suppose Assumption 2.2 holds with

§=[0,1]
and T = {f € ROV : for some k>0 and y >3, |f(x) — f(¥)| < k|x — y|'
whenever x,y € [0, 11}. Then
n_lz';(_llxk - 0k| 90

if Assumption 3.5 is satisfied by the following choices of D, D,,, and U.

D = {(k,m) : m = k = 0 or m and k are integers satisfying

m > 0and1 < k <2™}.
D,= {(k,m):(k,m) €ED and 2" <n}.
U(x)(k,m) =1 if (k,m)=(0,0).

For (k, m) # (0, 0),

k—1 k—%)

U(x)(k,m)=(m+ 1)"" if xE( T o

k—1
- _ -1 72 k
(m+1) if xe( > ,2,,,)

-0 if xe(—l—z_Tlv,El—";)withl#kandl <l<2m

As a function of x, U(x)(k, m) is continuous at 0 and 1 and at points of discontinuity
it equals the arithmetic mean of its left and right limits.

3.8 REMARK. Note that U(-)(k, m) is a multiple of the Haar function with
indices k and m as defined by Alexits (1961), page 46.

ProoF. We need only show that the hypotheses of Theorem 3.3 hold. First we
will show that Assumption 2.3 holds with JC = /2. Let 8 € R” be defined by

B(k, m) = 2"(m + 1)*[} f(x) U(x)(k, m) dx
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for (k, m) € D. By the definition of S we can and shall choose a § >% such that
|A(x) — f(»)| < K|x — y|f for some K and all x,y € [0, 1]. Then,

| Bk, m)| = (m + 1273 " f(27"(k = 1) — x) — A27"(k — 1) + x) dx]
< k(m + 127427 08 g = O((m + 1)278).
Therefore 8 € I3 since
m=024-1( B(k, m))2 = 2ﬁ=00((m + 1)2)2"!(1—20)

and 1 — 2¢£ <0.

Now f(x) = (B, U(x))p for x € [0, 1] by Alexits (1961), Theorem 1.6.2. Thus
Assumption 2.3 holds; therefore Assumption 2.5 holds.

For x € [0, 1], 2% ,(U(x)(k, m))> < (m + 1)™2. Thus sup ||Ux)|3 <1+
Te_,m~2 < oo and therefore ||U,| p, + || U*||, = O(1).

Finally (B, U, — U*>, = 0(n™%) by Alexits (1961), 4.6.1. Therefore the
hypotheses of Theorem 3.3 are satisfied with y = 0 and ¢ = &.

3.9 THEOREM. Assumption 2.2. holds with
S = [0, w]
and
T={he R®™: h(x) = [5h'(n) du + c wherec € Rand h’ € L*} where
L? = {g € R®" : g is a Lebesgue measurable and [(g(p))* dp < oo }.
Also for all q > 0
lim inf, ., (inf, <|x_g, 1<y 1| Ra(X,)]) > 0.
Then
nT'2 X — 6l >0
if Assumption 3.5 is fulfilled by the following choices of D, D,,, and U.
D={(1,0}u{(k): i=12andk > 1},
D,={(i,k)€D: k <n}forn>0,
and
UG, k) = 1 k=0
= k™' cos kx i=1 and k>1
= k~!sin kx i=2 and k > 1.

ProoF. By the definition of T, f is the indefinite integral of f’ on [0, #] and
f' € L% We will extend f’ and f to [0, 27] by defining
f(x)=—fQ2n — x) if x &(m 27)
fx) = fsf(wdn i x €(m 2],
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Now define 8 € R by
— 1 2.
B(l, 0) - 27 fOf(x) dX

B(L, k) = % 137 cos(hx)s(x) dx
and

B2, k) = % 127 sin(kx)f(x) dx.
Since f(0) = f(2), integration by parts shows that for k > 1,

B(i, k) = — —:;f(z,” sin(kx)f'(x)dx if i=1

=% 127 cos(kx)f(x) dx if i=2.

Since [2"(f'(x))? dx < oo, B € I3 by the Bessel inequality.
Since f is an indefinite integral, it is continuous and of bounded variation..
Therefore

f(X) = <B, U(x)>D
by, e.g., Akhieser (1956), section III, 53. Then Assumption 2.3 holds and therefore

Assumption 2.5 holds.
Note that

sup, o, mll(X)llp < .
Finally
U, = US> = 27 mer(UL, k) + (U2, k)
< 2E(I:c°—n+lk_2 = O(I:Ox_z dX) = O(n_l),

so by the Cauchy-Schwarz inequality [{B, U, — U}>,| = O(n'zl). Therefore the
hypotheses of Theorem 3.3 are satisfied with y = 0 and ¢ = %

4. Restriction to I a finite dimensional vector space.

4.1. ForeworD. If Assumption 2.2 holds with T equal to the vector space

spanned by k functions f,, - - - , f;, then Assumption 2.3 holds with I = R*andU
the map
fi(s)
s — . .
fi(s)

In this case, since inner products in R* are easily computed, it is reasonable to
suppose that in Assumption 2.3 U} and U, have been chosen so U, = Uy (see
Remark 2.4).
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Suppose Assumption 2.5 or Assumption 4.4, the analogue of Assumption 2.5
when U, is random, hold. As will be seen, ||8,,; — B,|| converges to zero.
Therefore it is possible to find conditions on U, so that, roughly speaking, 8, — 8
cannot be almost perpendicular to U, too often and under these conditions,

I8, — Bl —>0.

4.2. THEOREM. Let Assumption 2.5 hold with IC = R* and U, = U*. Fixp > k
and let W, be the k X p matrix whose ith column is U, ,_, fori=1,-- - p. Let
8, min and 8, ... be the minimum and maximum eigenvalues, respectively, of W,WrI.

Suppose the sequence {a,} satisfies

(1) S| U1+ 1 U,IP) < o
and
2 o (min, ¢ jcn +p-19) =
for a sequence of integers {n,} such that
(3 Meyr1 Z2M +p
for all k and for some 8,
4) 0<8 <8, mn <8 mx <A
for all k

Suppose that for all € > 0,
) inf, (inf, 15 g, 1>l Ra(%)[) > 0.

Then || B, — B|| = 0. If in addition sup,||U,|| < « then X, — 8, —0.

ProoF. All the assumptions of Lemma 3.1 hold so (3.1.3) and (3.1.4) hold.

By (1)
E(Z(a,lU,I(Y, — R,(X,))?)) < 6*Za| U, ||* < .

Thus

(6 a,|| U, (Y, — R,(X,)) —0.

Also by (1)

(7) a,| U,JI(1 + | U,]1) = 0.

Then since (2.5.1) holds with U, = U}

(®) 1Brer = Bull < alUI(AL + [ B, = BIIT,I) + |7, — R,(X,)).
By (3.1.3), (6), (7), and (8) and since lim|| B, — B < =

| Bas1 = Bull > 0.
For any k > 1 define
A = (k7' <lim|| B, = Bl <k} N {ll Bys1 — Bill >0}
Since except for a set of probability 0
{lim|| B, — B|l > 0} = UL 4
to prove || B, — B|| — 0 we need only show that for any k, P(4,) = 0.
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We now fix k and fix w € 4,. Until the end of the proof we write § instead of
£(w) for any random variable £. Now choose L, such that
|8, — Bll >k~  whenever [/ > L,
Then for all/ > L,,

220 Upvi By — BO) + 1W(B, = B)IP = (B, — B) W, W, (B, — B)
> 8, minll B, — BI? > 6k™2

Here we used (4) and the result that if 4 is a positive definite kK X k matrix with
minimum eigenvalue, A, then x74x > A||x||> for all x € R* (see Rao (1973), page
62, equations (1f.2.1)).

Thus there exists a sequence {m,} such that m, is in the set {n,n + 1,- - -
n+p—1}and

8k whenever [ > L

) ((Upy By — BY) >
By (3), m;,, > m for all /. Also by (4), KU,y XOP < || Wx|? < Al X | for
x € R*. Since || B,, — B, < Z7L, 1l B = Bi-lls

(10) (CUpp By = Bo2)" < MEZZTNNB = BilP).

Since || 8,41 — B,ll = 0 we have by (10) that for a number L,
8k -2

(11) KUy B, — 'Bn,>) whenever [ > L,.

By (9) and (11), if we let L = max{L,, L2} then
|Xm, - am,l = |<Um,, Bm, - B>I
) |<Um,’ Bn, - B>I - I<U'nl, Byn, - Bn, > |
1 1
> k—-(é)2 whenever [/ > L.

2 \p
Also

1 X, = Ol = [<Br, = By Un>| < Asup,{[I B, — BlI} < o0.
Thus by (5) there exists I' > 0 such that
Ro(X) (X — 6,) >T  whenever [ > L.
Then since
Sr-14,R,(X,)(X, — 6,) >
=Lam,Rm,(Xm,)(Xm, - om,)
> 22 (min, ¢ jcpip-13)T = ©

it follows from (3.1.4) that P(4,) =0
Finally since X, — 8, =<8, — B, U,>, X, — 8, > 0 if sup||U,|| < oo.
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4.3. ReEMARK. Until now we have assumed that s, is a fixed element of S.
Assumption 4.4 is an analogue of Assumption 2.5 when s, € % and 0, is a
random variable.

At time n, the expected output of the process, given the past, depends on both X,
and §,. When 6, was nonrandom we wrote the expected output as R,(X,); the
dependence of the output on 6, is implicit in this expression. When 6, is random it
is more convenient to denote the expected output as R, (X,,0,) where R, is a
mapping of R? into R.

4.4. AsSUMPTION. Assumption 2.2(i) holds. Let R, be a Borel map from R? to
R such that

(x = y)R,(x,y) >0 forall x,y €R.
|R,(x,y)] <A1 + |x —y) for A4 >0.
Let s, € S% and define
0, = f(s,)-
Suppose Assumption (2.3)(i) holds with JC = R* and with U, = Us,), U, is a

measurable transformation into R*. Let { 8,} and {Y,} be random sequences in
R* and R, respectively, such that with

6‘;n=a{:81""’18naU17"'»Un}
we have
B,s1=8,—a,Y,U, for some a, > 0,
E™Y, = R(X,,0,),
and

E%(Y, - R,(X,0,)) <o < .

4.5. THEOREM. Let Assumption 4.4 hold. Define

gn* = ‘7{.31, e “3”, Uv' -, Un—l}'
Suppose ', K > 0. Assume .
0] infy ¢ P F(CI X || < KU, X3 < T7YX|) > T
and
EZ(IU, P+ 11U,17) < K.
If
2) 2a, = © and  Tal< o

and for all ¢ > 0
(3) infninf8">lx—y|>e|Rn(x7 y)l >0,
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then
I8, = Bl —0.
If
a,=an"* with a>0 and ;<a<],
E|| Bl < oo,
and for some ¢ > 0
@) |R,(x,y)| > ¢c|x —y| forall x,y€R,
then

sup,n®|| 8, — BII* < o and  sup,n°E|X, — 0,| < .

4.6. REMARKS. There is a need for conditions which guarantee that (4.5.1)
holds. Let p be a probability measure on R* such that u{y : ||y|| < M} =1 for
some M > 0. Assume that the minimum eigenvalue [yy 7 du(y) is A2 > 0. Then for.
x € R¥

N|x|1* < [<xp)? du(y) < IIxIPM7u{y : N2x|?/2 < {x,y)*} + N2|1x]*/2
and so
p{y  Nixll/23 < Kx, )]} > A2/2M2
Therefore
inf, cpen{y : Tlixl| < [<x,p>| < T-Yx[)} > T

if T = min{A/22, M~',\2/2M?}. Thus (4.5.1) holds if for some M, A> > 0 the
minimum eigenvalue of

) ETUUM{||U,]| < M}(w)

exceeds A? for all n and w. In particular, (4.5.1) holds if U, is independent of
F* U, U, - - - are identically distributed, E||U,||* < o0, and

) EU,UT  is positive definite,

since then expression (1) is independent of n and w and by (2) and the dominated
convergence (1) is positive definite for M sufficiently large. Moreover (2) holds
unless P(U, € A) = 1 for some proper subspace 4 of R¥, in which case the model
of Assumption 4.4 should be reparametrized.

4.7. PROOF OF THEOREM 4.5. First
(1) E%|Bysr = BIP = 1B, — BI* = 2a,ETY,(X, — 6,) + GEF(Y,||U,|)".
If we define n(x) for x > 0 by

T](X) = infnianl"<|y—z|<XI"'|Rn(y’ Z)l
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then,
ET(Y,(X, - 6,) = E((X, - 0,)E%Y,) = E%(X, — §,)R(X,, 8,)
> Tl B, = Blinll B, = BIVPT(T B, = BIl> KU,, B, — BY| > T|| 8, — BI)).
Thus,
2 , ET(Y,(X, = 6,) > T*|| B, — BlIn(ll B, — BI)
Next,
EF(Y,|UII)* = E%(| U,|PE®Y2)

< E%|U,IP(RXX, 8,) + o)

and since

RX(X,, 8,) < 24%(|| B, — BIPIU,I* + 1)
(3) EF(Y,IUI)* = 0(l 8, — BI* + 1).
By using (1)—(3) we obtain
4) E%| Bysr = BIP < 1B, — BIP(1 + £,)

—2a,ll| B, — Bln(ll B, — BI) + &,

with f,, g, > 0 and f,, g, = 0(a?). Then by Theorem 1 of Robbins and Siegmund
(1971), lim|| B, — B|| exists and is finite and

24,1 B, = Bln(l B, — BIl) < oo.

Since by (4.5.2) and (4.5.3), 2a,x,n(x,) = o if {x,} is any sequence of numbers
satisfying x, — x with x # 0, we have || B, — B||—0.
Moreover, (4.5.4) implies

n(x) > cTx|
and this with (4), E|| B,]|* < 0, and @, = an~* implies
E”Bn+l - B”z < E”Bn - B”z(l +j;|) - ME”Bn - B”2n—a + gn

for some M > 0 and with f,, g, > 0 and: fo» 8 = 0(n~>*). Then by a lemma of
Chung (see Fabian (1971), Lemma 3.1

sup,{n°E|| B, = B|1*} < .

. 1
Since E|X, — 6, < E(| B, = BIIU,I) < (E|| B, — BI’E| U, )7 and E||U,|? <
K

sup,{n°E|X — 0,|} < .

4.8. ExaMpLE. With this example we show that the assumptions of Theorem
3.3 imply neither X, — 6, — 0 nor || B, — B —0.
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Let 9C = R2. Suppose e, and e, are the standard unit vectors in R%ie, el =
(1, 0) and e = (0, 1). Suppose B is the zero vector, R,(x) = x for all n, Bi=¢e;
anda,=an"'for0<a <1

Let G be a subsequence of the integers such that 2 sa, < co. Assume that U,
is e, or e, according as n € G or n & G. Assume the process is deterministic, i.e.,
Y, = R(X,).

For ¢ € R? let £ be the ith coordinate of £, i = 1, 2.

If n & G, then U = 0 and therefore

(1 Bk =BVifn & G.
Ifne G, then?, = X, =<8, U,y =pB"and UP =1, s0
2 Ri=BP(1-aq)ifne€GC.

Since BV = 1, we have by (1) and (2) that
D =T rec(l — @) forn > 1.
Since a < 1, (1 — a,) # O for all n. Then since =, csa, < oo, there exists d > 0
such that
limn—»oo(Hk<n;keG(1 - ak)) =d.
Therefore BV -0 = B. Moreover X, = B{" whenever n € G and therefore
X,—6,-»0.
4.9. ExampLE. Here we have another example satisfying the conditions of
Theorem 3.3 but for which 8, - 8. However, in this case X, — 8, — 0.

Let 9C = R2. Elements of JC will be represented as complex numbers. Suppose
B =0 and

R,(x)=1 forx >0

= —1 forx < 0.
Suppose ¢; = 1 and

on—1;-1
c, = e~ forn > 2.
L o—1
Leta, = [e” — 1| and
n
— in~! _ -1
U, = (e Da, ‘c,.

Also assume 8, = 1 and Y, = R,(X,). Then for all n

(1) B,=c,
and

1—cosn-'\2
(2) Xn_0n=Xn=_ —'—2—_)’

whence X, — 8, >0 but || 8, — B] = 1 for all n.
To prove the last statement, first note that

a?=(e"" = 1)(e ™ —1)=2(1-cosnY).
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Next, with Re & denoting the real part of the complex number &,
e Uy> = Re(G,U,)
= Re((e™' — 1)a; ")

_ 1 —cosn-'\2
— -

Thus if (1) holds for n = k, so does (2). Moreover (1) and (2) with n = k imply (1)
for n = k + 1 by the following calculation:

1—cosk™'\?
Bes1= ¢ — ak(Rk(_ ('—_2(2)8—) ))Uk

=c¢ + (e = 1), = ¢e™* ' = ¢y
By observing that (1) holds for n = 1 the proof is completed.

Note that by Taylor’s theorem
a?=2(1—-cosn ) =n"2+0(n"*.

It is then easy to see that the assumptions of Theorem 3.3 hold if the theorem is
trivially generalized by replacing the assumption a, = an~“ by a, = ¢,n~* with
0<m<c, <M< o for some m, M.
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