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CONDITIONAL PROBABILITY INTEGRAL TRANSFORMATIONS
AND GOODNESS-OF-FIT TESTS
FOR MULTIVARIATE NORMAL DISTRIBUTIONS!

.BY S. RINCON-GALLARDO, C. P. QUESENBERRY AND FEDERICO J. O’'REILLY

North Carolina State University
and IIMAS, Universidad Nacional Auténoma de México

Let X, - - - , X, be a random sample from a full-rank multivariate normal
distribution N(p, Z). The two cases (i) p unknown and = = 0%, =, known,
and (ii) p and = completely unknown are considered here. Transformations are
given that transform the observation vectors to a (smaller) set of i.i.d. uniform
rv’s. These transformations can be used to construct goodness-of-fit tests for
these multivariate normal distributions. Two examples are given to illustrate the
application of these tests to numerical problems.

1. Introduction and summary. There is a large literature that considers the
multivariate normal distribution. There is, however, no test for multivariate nor-
mality that is very widely used, to our knowledge. Most tests for multivariate
normality depend upon asymptotic distribution theory. Such tests include x? tests
with estimated parameters, and tests based on measures of multivariate skewness
and kurtosis posed by Mardia (1970). Wagle (1968) gives transformations on which
a test could be based. Recently, Moore (1976) has commented upon the need for
tests of multivariate normality. In this work we give transformations which can be

used to construct exact size goodness-of-fit tests for multivariate normality, and

illustrate their use with two numerical examples.

O’Reilly and Quesenberry (1973), O-Q introduced the conditional probability
integral transformations, CPIT’s. Transformations were given in that paper for a
multivariate normal parent N( u, =) for the case when p is unknown and = = 3, is
known. Here we give transformations for the two cases: (i) p unknown, and
3 = 0?3, with =, known, and (ii) p and = unknown. In both of these cases the
components of the observation vectors are transformed using certain Student-7
distribution functions.

2. Notation and preliminaries. We develop the main transformation result in
this and the next section assuming case (ii). The corresponding result for case (i)
will be summarized in Theorem 3.2. Let ¢ denote the class of k-variate full-rank
normal distributions with mean vector u and variance-covariance matrix =. For
X,, - -+, X, iid. (column) vector 1v’s from P € &, with corresponding probabil-
ity density function f and distribution function F, both defined on Ry, a complete
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sufficient statistic for ¥ is T, = (X,, S,), where X, = (1/n)3"_,X; and S, =
S X, X! — nX,X_. It is readily verified that T, is doubly transitive (cf. O-Q),
ie, o(T,, X,) = o(T,_,, X,), where o(W) denotes the o-algebra induced by a
statistic W.

Consider the conditional distribution function F(X,_, ., * , X,|T,), of the
last « observations given T,. The largest value of « for which this is the distribution
function of an absolutely continuous distribution is called the absolute continuity
rank of ¥, which is « = n — k — 1. In the following we find formulae to trans-
form the k(n — k — 1) rv’s of this conditional distribution to i.i.d. U(0, 1) rv’s.

Denote by F the conditional distribution function of a single observation given
T,. For n > k + 1, F is absolutely continuous and possesses a density function f
which is the minimum variance unbiased, MVU, estimator of the parent density
function. These functions were obtained by Ghurye and Olkin (1969), page 1265,
cases 3.2 and 3.4, for the cases (i) and (ii) above. The next lemma gives the density f
in a form that will be convenient in this work. The indicator function of the set
satisfying condition [ -] is denoted by I[-].

LemMma 2.1. If X, - -, X, are iid. rv’s with a common multivariate normal
distribution P € %, the MVU estimator f of the corresponding normal probability
density function is

. [n/(n=D]"VT[(n - 1)/2]

f(X) - Wk/2r[(n — k= 1)/2] |Sn|_5
. L0 = D/n] = (e = Bs; (- )Y
-I[(x - A7,,)’S,,"(x - f,,) <(n-— 1)/n], n>k+1.

ProoFr. This result is immediate from Ghurye and Olkin (1969) and the two

facts:
(a) For B(k X k) nonsingular and x(k X 1), |B — xx'| = |B|(1 — x’B ™ 'x).
(b) If Bis p.d. then B — xx’ is p.d. iff B~ 'x < 1.

LEMMA 2.2. Suppose Y is a tv which has for fixed T, the conditional density
function f of (2.1). Then for

z, = An(Y—- /\7”)/ {[(n - l)/n] - (Y_ /\7”)15”-1(),_ 1\7n)} )
where A\A, = S\, the conditional density function of Z, given T, is
22 8() =T[3(n = D}{7T[4(n — k - 1)]}“[1 + 2/2]7307Y,
n>k+ 1.

PROOF. If z = A,(y = X)/{l(n ~ D/n] = (v = XY S,y = X,)}7, then y
= A, 'z[(n — 1)/n]2(1 + z’2)"2 + X,,. The Jacobian is

([(n = 1)/n]/ (1 + 22)} 24| = 22/ (1 + 22)),

(ST



1054  S. RINCON-GALLARDO, C. P. QUESENBERRY AND FEDERICO J. O’REILLY

and using the relations
[I—zz'/(1 + z’z)] = (1 + zz) " and
(y = X)s ' (»y = X,) =[(n = 1)/n]2'z/ (1 + 2'2),
the result follows from Lemma 2.1.

The density function ¢ of (2.2) has the form of a generalized multivariate ¢
distribution. Dickey (1967), Theorems 3.2 and 3.3, gives conditional and marginal
distributions for generalized multivariate ¢ distributions from which the conditional
and marginal distributions of § of (2.2) can be obtained. Let G, denote the
distribution function of a univariate Student-¢ distribution with » degrees of
freedom. Then the following can be obtained from results given by Dickey.

LeMMA 23. Let Z' = (Z,," - - , Z;) denote a vector rv with (conditional) proba-
bility density function §(z) of equation (2.2). Then
(2.3) ﬁ(Zl <zlZy=zy,0 0,2y =2y)

= Gn—k+i—2{zi[(n —k+i- 2)/(1 + 2;:1121‘2)]%}’
Jori=1,--- k. '

3. The transformations. Consider again the original sample X, - - - , X, and
put )
Z = 4%, - X)/{[U -0/ - (% - X)57'(x - X)),
and denote Z/ = (Z, ;,- - -, Z, ;) forj =k + 2, - - , n. Then the next theorem
follows from Lemma 2.3 and a slight extension of Theorem 5.1 of O-Q.

THEOREM 3.1. The k(n — k — 1) random variables given by

G Uy=GopiaZ U -k +i=2/(1+ 22+ - +22,)]F),

forj=k+2---,nandi=1,-- -, k;areiid. UQ, 1) rv’s.
We now summarize the results for case (i) when p is unknown and = = ¢2%, for
2, known. For X, and S, defined above put here

A'A =351, 5, =tr 35S,
and

Z = A(X, - %)/ {[G - Vs/i] - (% - B)=5'(x, - X)),
and denote Z/ = (Z, ;,- - - , Z, )forj=3,---,n.

THEOREM 3.2. For Xy, - - -, X, iid. from N(u, 6*Z), =, known, the (n — 2)k
random variables given by
(3.2)

. . 1
U,= G[(j—2)k+i—1]{Zi,j[((J =2k +i—-1)/ (l + le,j +.- +Zi2—l,j)]2}’
Jorj=3,---,nandi=1,- .- k,areiid. UQO, 1) rv’s.
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4. Applications to goodness-of-fit tests: examples. After the multivariate sam-
ple X,, - - -, X, has been transformed by using either (3.1) or (3.2), then a size a
goodness-of-fit test for the corresponding composite multivariate normal null
hypothesis class (case (i) or case (ii)) can be made by testing the surrogate simple
null hypothesis that the transformed values are ii.d. U(0, 1). Quesenberry and
Miller (1977) and Miller and Quesenberry (1977) have studied power properties of
omnibus tests for uniformity and recommend either the Watson U? test (Watson
(1962)) or the Neyman smooth test (Neyman (1937)) for testing simple uniformity.
We shall here use a modified form, U, of the Watson U? statistic proposed by
Stephens (1970), that has the advantage of having upper 1, 5 and 10 percentage
points that are approximately .267, .187 and .152 for all » > 10, under the null
hypothesis. We shall also compute the Neyman smooth statistic p2 which has an
approximate x%(4) distribution, under the null hypothesis for large n.

This approach will now be applied to two numerical examples. In each of these
examples the goodness-of-fit null hypothesis class is the case (ii)) multivariate
normal class. All computations were performed using a program written by the
authors.

ExXAMPLE 1. Fisher’s iris data. 'We consider first the iris data of Fisher (1936).
The data consists of samples on three species of iris (setosa, versicolor, and
virginica), consisting of 50 observations on each of four variables (sepal length,
sepal width, petal length and petal width). We have transformed each of these
samples using the transformations (3.1). This gives 180[= (n — k — 1)k] trans-
formed values for each sample that are observed values on i.i.d. U(0, 1) rv’s, under
the multivariate normality null hypothesis. The values of the test statistics U4op
and p2, and of the observed significance level of p2, P(x%(4) > p?), are summarized
in Table 1. The upper 10 per cent significance level for UZop is 0.152 (cf. Stephens
(1970)), and neither test statistic is significant at the 10 per cent level for any of the
samples. The small values of the test statistics give no reason to question that
multivariate normal distributions fit these data well. Further analysis of the
transformed u-values can be performed by graphing the ordered u’s against the
expected values of uniform order statistics as in Quesenberry, et al (1976). We have
made such graphs and they also indicate that normal distributions fit these samples
well. Finally, it should be observed that if it is assumed under the null hypothesis
that all three samples are from parent distributions of the same functional form,
but possibly with different parameter values, then we could pool all of the
(3 X 180 = 540) u-values and test that this common functional form is normal.

TABLE 1
Species Ukop P P(x*(4) > p3)
Setosa .064 4.508 24
Versicolor .077 3.325 .50

Virginica .054 3.622 46
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EXAMPLE 2. Norton’s rate of discount and ratio of reserves to deposits data.
Yule and Kendall (1946), page 201, give bivariate data for (1) call discount rates
and (2) percentages of reserves on deposit in New York associated banks for 780
banks. They also plot a bivariate histogram which makes it quite clear that these
data are skewed, and not well fitted by a bivariate normal distribution. Mardia
(1970) has applied asymptotic tests for skewness and kurtosis to this data, and
rejects normality with both tests.

We have drawn subsamples of sizes 50, 100 and 200 from these 780 observations,
and then performed the transformations of (3.1), and computed p? and Uggp on
each of these four samples. The results obtained are given in Table 2. Neither test
statistic is significant for n = 50 or 100. For n = 200 p2 is highly significant and the
observed value of UZqp is just less than the 1 per cent point of 0.267. Both
statistics are highly significant for the entire sample of 780 values.

TABLE 2
Sample Size, n Uop 23 PGP > pd)
50 0.089 1.467 0.832
100 0.149 5.097 0.277
200 0.260 ‘22319 1.73 E(—4)
780 2.045 78.406 259 E(—12)

5. Discussion. The transformations of (3.1) and (3.2) are readily programmed
using computer languages with matrix algebra packages. From our (limited) experi-
ence with the above and some other examples, the testing procedure above of
computing the transformed u-values and U2, and p2 appears to be a practical
procedure, and to be sensitive to at least some departures from normality when the
sample size n is in the range of 100 to 200.

A warning is also in order. It should be carefully observed that the values of the
u’s depend upon the order of the entries in the sample, and different values will, in
general, be obtained from different orderings. Care must be exercised to assure that
Xy, - -+, X, are iid. N(p, 2) rv’s. In particular, the X;’s must not be ordered by
the values of one or more of their components.
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