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A DIFFERENTIAL FOR L-STATISTICS!

By Dennis D. Boos
North Carolina State University

The functional T(F) = f F~Y(#)J(f) dt associated with linear combina-
tions of order statistics is shown to have a Frechet-type differential. As a
corollary, the statistic 7(F,) obtained by evaluating 77(-) at the sample df F,, is
seen to be asymptotically normal and to obey a law of the iterated logarithm.

1. Introduction. Let X,, < X,, < :-- <X, be an ordered sample from a

distribution F and J a fixed score function on (0, 1). Statistics of the form

T, = 2. 1(J{1y/n I (0) du)X,,
comprise an important subset of the general class 2 ¢, X;, of linear combinations of
order statistics. In particular, 7, can be conveniently expressed as a functional of
the empirical df F,, T, = [F,”J(?) dt.

In Sections 3 and 4 (Theorems 1 and 2) we show that the basic functional
T(F) = [F~Y(#)J(¢) dt possesses a differential with respect to (w.r.t.) the sup-norm
| - lloo and w.r.t. the g-norm || - || ,r)- Both theorems require J to be bounded and
continuous a.e. Lebesgue and a.e. F~!. Theorem 2 requires, in addition, the tail
condition [q(F(x)) dx < oo. Corollaries to these theorems yield asymptotic nor-
mality and a law of the iterated logarithm (LIL) for 7(F,). Section 2 defines the
differential and motivates its statistical applications. Brief comparisons with related
results are made in Section 5.

2. The differential. Let T be a real-valued functional defined on a convex set

% of df’s. Denote by {D(%), || - ||} the normed linear space generated by dif-
ferences H — G of members of ¥, i.e., D(F)={A:A=a(H- G), H,G €Y,

a € R}.
DEerINITION. The functional T has a differential at the point F € ¥ w.r.t. the
norm || - || and the set G, C ¥ if there exists a quantity 7(F; A) defined on

A € 9(%), which is linear in the argument A and satisfies

. 7(G) — T(F) — T(F; G — F
2.1) hmuc—Fu—»O:GEﬁr (@) T(IIG)— Fl(l : =0

T(F; A) is called the “differential.” For G=F, = n"28xi, i.e., the sample df
written in terms of point masses 8, the linearity property allows T(F; F, — F) to
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be expressed as an average of rv’s,

@) T E ~ F) = T(F5 300y — F)) = 2 31,T(F; 8, — F).

If n%||F,, — F|| = 0,(1) and P(F, € §r) — 1, then (2.1) gives the approximation
(2.3) n%[r(Fn) —- T(F) - %2’;_17‘(1?; 8y — F)] >,0, n- .
Slutsky’s theorem and appropriate central limit theory then yield

(24) ni[ T(F,) — T(F)] »4N(0, 0%, n— oo,

where o = Var T(F; 8, — F) and E T(F; 8, — F) is assumed to be 0. Similar
techniques and stronger assumptions on || F, — F|| lead-from (2.1) to an LIL

ni[ T(F,) — T(F)]

2.5) lim sup,,_, =1lwpl

(20%0g log n)%
Details can be found in Boos and Serfling (1980).

One advantage of the approach just outlined is the separation of the analytic
differentiation in (2.1) from the stochastic results (2.3)-(2.5). This allows arbitrary
sequences {X;} to be handled through the asymptotic properties of | F, — F|| and
2 T(F; 8y, — F). Thus, although the corollaries of Sections 3 and 4 refer to only the
independent case, specific “dependent” corollaries are easily formulated and
proved.

3. Robust L-functionals. Suppose that the score function J is trimmed near 0
and 1,

3.1 Ju)y=0 u€f0,£) U (s 1]
for 0 < ¢, <t, < 1. Let F denote a fixed underlying df and ¥ = §, = {all df’s}.
THEOREM 1. If (3.1) holds and

(3.2) J is bounded and continuous a.e. Lebesgue and a.e. F ™,
then the differential of T(F) = (F~\(8)J(t) dt at F wx.t. | - || is given by
(3.3) T(F; A) = — [ A(x)J(F(x)) dx.

ProOOF. Since (3.3) is linear in A, we need only show
(34)  T(G) — T(F) — [[ F(x) — G(x)]J(F(x)) dx = o(||G — F|l,),
|G — F||, —0.
Using integration by parts, the left hand side of (3.4) can be rewritten as
— J[K(G(x)) — K(F(x)) = (G(x) = F(x))J(F(x))] dx = = [Vg p(x) dx,
where K(y) = [3J(u) du. Let (a, b) be such that G(a) <t,, F(a) <t,, G(b) > t,
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F(b) > t,. Then J(F(x)) and K(G(x)) — K(F(x)) are 0 outside (a, b). Let B =
{x : F(x) is a discontinuity point of J} and define

3.5) W, p(x) = 6—(—;)6%(;%5 if G(x)# F(x)
=0 if G(x) = F(x).

Since B is a Lebesgue-null set (using the fact that J is continuous a.e. F™1), it
follows that

(3-6) 1/ Ve, A(X)| = |/(a, b)—B[ G(x) — F(x)] W, p(x) dx|
<G - F”oof(a,b)—BlWG,F(x)ldx'

The derivative K'(y) = J(») exists at all continuity points of J and thus
limyg_ gy ol W, p(x)| =0 Vx € (a, b) — B.

The bound || W; £l < 2|/l allows interchange of limit and integration in (3.6) -

through use of the theorem on bounded convergence for a finite interval. ]
Under the conditions of Theorem 1, the rv’s 7(F; Sxf — F) have mean 0 and

variance

3.7 ol=[f [ F(min(s, ¢)) — F(s)F(¢) |J(F(s))J(F(¢)) ds at.

The following corollary follows directly from the classical central limit theorem and

LIL and known results regarding || F,, — F||, (e.g., Chung (1949)).

COROLLARY. Suppose that J and F satisfy (3.1) and (3.2) and 6*> > 0. Let { X} be
a sequence of independent 1v’s having distribution F. Then (2.4) and (2.5) hold.

ExampLE. The trimmed mean, J(f) = I(a; <t < 1 — ay)/(1 — a; — a,), obvi-
ously satisfies (3.1). If F has unique quantiles F ~!(a,) and F (1 — a,), then (3.2)
is satisfied.

4. General L-functionals. In this section the trimming restrictions on J are
removed, and the g-norms || - || .- = |I(*)/q(F)l|, are used to deal with the weight
placed on the extremes of F. A motivating class of ¢ functions is

) L
4.1) q(t) =[1(1 - )%, 0<8<3.

Let F={F:|[F Y (0J(0)dl| < o} and §,={G:G €F and S; C Si},
where S is the support of F. Let ¢ be a bounded positive function on (0, 1).

THEOREM 2. Suppose that J and F € ¥ satisfy (3.2) and
4.2) J20q(F(x)) dx < oo.

Then the differential of T(F) = [F~'(t)J(¢) dt at FwW.r.t. || - || ;) and Sy is given by
(3.3).
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ProOF. Define B and Wj;  as in the proof of Theorem 1, and let the closure of
(x,, x,) be the smallest interval (possibly infinite) containing Sg. Then for G € Sp
we have

43)  |[ Ve p(x) dxl = [fn, m_s(%@)(% () a(F(x)) dx]

< |G = Fll )/ xy, 59— 81 Wa, #(%)|q(F(x)) dx.

The interchange of limit and integration in (4.3) is then justified by dominated
convergence via the bound ||W; gl < 2||/]l,, and (4.2). []

Note that the extension of Theorem 2 to unbounded J’s requires only a
justification of the interchange of limit and integration in (4.3).

Let Q, be the set of ¢ functions given by O’Reilly (1974), Theorem 2. Let Q, be
the set of ¢ functions given in James (1975) (¢ = w™' in James’ notation). Note
that each member of (4.1) belongs to both Q, and Q,.

COROLLARY. Suppose that J and F satisfy (3.2) and (4.2) and 0 < 0% < 0. Let
{X;} be a sequence of independent tv’s having distribution F. If ¢ € Q,, then (2.4)
holds. If ¢ € Q,, then (2.5) holds.

ExampLEs. (i) The mean, J(f) = 1. (ii) Gini’s mean difference, J(#) = 4(¢
- %). (iii) The asymptotically efficient L-estimator for location for the logistic
family, J(¢) = 6¢(1 — o).

Extension of results to the more general functional T(F) = [h(F ~'(£))J(?) dt is
given in Boos (1977).

5. Comparisons with other results. Reeds (1976) restricts attention to df’s on
[0, 1] and shows that [A(F ~'(£))J(?) dt has a differential at F, = uniform w.r.t. the
L, norm. His condition on J is good, [|J(#)|dt < oo; however, statistical applica-
tion via the rv’s F ~'(U;) apparently requires F to be continuous.

Among asymptotic normality theorems allowing discontinuous F and fixed
centering constants, Stigler’s (1974) results are closest to the corollaries to Theo-
rems 1 and 2. For the untrimmed version he has slightly weaker moment condi-
tions, [[F(x)(1 — F(x))]% dx < oo as compared to the combination of (4.1) and
(4.2), and slightly stronger conditions on J (see his Theorem 4).

The LIL corollaries follow at no extra cost but are not as general as the Strassen
type LIL results of Wellner (1977).
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