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PERMUTATION TESTS FOR DIRECTIONAL DATA

By JoN A. WELLNER
University of Rochester

The two-sample problem for directional data with dimension greater than
one is considered. A large family of permutation tests is proposed and studied.
The statistics upon which the tests are based are related to those introduced by
Giné in the context of tests for uniformity, and are defined in terms of Sobolev
norms. Examples treated include the unit spheres S? and hemispheres H” for
directions in (p + 1)-dimensional Euclidean space, and the torus 72 = S' X
S'! for pairs of directions in two dimensions. Computable forms of the statistics
with specified consistency properties are obtained for each of these examples.
Sampling from the permutation distribution is proposed as a means of imple-
menting the tests in practice. Several tests for uniformity on the torus T? are
also obtained.

1. Introduction. Several recent papers in the area of directional data have
addressed the problem of testing for uniformity on the circle, sphere or, more
generally, a compact Riemannian manifold. Giné (1975) introduced a class of
invariant tests for uniformity based on Sobolev norms and showed that his class of
tests contains tests previously proposed by Rayleigh, Watson, Ajne, Beran and
Bingham for testing uniformity on the circle, sphere and hemisphere. He also
produced several new tests consistent against all alternatives. Prentice (1978)
applied Giné’s results to obtain tests for uniformity on the sphere S” and hemi-
sphere H? in (p + 1)-dimensional Euclidean space.

Another type of problem confronting the statistician is the two-sample problem
of comparing two distributions on the circle, sphere or some other specified
Riemannian manifold. In the case of directions in two dimensions (observations on
the unit circle S in R?) several nonparametric two-sample tests which are invariant
already exist: e.g., Watson’s form of the two-sample Cramér-von Mises statistic (cf.
Watson (1962), Durbin ((1973), page 47), Mardia ((1972), page 201)), the two-sam-
ple Kuiper statistic (Kuiper (1960), Durbin ((1973), page 46), Mardia ((1972), page
201)), or the tests due to Beran (1969) and Schach (1969). This is a one dimensional
situation. For higher dimensional situations, such as directions in three dimensions
(observations on the unit sphere S? in R?), nonparametric two-sample tests are
generally unavailable. The small number of available two-sample tests are for
parametric models or for specific classes of distributions: see, for example, Watson
and Williams (1956), Mardia ((1972), page 263 ff.) and Wellner (1978).

Received June 1977; revised June 1978.

AMS 1970 subject classifications. Primary 62H15, 62G10, 62E20.

Key words and phrases. Directional data, Riemannian manifolds, two-sample tests, permutation
principle, invariance, consistency. .

929

GTJ
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz
The Annals of Statistics. RIKGJY

e

/)

®
www.jstor.org



930 JON A. WELLNER

The purpose of the present paper is to introduce a class of permutation tests for
two-sample problems involving directional data in higher dimensional situations.
To allow for flexibility in applications, we follow Giné (1975) and formulate our
tests for an arbitrary compact (connected) Riemannian manifold X; important
cases of interest are the unit spheres S” and hemispheres H? in (p + 1)-dimensions
with p > 2 and the torus 72 = S' X S. The test statistics defined in Section 2 are
based on the Sobolev norms introduced by Giné in the context of tests for
uniformity. These statistics are related to Giné’s statistics for testing uniformity in
much the same way that Watson’s two-sample statistic on the circle is related to the
invariant form of the Cramér-von Mises statistic (also due to Watson) for testing
uniformity on the circle (cf. Durbin (1973), page 36 and 47). There are clear
connections between the statistics proposed here and in Giné (1975), and the
“components” approach to the ordinary Cramér-von Mises statistic due to Durbin
and Knott (1972).

Our permutation tests are also related to the test introduced by Bickel (1969) in
the context of the two-sample problem for observations in R¥, k > 2. Bickel used
the Kolmogorov or supremum distance between distribution functions together
with the permutation principle to obtain a two-sample test consistent against all
alternatives. Here we deal with a family of statistics determined by a sequence of
weights {a,}. As will be shown in Section 3 and the Appendix, our permwation
tests are consistent against all alternatives if all the a,’s are nonzero and consistent
against specified alternatives if only some a,’s are nonzero.

It will usually not be possible to carry out the permutation tests proposed in
Section 2 exactly unless the sample sizes are quite small; this is a drawback of any
permutation test. In practice, however, the tests can be carried out by sampling
from the permutation distribution. The idea of implementing a permutation test by
sampling from the permutation distribution is apparently due to Dwass (1957), and
has been suggested before in the context of directional data by Watson and Beran
(1967). For examples of the use of such procedures (in problems not involving
directional data) see Gabriel and Feder (1969) and Green (1977).

The paper is organized as follows: Section 2 contains the tests and the necessary
permutation theory. Consistency and other asymptotic properties of the tests are
stated in Section 3, and examples are considered in Section 4. Invariant two-sample
tests consistent against all alternatives are obtained in computable form for the
sphere S? and hemisphere H” in (p + 1)-dimensions (Examples 1c and 1d), and
for the torus T2 = S'! x S (Example 2c). Several invariant tests consistent against
specified alternatives on each of S?, H?, and T? are also given; see Examples la,
1b, 2a, and 2b. Finally, the Appendix contains proofs of the consistency and
asymptotic properties stated in Section 3. Our consistency results are based on
Theorems A and B of the Appendix; these theorems are permutational versions of
Theorem 3.4 of Giné (1975).
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For precise definitions and detailed technical information concerning
Riemannian manifolds and their isometry groups, the Laplacian, and Sobolev
norms, we refer the reader to Sections 2 and 5 of Giné (1975) and the references
given there.

2. The permutation tests. Let X be a compact (connected) Riemannian mani-
fold with Riemannian metric 4 and isometry group G. Let p and o be two Borel
probability measures on X. Denote the “uniform measure” on X by p. Suppose we
observe X, - - -, X,, ii.d. p-distributed random variables with values in X, and
Y, --,7%,iid. o-distributed random variables with values in X. Denote the set
of all Borel probability measures on X by P (X); let © = {(p, 0) : p, 6 € P(X)},
the collection of all pairs of Borel measures on X; and set O, = {# €0 :0 =
(p, p) for some p € P (X)}. Our goal is to find level & > 0 invariant tests of

(2.0) H:0 €0,versusK : 0 & 9,

(i.e., H : p = o unspecified, versus K : p 7 ¢) which are consistent against all (or
specified) alternatives in ®, = @\ 0,. Stated in the language of test functions, we
want to find a sequence of measurable critical or test functions ¢,, , : (X)™ X (X)"
— [0, 1] which, for a given 0 < a < 1, satisfy

2.1) Ey{¢, (X, Y)} <a forall 6 €0,
(22) & A(X, Y) = ¢, ,(gX,8Y) forall g€ G,
and

(23) lim,, oo By {6 /X, Y)} =1  forall 8 & @,

Note that our testing problem is invariant and hence (2.2) is a natural requirement.
(For g in the isometry group G of X define g: P(X) > P(X) by gr = v-g~! for
v € P(X) (ie., (gv)N(4) = v(g~'(A)) for A € = where = denotes the Borel sigma
field of X); and define g*: ® - ® by g*0 = (gp, go) where § = (p, 6). Then
G* = {g* :g € G} is a group, and g*®, = O, and g*0O, = O, for all g* € G*.)

The statistics upon which our tests will be based are defined as follows: Set
N=m+ nand Ay = mN~". Let p,, = m~'Z7_ 8y and o, = n~'Z}_,8, denote
the empirical measures associated with the X and Y samples respectively. (Here &,
denotes the probability measure with mass 1 at x.) Now define statistics T,f,f),, =

T ({a}) by
(24 T,(,,”),,({ak}) = % f=1alfzfieEk{fxfid(Pm - "n)}2~

Here, as in Giné (1975), the functions { f;} are an orthonormal basis of L,(X, p)
consisting of eigenfunctions of the Laplace-Beltrami operator (Laplacian) A of
X, E, denotes the kth eigenspace of A with eigenvalue ¢,, s > (dim X)/2 is a real
number, and {a,} is a sequence of real numbers or weights (which may be chosen
by the statistician) subject only to the restriction that sup,|a, ef/?| < oc.
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Note that T,f,f),, is simply a weighted sum of squared Fourier coefficients of
(p,, — 0,) with respect to the orthonormal system {f;} (equivalently, a weighted
sum of squared differences of the Fourier coefficients [ f,dp,, and [y f.do,) with
weights which depend only on the eigenspaces. This last requirement yields the
desired invariance of the statistics, while the restriction sup,|a,ei/?| < co with
s > (dim X')/2 guarantees convergence of the series.

The results of Giné (1975) imply that

mn
Ta({a}) = 7 I(EEaiaed*m) o, — I,

where || - ||_, is a Sobolev norm of negative index —s < — (dim X)/2 and =, is
the orthogonal projection of L,(X, p) onto the kth ¢igenspace E, of the Laplacian
A. Our proofs (given in the Appendix) will make use of this fact, but for the most
part we will work with the statistics 7,’, in the form (2.4) or in the alternative
forms (4.1) and (4.2) given at the beginning of Section 4.

The tests we propose and study are simply two-sample permutation tests based
on the statistics T,5),({4}): i.e., condition on the “pooled sample”, compute T,$,
for all (¥ relabelings of the N elements of the pooled sample as X’s and Y’s, and
reject the null hypothesis p = o if the “observed” T, is “too big” relative to the
resulting (conditional) distribution. As mentioned in Section 1, this type of proce-
dure may be implemented in practice by sampling from the permutation distribu-
tion.

The following development makes this more precise: Let 7y = Ayp,,
+ (1 — Ay)a, denote the empirical measure of the “pooled sample”. Then let
Py(-|my) and Ey(-|7y) denote the regular conditional probabilities and conditional
expectations given Ty; i.e., given the values of the first m X’s and first n Y’s
without regard to their sample origin. If (X, - -, X, Y,,- - -, Y,) have been
observed, 7y is a sufficient statistic for § € ©,: for Borel sets 4 in (X)" X (X)”,
there is a version of

Po{(Xl: X, YY) E AITN}
which is independent of § € ©,. In fact, conditional on 7, for 8 € ©, all N!
permutations of (X,,---,X,, Y,,...Y,) are equally likely. In view of this

sufficiency of 7 for § € ©,, we shall drop the subscript 8 from P,(-|ry) or Ey(-|x)
when these are computed for § € 0,
Now the test functions ¢, » may be defined by

. mn\~1__
‘pm,n(x’ Y) =1 if (—]V) thn,)n > Cy

@5 =y it (2) T, = e

-1
=0 if (1"1) TO, <cy
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where T,.9, = T9,({a,}) is defined by (24) and cy = cy(ry(w)) and vy =
Yn(Ty(w)) are the uniquely determined smallest numbers satisfying

(2.6) E{¢p,n(X, Y)ITy} = a.
The test functions ¢, , defined by (2.5) and (2.6) clearly satisfy (2.1). Because the
Sobolev norms || - ||_, are invariant under isometries (cf. Giné (1975) pages

1246-1248), T,f,f),, is invariant, and hence (2.2) holds. The invariance of the statistics
T, (and hence the tests) will become obvious in the examples considered in
Section 4. In Section 3 we will give conditions on the weight sequence {a,} which
will ensure that (2.3) holds.

3. Consistency; asymptotic power. The “natural parameter” corresponding to
the statistic T,({a,}) is the number 1) = 1®)({q, })(#) defined for § = (p, 0) € ©®
by

({4})(0) = t;co-1‘1132/,«515,‘{fxfid(l) - 0)}2.

Note that t©) = 0 for § € ©,, but it may be zero or positive for § & ©, depending
on the measures p and o and the weights {a;}.

THEOREM 1. (Consistency). Suppose that § & ©. Then
(3'0) limm, n—>ooE0{¢m, n(x’ Y)} =1

if and only if t){a,})(@) > 0. If the weights {a,} satisfy a, # O for all k, then
19 a,})(8) > 0, and (3.0) holds for all § & O,

The proof of Theorem 1 depends on a permutational version of Theorem 3.4 of
Giné (1975). That result and proofs of the three theorems of this section are given
in the Appendix.

The following two theorems give asymptotic distributions of the test statistics
T, under local and fixed alternatives respectively. In principle they may be used
to obtain large sample approximations to the power of our tests for specified
alternatives. But the asymptotic distribution under the null hypothesis (local
alternatives) is that of a weighted sum of dependent (noncentral) chi-square
random variables, and hence asymptotic power properties of the tests are rather
intractable in practice. Whereas the tests of Beran (1968) and Giné (1975) for
testing uniformity are locally most powerful against certain alternatives, our
two-sample tests do not seem to have a comparable property. It would be of
interest to find invariant two-sample tests with specified optimality properties. In
this connection, see Wellner (1978) for power computations in the case of a
somewhat more specific two-sample testing problem on the sphere.

In the following we shall denote weak (star) convergence, or convergence in
distribution, of a sequence of measures by ‘w* — lim’.
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THEOREM 2. (Local alternatives). Suppose that p is a fixed measure in 9 (X),
and that {oy)} is a sequence of measures satisfying w* — lim oy = p and
lim,, , o (mn/N)i [xfidle — oy) = d; for all f; € E, k=1, 2, - - with
27(0-la132(i:j;€Ek}diz < 0. Then

T ({4 ) —)dzk-lakEfEEk{X(p)(f) + d}
where X®(f) is a mean 0 Gaussian process, indexed by f € L)X, p), with
E{XP(N)XP(g)} = [x(f— [xJdp)(g — [xgdp)dp for f, g € Ly(X, p); in particu-

lar, XP(f) ~ N(O, V,(f) where V,(f) = [x(f; = [xfidp)dp.
For fixed 8 = (p, 0) & O, define

g(x,y) = P14 2 e g (D),
3.1) u(x) = 222,072 g {Ixfid(p — 0)} fi(x),
r(x) = [xg(x,»)dp(y), and  s(x) = [xg(x,y)da(y)
for x,y € X.

THEOREM 3. (Fixed alternatives). If 8 & ©g, t© = tY({a,})(0) > 0, and Ay —
ANOK A< lasm,n— o, then
(mn/NYH{(mn/N) "' TP, = £9) 5,N(O, V)
where V2 = (1 — A)Var,(u) + A Var,(u) and

Var,(u) = 4{ [x(Ix(r(x) = s(x))g(x, »)du(x))’dp(y) = (Jxr(r = s)du)*},
Var,(u) = 4{ [x(x(r(x) = s(x))g(x, y)du(x))*do(y) — (fxs(s — r)du)’}.

4. Examples. Now the goal is to obtain computable forms of the statistics
T, for specific weights a, when the Riemannian manifold X is the sphere S” or
hemlsphere H? in (p + 1)-dimensional Euclidean space or the torus T2 = S' x
SL. It follows easily from Giné (1975) that the statistics T(f) may be reexpressed in
two useful alternative forms: first,

(41) TPu({ @) = 5 Ix[ Mo(x) = N,(x) "du(x)
where M, (x) =m j_,g(x, X)), N,(x) =n “I3n_ g(x, Y,) and g(x,y) is given
by (3.1), as in (4.6), (5.4) and (5.4) of Giné (1975). Second,
() = mn
(4'2) Tm,n N
{m_zztj-lh( i _]) - 2m” ln_lz -lzr-lh(x’ Y) + n_2 ’;s-lh(Y’ Y)}

where h(x,y) = k_,akaEEkf(x)f(y) as in (5.3) and (5.3)" of Giné (1975); once
the function A(x, y) is determined, (4.2) gives an effective computing formula for
TY,. If X is a two-point homogeneous manifold then h simplifies as in (5.3) of
Giné, and depends only on d(x, y), the Riemannian distance between x and y. In
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this case we de1|10te h(x,y) by h(@) with 8 = d(x, y); i.e., for real § set h(d) =
?-14i(dim E,)h(6).

ExaMPLE . Let X =SP={x€R*' :x'x=1}={0 €RF: 6, €[0, 7], i =
L---,p— 18, €[0,27]} in rectangular or polar coordinates respectively. The
uniform measure is dp = [['(a + 1)/27r°‘+']IIf_,(sin 0y d0 with « =x(p-1)
and we may take s = a + 1 > p/2 = (dim S?)/2. Here dim(E),) =(p +k _1_ 2)

+ k-1
+(? p—1 ) e, = k(k + 2a), and an orthonormal basis for E, the kth eigen-
space of the Laplacian, is (Prentice (1978), page 171, Vilenkin (1968), page 468,

Yaglom (1961), page 600)
(£ m=(my- - m_yptm,_)k>my> - >m,_, >0}

where f® is a product of harmonics on spheres of smaller dimension. Since S is
two-point homogeneous, the simplification entailed by (5.3)" of Giné applies, and

h(9) = f_la,f(l + %)C,f(cos )
where '
l—a
I(a + )Tk +2a)(1 = 2977 g (1= et
I(k + a +})TQa)k! (-2)*  dz*

is the Gegenbauer polynomial (zonal ultraspherical harmonic) of index a and order
k (cf. Prentice (1978), page 170, Whittaker and Watson (1929), page 329 and Szegd
(1939), page 80).

ExaMpLE la. (Two-sample analogue of Rayleigh’s statistic for S7). If {q,} =
{1,0,- - - }, then h(#) = (1 + (1/@))C{(z) = (p + 1)z, z = cos 0, and hence

TEHO((1,0,- - }) = (p + DI Im™'RY — n'RYP

Ci(2) =

where R¥ = 37 x, and RY = 37_y, are the resultant vectors of the two samples.
By Theorem 1 the permutation test based on T, "({1,0, - - }) is consistent
against all alternatives (p, 0) & ©, with different mean vectors; i.e., if [ xdp(X) #
[ syda(y), the test will be consistent. See Wellner (1978) for further information

about this and related tests for mean vectors.

ExampLE 1b. (Two-sample version of Bingham’s test statistic.) If {aq.} =
{0,1,0,- - - }, then h() = (1 + (2/@))Cy(cos ) =3(p + 3)(p + 1)(cos )’ — 1),
and hence (cf. Prentice (1978), page 172, Giné (1975), page 1263)

TEHO({0,1,0,- - - ) =3(p + 1)(p + )7 trace[(T¥ — T7)’]

where TX =m~!3™_ x;x; and TY = n"Z}_ 1Y;¥; are the sample second moment
matrices. By Theorem 1 the permutation test based on this statistic is consistent
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against all alternatives (p, o) & ©, with different second-moment matrices; i.e., if
[ soXX'dp(X) # [ oYy do(y) the test will be consistent. This statistic is appropriate for
distributions on S? which are symmetric about the origin (the center of the sphere);
equivalently the test is appropriate for distributions on H?, the (p + 1)-
dimensional hemisphere.

ExaMpLE lc. (Two sample analogue of an Ajne-Beran type statistic for S?.) If
ay =0,ay,_, = [(—DT(k + a + 1)/Qk + 1)(k + a + )k!T(a)], then A(6)
= 1—(1 — (2/7)8) (cf. Prentice (1978), page 172) and hence

1 mn
(a+1) — . mn
Tm,n ({ak}) 20 N ~
A NP -
(2m~tn~'Z 20 XY, — mTPEL ET0 XX — n 2 n_ 3\ Y,Y,}
where XY = arccos(x'y), the angle between X and Y. Alternatively, the statistic
may be written as

T "({a)) = -’;—nfS,[Mm(x) — N,(%)]*du(x)

where M, (x) =m™'S7 1, (X)) and N,(x) =n"'Z}_1p (Xy,) denote the
proportions of X’s and Y’s respectively in the hemisphere centered at x.

ExampLE 1d. (Two sample analogue of a Giné type statistic for S? and H”)
If ay_, =0,a% = {p2q — 1)/87(2q + p)}{T(a + HI(g — 1)/T(g + « + DY
then h(f) =3 — K,sin8 with K, = (p/4{T(a + 3)/T(a + D} (cf. Prentice
(1978), page 172), and hence
mn

—i s S
{(2m~'n "2} lzﬁ_lsin(ﬁ’,) - m™237,_sin(X,X)) — n=23n _sin(Y,Y)}.

Tan’ =K

The permutation test based on this statistic is consistent against all alternatives
(p, 0) & ©, on S” with at least one differing even spectral moment; equivalently
the test is consistent against all alternatives on H”. By Theorem 1, any linear
combination of the statistics of Examples lc and 1d is consistent against all
alternatives (p, 0) & O, on S”.

ExaMpPLE 2. Let X = T2 = S! X S'. Then du = (47%)~ 'd9d¢, the Riemannian
metric d is just the ordinary Euclidean metric in R?/(27Z)’, and the Laplacian is
— A = (32/00%) + 3%/3¢% Here it is convenient to index the eigenspaces of A by
the eigenvalues k: if k is an integer admitting a representation of the form
a@*+ b*=k,a,b € Z, then the functions {f, ,(0, $) = exp(i(ad + b¢)): a* + b?
= k} are orthonormal (with respect to p) eigenfunctions of A with eigenvalue .
Let R denote the set of positive integers which can be represented as the sum of
two squares. Then the dimension of the eigenspace E; with eigenvalue k, k € R, is
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just the number of representations of £ as the sum of two squares: if k£ factors as

k=2 I, Y = 2%k,
pj=1(mod 4) g;=3(mod 4)
the (total) number of such representations of k is known to be zero if k, is not a
square, and four times the number of divisors of k, if k; is a square (cf. Hardy and
Wright (1960), page 241).

The torus T? is not two-point homogeneous, however, and in this respect it
differs from the circle, sphere and projective plane (cf. Giné (1975), page 1256). It is
easily checked that the isotropy group of a point (the subgroup of isometries
leaving the point fixed), for example 0 = (0, 0), consists of only eight elements:
reflections in each coordinate, reversal of coordinates, the identity, and composi-
tions of these (which yield four more distinct elements). Hence, if K, denotes the
isotropy group of 0, the orbit under K, of a point x on a sphere centered at 0
consists of only eight points. Thus the isotropy subgroup K|, does not act transi-
tively on spheres centered at 0 and 72 is not two-point homogeneous.

A consequence is that the addition formula ((5.1) of Giné (1975)) for eigenfunc-
tions on the torus does not enjoy the simplification entailed by Giné’s (5.2) for
two-point homogeneous manifolds. Nonetheless, the addition formula does hold in
the form (5.1):

z(a,bel: a2+b2-k).f;z, b(x)fa, »(¥) = (dim Ek)%f()(k)(gx, o(J’))
where g, , denotes the element of the isometry group G of T? defined by
& o»)=x—-y,x,y € T2 Hence the (zonal with respect to 0) functions appear-
ing in the addition formula are given by

_1

f(x) = (dim E) " 22, vez: ar+p2=k) fo, 5(X)
for x € T? and k € R. For example, for k = 1, dim(E,) = 4, and, for x = (4, ¢)
€ T2 f"(x) = cos 8 + cos ¢; for k = 2, dim(E,) = 4 and f{(x) = 2 cos 8 cos ¢.

ExaMpLE 2a. (Rayleigh type statistics.) If @, = 1 and g, = Q for kK € R with
k > 2, then it follows that A(x, 0) = cos 8 + cos ¢ for x = (8, ¢) € T? and hence

3
(1,0, - - ) =270 mRY — nm'RP
where R¥ = 37_(cos 6%, sin 8%, cos ¢, sin ¢*), RY = Z7_,(cos 67, sin 67,
cos ¢,7, sin ¢,¥), and |- | denotes the ordinary Euclidean distance in R* By
Theorem | the permutation test based on this statistic is consistent against all
alternatives (o, 0) & O, satisfying [ rof, ,(x)dp(x) # [ 1of, ,(x)do(x) for some (a, b)
€ {(1,0),(=1,0), (0, 1), 0, —1)}.

(The corresponding one-sample statistic for testing uniformity on 72 is given by

7()({1,0,- - - }) = 2n"|RP
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where R = 37_ (cos 8, sin 8;, cos ¢, sin ¢,), X; = (0, ¢,). If the X’s are uniformly

distributed on T2, it follows from Theorem 4.1 of Giné (1975) that the asymptotic
3

distribution of T,{i)({l, 0,- - - }) is chi-square with four degrees of freedom.)

EXaMPLE 2b. (Bingham type statistics.) If @, =0, a, =1, and g, =0 for
k € R with k > 4, then h(x, 0) = 4 cos 8 cos ¢ and hence

Tﬁ)({o, L0,---})= 4%” trace[ (TX — TY)(T* — T”)]

where the two by two matrix TX = m™ 137 xx¢, x; = (x¥, x?) =
(cos 8%, sin 8%, cos ¢%, sing*), and similarly for 77. By Theorem 1 the permuta-

tion test based on T( )({0 1,0, - - })is consistent agamst all alternatives (p, o) &
®, satisfying szf,, »(X) dp(x) # [rof,, 5(X) do(x) for some (a, b) €
(LD, A =D, (=11, (=1 =D}
(The corresponding one-sample statistic for- testing uniformity on T is given by
TSE)({O, 1,0,- -+ }) = 4ntrace(TT")
where T =n~'37_,x’x?’; the asymptotic distribution under uniformity is chi-
square with four degrees of freedom.)

ExaMPLE 2¢c. In this final example we proceed somewhat differently than in our
preceding examples: let g : S' — R! be defined by g(r) = (7*/6) — {r(2m — r) for
0 <r <2, and then define 4 : T?> > R' by h(x) = g(0) + g(¢) + g(0)g(¢) for

= (0, $) € T2 It is easily checked that 4 is constant on orbits of K, the isotropy

group of 0, and hence is in the space spanned by the functions { f§?}, c 4. In fact, a
straightforward calculation shows that

h(x) = =, cqar(dim Ek)zfo(k)(x)
where
= (dim Ek)—12{4_14—217_21[#0,1:#0] + a—zlla#o,b-O]}
{a,bEZ:a*+ b*=k)
is nonzero for all kK € R.. Hence
3), mn —2am o
T8 (a)) = ~ m7ZT, k(X - X) = 2m T
S S h(X, — ¥) + 17 (Y, - X))

where h(x) = g(0) + g(¢) + g(9)g(9) yields a test which is consistent against all
alternatives (p, o) & ©, on T2
(The corresponding one-sample statistic for testing uniformity on T? is given by

T()({4}) = n~'37,_ (X, — X))
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where the weights g, and the function & are as given above. This statistic gives a
test for uniformity on 72 which is consistent against all alternatives » # p. By
Theorem 4.1 of Giné (1975), under uniformity
T;;(%)({ak}) =42 cecadiHy

as n— oo where the H,’s are independent chi-square random variables with
dim(E,) degrees of freedom. The methods of Hoeffding (1964) may be used to
approximate the distribution function of this limiting random variable.)

For other statistical procedures for the torus see Ibero (1975, 1976) and Mardia
(1975).

APPENDIX

Here we prove the permutational limit theorem upon which our consistency
result is based and the theorems of Section 3.

Let X be a compact Riemannian manifold as in Section 3. Suppose that { p,; }-,
are N points in X and consider the experiment of choosing at random (without
replacement) m of these N points. Let 7, p,,, and g, be the measures which assign
masses N, m~!, and n~! to all the Pyi’s, the m selected points, and the
n = N — m remaining points respectively. Denote the probability space for this
experiment by (&, @, P), denote points in the sample space & by &, and write Pm(®)
to indicate the dependence of p, on the subset of {p,,;}"., selected by the

experiment.
Suppose that w* — limy_, . 7y = 7 where 7 is a (Borel) probability measure on
X. Since the Sobolev norms || - ||_,; with s > (dim X)/2 metrize the weak-star

topology of ¥ (X) (Giné (197~5), Theorem 2.2), |1y — 7||_;, = 0 as N — . Define
the process Xy (f)(@) on (&2, &), indexed by f in L,(X, 1), by
mn

(A1) Xy(N@) = (57 ) IxSdlon(@) = 0,())

= ()o@ = )

Also, following Giné (1975) and Strassen and Dudley (1969), define the process
X )(f), indexed by f in L,(X, 7), as the mean zero Gaussian process with covari-
ance

(A2) E{XD()XD(g)} = [x(f — [xSJdr)(g — [xgdr) dr

for f, g € Ly(X, 7). Let H,(X) denote the Sobolev space of index s (i.e., the subset
of L,(X, 7) having || f||, < oo; see Giné (1975), page 1247), and let B, denote the
closed unit ball of H(X). If || f||,, = sup, x| f(x)|, then (B,, || - ||,,) is a compact
metric space. Giné ((1975), Lemma 3.2) shows that for every Borel probability
measure 7 on X, the process X ™ restricted to B, is sample continuous and hence
defines a probability measure 2(X@|B,) = £(X™) on C(B,, | - ||.) = C(B,).
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The following theorem is a permutational version of Giné’s Theorem 3.4. It is
also related to Bickel’s (1969) permutational limit theorem for the empirical
distribution function of p-dimensional random vectors.

THEOREM A. If w* — limy 7y = 7 for some Borel probability measure v on X,
and s > (dim X)/2, then

L(Xy) > L(X™)  in C'(C(B,))

as N — 0. (Here 2(Xy) = 2(Xy|B,) is the law of X, on C(B,) under P, and
LX) = L(XD|B,) is the law of X on C(B,).)

Now let X, - -, X, Y,,- - -, Y, be random variables with values in X as in
Section 2. In a minor change of notation we use p,, o,, and 7, to denote the
empirical measures of the X’s, Y’s, and pooled sample, respectively; all three
empirical measures are now random (depend on w € ). Define X, (f)(w) as in
(Al).

THEOREM B. If 0 = (p, p) € ©, and s > (dim X)/2, then

R(XylTn) > R(X®)  in C'(C(B,))
as. P,.

(Note that we have used “£(-|-)” in two ways: in Theorem A, £(X,|B,)
denotes the law of the process X, restricted to B,; in Theorem B, £(X|7,) denotes
the conditional law of the process X, given 7, and then restricted to B; this
second restriction is suppressed in the above notation.)

PrOOF OF THEOREM A. By Prohorov’s theorem it suffices to prove (i) that the
finite-dimensional distributions of the process X, converge in distribution to the
corresponding finite-dimensional distributions of X, and (i) that the laws
{2(Xy|B;)} %=1 on C(B,) are tight.

(i) Convergence of the finite-dimensional distributions. By the Cramér-Wold
device, the linearity of X, and Minkowski’s inequality, it suffices to establish the
convergence of the one-dimensional distributions. Let f € L,(X, 7); some algebra
shows that

XN(f)(a’) =a n=1 dNJ Nj

where cy; eqlials (n/ m)il for j =1, ,m-and equals —(m/ n)2 for j =m+
-+, N, {VN,},-l is a-random permutation of {cNJ}J,l, anddy, = N~ Z{f(pNJ
~fxfd7N}j—l , N.Then =} cy;, =0, N ™! J,lch—-lforallN =N dy
=0, and

B diy = [x(f = [xfdry) diy— [x(f — [xfdr) dr = oz(f) as N—oo

since w* — lim 7y, = 7 and C(X) is dense in L,(X, 7). Also, N -3 max; . ;< ylcnil =
0, max, ¢ ;cn|dy;| =0, and N~ Z(IGN |>£)8N, — 0 for all ¢ > 0 where dy; = cy,dy;
Hence, by Hajek’s (1961) version of the Wald-Wolfowitz-Noether permutational
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central limit theorem (or see Lemma 4.1 of Bickel (1969))
Xn(f) =aN(0, 62(f))
and this is just the distribution of X (f).
(i) Tightness of the laws {£(Xy|B,)}%~, on C(B,). Our proof follows the proof

of tightness given by Giné (page 1251) with modifications of the variance calcula-
tion necessitated by our present finite sampling situation. We omit the details. []

PrROOF OF THEOREM B. If py,, - - -, pyy are the values of the first m X’s and
first n Y’s where the X’s and Y’s have a common probability measure p = ¢ on X,
then the conditional law of p,, given 7 is exactly the same as that of p,,(®) in the
finite sampling context of Theorem A. Hence Theorem B follows from Theorem A
and the Sobolev norm version of the Glivenko-Cantelli theorem for empirical
measures on X (cf. Giné (1975), Lemma 4.2): if 8 = (p, p) € O, then

Py(llry — poll -, —>0) = 1. a
ProoF OF THEOREM 1. Define the seminorm 4 on C(B,) by
h(4) = SqueB,IA, ° zkakelg/z'”k(f)l'
Then h € C(C(B,)) if sup,|a.ef’?| < oo (Giné (1975), page 1252), and h¥(X,) =
T ({a,}). Furthermore, for every probability measure p on X and a > 0 there are
unique finite smallest numbers ¢ = c(p, @) and ¥ = y(p, @), 0 < y < 1, satisfying

(A3) P(RA(X®) > ¢) + yP(hA(X® = ¢) = a.

Suppose 8 = (p, 6) & O, and r“)({a,})(@) > 0. Assume (without loss of general-
ity) that Ay = mN "' 5A 0< A< 1. Let 7=2Ap + (1 — A)o. By the Sobolev-
norm version of the Glivenko-Cantelli theorem, Py(||7y — 7||_,—>0) =1, and
hence Theorem A implies that (mn/N)cy(ty) — c(7, a) a.s. P, with ¢ = ¢(7, @)
defined by (A3) with p replaced by 7. But

(%)_IT%({%}) - 19({a,})(8) >0

as. Py, and hence ¢,, ,(X,Y) > 1 as. P,

Now suppose that 8 = (p, ¢p) & ©,, but suppose that +©({a,})(@) = 0. Then
Theorem A again implies that (mn/N)cy(7y) = c(r, @) a.s. P, as above, but now
an applicathn of Theorem 3.4 of Giné (1975) shows that

T'('i)n({ak}) ';)dz;co=lalfzj;eEk{(1 - A)%X(p)(f;‘) - A%X(o)(fi)}z

where X® and X denote independent Gaussian processes with covariance
structure as in (A2). Hence the test fails to be consistent when /“)({q, })(9) = 0.
The second assertion of the theorem follows easily upon noting that § = (p, 6) &
®, implies that [lo — 0|2, = S2_,e "% ;e g {~xf; dp — 0))2 > 0, 50 [, d(p —
o) # 0 for some f,, and hence t“)({a, })(8) > 0 (since g, # O for all k). []
The proof of Theorem 2 is straightforward but lengthy, so we shall omit it.
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PrOOF OF THEOREM 3. Let B, = [ f; d(p,, — 0,), b; = [x f; d(p — o). Then
(22 (/) '72, ~ 1)

= 373,z (mn/N)i(B, + b)(B, - b)
= S2.107%,e 5, (B, + B)((1 — M)TXD () — NXO(S))
(718285 5 26((1 = NIXO(f) — MEX (1))

= (1= NIX®@() — Az XO(u)
where u(x) = 287_ a3, g bifi(x). This limiting random variable is normal with
the stated variance by straightforward calculation. [] *
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