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ASYMPTOTIC NONNULL DISTRIBUTIONS FOR LIKELIHOOD
RATIO STATISTICS IN THE MULTIVARIATE NORMAL
PATTERNED MEAN AND COVARIANCE MATRIX TESTING
PROBLEM'

By TED H. SZATROWSKI
Rutgers University

The multivariate normal patterned mean and covariance matrix testing
problem is studied for general one and k-population hypotheses. T. W. Ander-
son’s iterative algorithm for finding the maximum likelihood estimates, the
forms of the likelihood ratio tests, and asymptotic chi-square distributions of
these tests under the null hypothesis are given. The nonnull asymptotic normal
distribution is derived using the standard delta method. This derivation involves
using several extensions of matrix identities given in Anderson, matrix deriva-
tives and asymptotic likelihood equations. The forms of the variances are
greatly simplified using a result of Szatrowski when the maximum likelihood
estimates under the null hypothesis have explicit representations.

1. Introduction. Hypothesis tests involving linear patterned mean and covari-
ance matrix assumptions for multivariate normal data have received much atten-
tion in the literature. Problems that motivate these studies arise in many applica-
tions including those in the areas of medicine, psychology, educational testing and
reliability testing. In many of these studies, (e.g. Wilks (1946), Votaw (1948), Gleser
and Olkin (1966, 1969), Olkin and Press (1969), Olkin (1972), Arnold (1973) and
Szatrowski (1976)), the maximum likelihood estimates and likelihood ratio tests can
be explicitly obtained. In some cases the exact null distribution of the likelihood
ratio statistic is obtained (e.g. Consul (1968, 1969), Khatri and Srivastava (1971)).
In other cases the asymptotic chi-square distribution is given (e.g. Mukherjee (1966,
1970), Anderson (1970)) or the moments of the likelihood ratio test are obtained
and the null distribution approximated by linear combinations of chi-square
variables (e.g. Wilks (1946), Votaw (1948), Gleser and Olkin (1966, 1969), Olkin
and Press (1969), Olkin (1972), Szatrowski (1976)). Similarly, for the nonnull
distributions, the exact nonnull distributions are sometimes obtained (e.g. Khatri
and Srivastava (1971)); in other cases, the standard delta method is used to obtain
asymptotic nonnull distributions (e.g. Olkin and Press (1969), Szatrowski (1976))
and, occasionally, additional terms of the expansion are also given (e.g. Sugiura
(1969), Sugiura and Fujikoshi (1969)).
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824 TED H. SZATROWSKI

In this study, the asymptotic nonnull distribution is derived for a general form of
nested hypotheses used in one and k-population testing problems. These results can
be simplified when maximum likelihood estimates used in the likelihood ratio
statistics have explicit representations under the null hypothesis. These asymptotic
nonnull results are useful for obtaining approximate powers and sample sizes for
the tests under consideration.

In Section Two the problem and hypotheses under consideration are described.
Section Three contains results on the derivation of maximum likelihood estimates
and likelihood ratio tests. The usual asymptotic chi-square distribution for the null
distributions of the likelihood ratio test is also given together with some results on
matrix representations and derivatives. Sections Four and Five contain the asymp-
totic nonnull results for the one and k-population hypotheses, respectively.

2. Hypotheses, likelihood ratio tests, asymptotic null distributions. Let X be a p
component column vector with multivariate normal distribution such that the mean
vector p = & X and covariance matrix £ = Cov(X) = & X — p)(X — p)’ have the
linear structure considered by Anderson (1969, 1970, 1973). Specifically, p = 21z,

=ZB,Z=1z, --,z) B=(By" --,B), BE R, where the z’s are known,
linearly independent column vectors and the 3’s are unknown scalars. The covari-
ance matrix is given by £ = ¥(0) = 2{0,G,, o = (0y, * * - , 0,,)', where the G’s are

known, linearly independent symmetric matrices and the ¢’s are unknown scalars,
such that 0 €6, 0 = {0 € R™*!|X(0) > 0}, where £ > 0 denotes X positive
definite. We assume that © is nonempty so that there exists at least one value of o
that results in (o) being positive definite.

DEFINITION 1. Let A be a p X p symmetric matrix. (A)> is defined to be a
column vector consisting of the upper triangle of elements of A,

CA> =(ay,ap, -+, Qpps Q125 " * * 5 Q1ps A3, ° ° ° ap—l,p)/'

Using Definition 1, and defining W = [{Gy), <G>, - - -, {G,,>], we observe
that (> = We.

2.1. The one population problem. Suppose we observe independent, identically
distributed observations x,, - - - , X, from a multivariate normal distribution with
patterned mean p and covariance matrix 3. Identify substructures of Z, 8, W and o
by

@1) Z=[Zy:Z] B=(B:B), W=[Wo:W,], a=(0:0),

where Z, and B, are p X r, and r, X 1 respectively and W, and o, are 3p(p + 1)
X (mg + 1) and (my + 1) X 1 respectively. At least one of the inequalities ry < r
and m, < m is assumed to be strict. The problem is to test the null hypothesis
H, : B, = 0, o, = 0 versus the alternative hypothesis H, which does not so restrict
B and o.
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The likelihood ratio statistic A for testing these hypotheses is of the form
22) A/ = 18|/ |E|

where £, and £, are the maximum likelihood estimates of £ under H, and H,
respectively. Methods used to find these estimates are discussed in Section 3.1.

In general, the exact distribution of the likelihood ratio statistic is difficult to
derive. Often no explicit form of the likelihood ratio statistic exists. The usual
asymptotic chi-square distribution applies under the null hypothesis assumption,
yielding limy_, £(—2logA) = x}, where f= m + r — (my + ry). We reject the
null hypothesis when —2 log A is too large. The standard delta method is used to
derive the asymptotic nonnull distribution in Section Four.

2.2. The k-population problem. Suppose we observe random samples from k
multivariate normal populations. Specifically, we have observations x,,j =
L---,pp,d=1,-- -,k where £(x,) = N(pu,, ;) and N = Zfp,. We assume
all means and covariances have the same patterns, i.e., p, = Zf8,, <Z,;> = Wo,,
d=1,: .-, k. Three sets of hypotheses motivated by Votaw (1948) are investi-
gated. H,(MVC|mvc) is the hypothesis that p; = - - - = p, and Z;, = - - - = Z,.
H, (VC|mvc) is the hypothesis that Z, = - - - = X,. Both of these hypotheses are
tested against H, ,, the alternative hypothesis without the equality constraint on
the means and covariances. A third hypothesis, H,(M|mVC) involves testing
H,(MVC|mvc) against the alternative hypothesis H,(VC|mvc).

The likelihood ratio statistic is of the form

(23) NN = (TFIE /™) /1E
for testing the null hypotheses H,(MVC|mvc) or H, (VC|mvc), where fd, d=
1, - -, k, are the maximum likelihood estimates found under the alternative

hypothesis H, , and $ is the maximum likelihood estimate of the common
covariance matrix found under the null hypothesis H,(MVC|mvc) or H,(VC|mvc),
respectively. For testing the null hypothesis H,(M|mVC), the likelihood ratio
statistic is of the form A®/M = |&,|/|E,| where £, and £, are the maximum
likelihood estimates of the common covariance matrix found under the assump-
tions of H,(MVC|mvc) and H,(VC|mvc), respectively. Methods used to find these
estimates are given in Section 3.1. )

In general, as in the one population case, the exact distribution of these
likelihood ratio statistics is difficult to derive. The usual asymptotic chi-square
distribution applies under the null hypothesis assumption, yielding lim,_,
£(—2log A) = x7, where it is assumed that limy_,(p,/N) = £, 0<f, <1,d =
1, - -,k The degrees of freedom f are (r + m + 1)(k — 1) for testing
H,(MVC|mvc), (m + 1)(k — 1) for testing H,(mVC|mvc) and r(k — 1) for testing
H,(M|mVC). We reject the null hypothesis when —2logA is too large. The
standard delta method is used to derive the asymptotic nonnull distributions in
Section Five.
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3. Results used in nonnull distribution derivations.

3.1.  Maximum likelihood estimates. Let [d,,] denote a matrix whose g, h ele-
ment is d,,, and let (d,) denote a column vector whose gth element is d,. Anderson
(1973) derives the likelihood equations for the one-population problem (Section
2.1),

(3.1) B=2Z%'2)7'2%" %,
5 =[r £7'G,27'G,] (r £-'G,E"'C),
X=(1/NZl_ %, C=A+ X)X -p),

A =(1/N)Zi_(x, — X)(x, — X)',
where [tr £7'G,£7G,] is an (m + 1) X (m + 1) matrix, (tr £7'G,2~!C) is an
(m + 1) X 1 column vector, and B and o are r X 1 and (m + 1) X 1 column
vectors of unknowns respectively. Anderson points out that the likelihood equa-
tions written in this form suggest an iterative scheme wherein from an initial
estimate of =, £, one can solve the linear equations in B, compute C(ji = Zﬁ), and
then solve the linear equations in o to yield the next estimate of X. Szatrowski
(1980) shows that if the maximum likelihood estimates have explicit representa-
tions, then they are given by [3 and 6 in (3 1) after one iteration from any allowable
starting point £, ie., any starting point £ = 2(6) > 0.

We say that the maximum likelihood estimate of the mean has an explicit
representation if the maximum likelihood estimate for B, B, can be expressed by
B = AX, where A is a function only of Z and W. Similarly, the maximum likelihood
estimate of o, &, has an explicit representation if and only if the mean does and &
can be expressed as 6 = B{C), where B is a function only of W; C is given in (3.1).

For the one-population hypothesis, we use Anderson’s algorithm for finding the
maximum likelihood estimates under the alternative hypothesis. Under the null
hypothesis, we repeat this procedure using the restricted forms of u and . For the
k-population hypotheses, one must pool some of the data before using equation
(3.1). Under H,(MVC|mvc), we use equation (3.1) with X = =%(p,/ N)X,, the grand
mean, and C of the form

(3.2) C=Z{(ps/N){As + Zy — D)X, — X'} + X —RE —4),
A, = (I/Pd)zfil(xdj - ’—‘d)(’—‘dj - ’—‘d)"
Under H, (mVC|mvc) we use C of the form
(3.3) C= zlf(Pd/N)[Ad + (X, — B (X — ’;'d),] = E’f(Pd/N)Cd’
where the fi,’s are calculated using the X,’s. Under H, ,, we obtain maximum
likelihood estimates for each of the k populations separately using equation (3.1).
3.2. The standard delta method and derivative results. To derive the asymptotic

nonnull distribution, we use the standard delta method in the following form, given
in Anderson (1958, page 76).
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THEOREM 1. Llet Q(n) be an m-component random column vector and b a fixed
vector. Assume nz2(Q(n) —b) has the asymptotic multivariate normal distribution
N(0, T). Let w = f(q) be a scalar function of the vector q with first and second
derivatives existing in the neighborhood of q = b. Let (3f/ 0q,)|q=p be the ith compo-
nent of ¢,. Then the limiting distribution of n2[ AQ(n)) — fB)] is I(O0, ¢, Tep,).

In our problems, f(q) = — (2/N)log A, where Q(n) = ((A)’, X’)’ in the one-
population problems and Q(n) = (<A,)’, - - -, <A, X}, - - ,X,/) in the k-
population problems. The following is a well-known result on the asymptotic
distribution of X and A in the one-population problem.

THEOREM 2. N %{()_(’, CAY) — (W, {=Z>)Y is asymptotically normally distributed
according to 90(0, T), where T = diag(Z, ®), with ® given in Definition 2 below.

DEFINITION 2. (Anderson, 1969). Let @ be a {p(p + 1)/2} X {p(p + 1)/2}
symmetric matrix with elements ® = ®(X) = (¢;; 1) = (040, + 0404), i < j, k <
I, where g, is the ij element of Z. The notation ¢ ,, represents the element of ®
with row in the same position as the element g, in (A), where A is p X p
symmetric, and column in the same position as a;; in <A)’.

We observe that if the p X p matrix W > 0 has a Wishart distribution with
parameters £ > 0 and n (E(W) = W (T, n)), then n®E) = Cov(KW ). The follow-
ing theorems are generalizations of the theorem in Anderson (1969, page 61).

TueoreM 3. If E and F are p X p symmetric matrices, then

(3.4) EYD~(Z)(F) = 1r=~'EZ~'F.

ProOF. The proof is a straightforward extension of Anderson’s (1969) proof.
Techniques used in this proof appear also in the proof of Theorem 4 below. []

Examples of possible E and/or F matrices to be used in Theorem 3 are X; G,
f=0,---,m; and C, A and C — A defined in equation (3.1).

Using Theorem 3, we obtain the following identities and an alternative form of
the likelihood equation (3.1) (® = ®X)),

(3.5  (G,ydKC) =lr¥-'G,2'C, h=0,1,---,m,
(B6) (G YPKG) =;r £7'G,27'G, fh=0,---,m,
(3.7 6= (Wo 'W)"'wd-KC> =T<C).

Before stating and proving Theorem 4, we state a matrix theory result used in the
proofs of Theorems 3 and 4.

LemMA 1. If R is a nonsingular p X p matrix, then there exists a nonsingular
matrix B such that (RSR’> = B{(S)> for any p X p symmetric matrix S. If, in
addition, S > 0, ®(RSR’) = B&(S)B".
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Proor. Let H; be a symmetric matrix of zeroes with a one in the ij and ji
positions. Any p X p symmetric matrix can be expressed as a unique linear
combination of the p(p + 1)/2 symmetric matrices, {Hy,i<j=1,---,p}. De-
fine B by the set of equations (RH;R') = B{H,;>,i < j =1, - -, p. By linearity,
with § =2, 5;H;, we see (RSR’) = B(S) for all symmetric S. If B were
singular, there would exist a vector (S) # 0 such that B{S)> = 0. Since this
contradicts the fact that (RSR’) = 0 for symmetric S if and only if S = 0, we
conclude B is nonsingular. The second part of the lemma follows by noting if
£(W) = W(S, n), then L(RWR’) = W (RSR, n) and n®RSR’) = Cov((RWR’>)
= Cov(B<{W>) = B{Cov({W})}B’ = nB®(S)B'. []

THEOREM 4. If X, X,, and X, are p X p positive definite covariance matrices,
then, with ®, = ®(X,), i =1, 2, 3,

(3.8) P00, (T, =1tr I7IE,ESIS,

Proor. Using Lemma 1, we see that for R nonsingular, (3.8) is invariant under
the transformation (Z,, Z,, X;) - (RZ,R’, RZ,R’, RZ,R). Since the ’s are posi-

tive definite, we can choose R so Z, = I, and X, = diag(a,, - - -, a,). Decompose
® into
d= (bll (DIZ ,
(1)21 (1)22
where ®,, is p X p and observe that ®(I) = diag(2L,, L,,_,)/,)- Also, for Z, in this
diagonal form, (®));, = (®,);; = 0 and (®)),, = diag(a?, - - -, 2a3). Substitution
into equation (3.8) yields
(3.9
- - , . -1

(ap, - -+, ap)(¢l)l]1(¢3)l](2lp) 1(1’ SRR ) =%tr{ [dlag(al’ ce ap)] 2323}'
Multiplication yields
(3.10) F(ar’ - a7 ) @)(L - - o, 1) = Jur{[diag(ay, - - -, a)] RS},
which, upon further simplification, yields the result
(3.11) 122 ,-1(05/ ), =322 ,_1(07/ ),

after inspecting the form of (®;),,. ]

Finally, several well-known results on matrix derivatives are stated without
proof.

LemMMA 2. If Z is a patterned covariance matrix, then

d - ‘-
(312) ﬁlog |2| =trX IGg = 2<2> (] 1(2)<Gg>
g
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LemMA 3. If Y is a matrix function of a matrix X, then
oY

d
(3.13) 9%y tr(AYB) = tr A o, B,
(3.14) Ny Y )y
0x,p 09X, ’

4. One-population asymptotic nonnull distribution. In this section we use the
results from Section Three to prove the following theorem.

THEOREM 5. For the one-population likelihood ratio statistic given by equation
(2.2), the asymptotic nonnull distribution is given by

@1)  limy B[ N3{— (2/N)log A — log(|Z,l/[Z*))} | = 9O, v,,),

(42) v, =2p — 8(Z)'®y 'Wo(I — My) ™ 'To(Z*)
+4CZ0) @5 'Wo(I — My) ™ 'Ty(@* + F)T(I — M) ™' W5 '(Z, ),
with

M, =[tr £,'G, 25 'G, ] '[tr Z¢'(F + H)Z,''G, ],

'dh— =1 ' — Ay ’
To = (Wo®;5 'Wo) ™ W5 ', Ry = Zo(ZoZg 'Z) ™ Zo By = (p* — mo)(1* — o),
Fy = B3, 'G,Z; 'Ry + RoZ; 'G,Z; 'By,
H! = G,Z;'(Z, — C*) + (5, - CHZ;'G,,
C*=2*+B, F=237._Z)b;

i, j =15 2%
b, = (I — RoZq Ve, (p* — po) + (1* — poles(I — ReZ57')'>,

where e; is a column vector of zeroes with one in the ith position, (u*, X*) is the value
assumed under the alternative hypothesis and not assumed under the null hypothesis,
D, = D)), P* = D(Z*), and py and Z, are the “maximum likelihood estimates”
under the null hypothesis derived from equations (3.1) with X replaced by p*, A
replaced by X* and W and Z replaced by Wo and Z, respectively. Note p, and Z, are
not statistics.

Under the additional assumption that the maximum likelihood estimates have
explicit representations under the null hypothesis, the form of the asymptotic variance
simplifies, becoming

43) v, =2{te(1 - Z5'B*) + 2(u* — o) 5 'TAEF (u* — o) -
ReMARK. The form of v, in (4.3) is of the form obtained by Sugiura (1969) for

testing the null hypothesis £ = X, and p = p, versus the alternative hypothesis
2 # X, or pF .
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PROOF. Let f= f(CAY, X) = — (2/N)log A = log(|€,|/|E,)). We need to find
the partial derivatives of f((A), X) with respect to {A)> and X to use the standard
delta method given in Theorem 1. Since (A) and X are independent by the
normality assumption, we may eXpress v, = v,y + Uz Here v,y = ¢4\ @*d 4,
and vy = ¢LX*P,. Let y be an element in ((A)’, X). Using Lemma 2 and the chain
rule, we find

—aa—f: = 2”‘2 a 10g Iiol 8650) _ 2”‘ 0 log |i|| 869)

(44) %, oy = o5, o

aos

= 370 tr(Eg lG) -3 tr(E'G ) ao‘ ,
where ¢” are the maximum likelihood estimates of o under Hi, i =0, 1, derived
from equation (3.1).

Note that the ® are functions of X and A. In general, it is not possible to obtain
an explicit form for the 6 or 36‘?/dy. Instead we find 96?/dy using implicit
differentiation on the likelihood equations (3.1) (substituting W, Z,, o, and B, for
W, Z, o and B respectively when i = 0.) Due to the linear structure of the patterned
mean and covariance matrix, implicit differentiation yields a set of linear equations
which can be explicitly solved for 36*?/dy. We then can find 96’ /9y evaluated at
X A =@*Z¥, i=0,1 to be 36?P/dy evaluated at (X, A) = (uy, Z,) and
96" /9y evaluated at (X, A) = (u*, T*), respectively.

Here (py, Z) are “maximum likelihood estimates” of p and X obtained from the
null hypothesis form of the likelihood equations (3.1) with (X, A) replaced by
(n*, Z*). Note (my, X,) are not statistics. If there are several roots of the likelihood
equations, we use the root which maximizes the likelihood function. Since (u*, *)
is a point in the alternative hypothesis region, it is the maximum likelihood
estimate of (u, ) under the alternative hypothesis.

To evaluate 36 /dy, we rewrite equation (3.1) (dropping the superscript)

(4.5) 6, = e/6 = e Y[y, = eT{C); i = Zp = RE"'x,
where we define Y,, y,, T and R by
(46) Y =[trZ7'6)G,Z7'(6)G,], v, = (tr Z'(6)G,Z=(6)C(8)),

= (We '&)W) 'we(£), R=2zZ=z'6)Z) 'Z.
The form of the derivative 94, /dy is given by

A

a6, a6,
8y o 8y

(4.7)

These linear equations can be solved for the explicit form of 96, /dy. After taking
the appropriate derivatives, using Lemma 3 and the chain rule, the form of C given
in (3.1), of fi in (4.5) and substitution of asymptotic forms of (X, A), we are able to
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solve the linear equations (4.7) to yield
96 _ _ a_ a
48 T =0-M ', M=Y'[uwE(F, +H)E'G,]

F,=BZ 'GX 'R+ RE7'G,X7'B, B=(X—-p)x —h),
H =GXZ 'E-0)+ (2 -027'G,.
We now look at 9o, /dy = e;(do/dy) given by (4.8) under the null and alternative
hypotheses evaluated at A = Z* and X = p*.
Under the alternative hypothesis, M =0 since £ =C =Z* and i = X = p*
yielding
aa{V
<A

doV
9%,

(4.9)

(n*, =%) = T*/es, (1%, =% = 0, T* = (W'(P* - 1W)_ IW'(D_I .

Under the null hypothesis, we find 96 /3(A)> and 36® /9%, to be

90

(4.10) %S

wnzm = To(I — Mp) e,

30
@11) =

ox,

@,z = e(I — M)~ lTo<(l - ROE()—I)ef(F* = o)’

+ (1* — poel(I — RZ5')D,

where M,, T, and R, are given in (4.2).
Let ¢, and ¢,, be the first and second terms of df/dy in equation (4.4) evaluated
at A = Z* and X = p*. Then ¢,y = Ppay — Picay and v,y can be expressed as

(4.12) Vay = DPocayP*Pocay + DicayP*drcay — 2PoayP*P1cay

Using Lemma 2 and Theorem 3, these terms can be evaluated yielding

(4.13)  Ghas®*doca; = 40> ®q ' Wo(l — Mo) ™' Te@*To(1 — Mp) ™' Wg '<Zo),
D1asP* D1 ay = 2P; SoasP*D1ay = KZp)' Py 'Wo(I — M) ™ 'T(Z*).

The variance associated with the mean is given by vy = 2, Z*¢,¢, where ¢, is
the value of 9f/dXx; evaluated at A = Z* and X = p* and is obtained by combining
equations (4.4), (4.9) and (4.11). Using the forms of b, and F of (4.2), we find that
(4.14) o = 437, ZEWD; (B> (B @ "Wl — My) ™ "Tobb/To(I — Mp) ™!

= 4> @5 'Wo(I — M) ™ 'TFTH(I — Mp) ™ ' Wiy '(Zp).

Combining (4.13) and (4.12), along with (4.14) yields the asymptotic variance v,
in (4.2).
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The simplification of v, (4.3) when there are explicit representations of the
maximum likelihood estimates under the null hypothesis is now shown. From
Szatrowski (1980), we find the maximum likelihood estimates of B and o are given
by (3.1), where Sis any allowable starting point. Thus is independent of A and X.
This greatly simplifies taking the derivatives. In particular, equation (4.7) simplifies
to 86,/dy = by,. Thus we may set M, = 0 in the earlier expressions. These facts
along with applications of Theorems 3 and 4 lead to the simplifications of (4.13)

(4.15) %<A>¢*¢O<A> = 2 tr 20_ 12*20_ 12*, ¢6<A>¢*¢I<A> = 2 tr 20_ 12*.
Similarly the expression for vy (4.14) simplifies to yield

(4.16) vy = KZp)'®; 'F; '(Zy) = 422, Z2(Z))>' D 'bb®; '(Z>.

i,j=1
This expression can be further simplified using Theorem 3 by observing
(417)  (Zp)'®5 'b; = tr{Zg (I — RoZg e, (p* — po)'}
= (0* — o) Ty (I — ReZg e = (p* — po)'Zg e,

Substitution of (4.17) into (4.16) yields
(4.18)

oy = 4 tr{ ¥ (0" — po)(B* — po)' B ') = 4(p* — po) B3 'EXES (¥ — o).
Combining (4.18) and the simplified expressions (4.15) and (4.13) yields (4.3). []

5. k-population asymptotic nonnull distributions. In this section Theorems 68
giving the asymptotic nonnull distributions for the three k-population likelihood
ratio statistics are presented along with their proofs. These proofs are short on
detail as it is assumed that the reader is familiar with techniques used to prove
Theorem 5. Recall that Section 2.2 contains a description of the k-population
hypotheses and likelihood ratio tests.

5.1. H,MVC|mvc) versus H, ,. In this case we test the null hypothesis
H,MVC|mvc) that p; = -+ - =pm, and X, =+ - =X, versus the alternative
hypothesis H, , without this restriction. Note that the structures of the mean and
covariance matrix are the same under both null and alternative hypothesis and that
the explicit maximum likelihood estimates involve different ways of pooling the
data.

THEOREM 6. The asymptotic nonnull distribution for the k-population likelihood
ratio statistic given by (2.3) for testing H, (MVC|mvc) versus H, , is given by
(5.1) limy, L[ N?{— (2/N)logA + log[ (I¥|Z314)/1Zol]} | = 9O, v,,),
(52) v, =235, f3{p — KT @ 'W(I - My) ™ 'T(E})
+2(Zo)' 5 "W — Mo) ™ 'To(® + F)To(l — My) ™' W (2o},
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with
M, =[tr £,'G,2;'G, ] ' [tr Z¢ {(F} + H})Z5'G, ],
To = (W 'W) w/d’o Ry =Z(Z'%5'Z)" 'z, By = (* — po)(* — mo)’s
F} = B,Z; 'G,Z; 'R, + RZ; 'G,T; 'B,,
H} = G,Z; (T, — C*) + (T, — C*)Z; 'G,,
F,=2% j-l(za’)ybm'bj’d’
C* =B, + Z5_ {25 + (uf — 2%l — %)}, fu=pa/N,
b, = <e,(ud — &*) + (¥ — i*)e;

+ (1= R e(i* — po) + (B* — poei(I — RoZ ') >, * = T fms,

where (uf, ZY), * + -, (ug, ZF)) is the value assumed under the alternative hypothesis
and not under the null hypothesis, ®% = ®Z%), ¥, = B(Z,), and p, and Z, are the
“maximum likelihood estimates” under the null hypothesis whose derivation is de-
scribed in Section 3.1 with X replaced by p*, X, replaced by p and A, replaced by Z%.

Under the additional assumption that the maximum likelihood estimates have
explicit representations under the null hypothesis, the form of the asymptotic variance
simplifies to

(53) v, =234 f{tr(1 = Z5'2%) + 2(u3 — po)B5 'TEZG (w3 — po) }-

ProoFr. Lftf= SKAD, - - AD Xy, -, %) = — (2/N)log A = log IZI -
Sk _ 1 f: log |X,|. We need to find the partial derivatives of f with respect to A, and
X;, d=1,---,k. As in the proof of Theorem 5, noting that the observations in

different populations are independent, we may express v, = 25_,(000 + de)
and calculate the variances Viapy = & ap Phda,s and vy = ¢ Tip; separately.
Let y be an element of (A], X)).

80_v

(54) -5 n(E e )a— — Zot(£6)
We use the form of () given by
(55) 6 = gD = Y (V7N = eTAC,, iy = ZB; = R,E7 %,
where we define Y(*, y{, T,, R, and C, by
(56) Y =[tr£7'G,2;'G,],

¥ = (r £7'6,27'C,), T, = (Wd;'W) 'Wéd; !,

Y — =1, S A = AN oA — <
R, =Z(Z zd 'Z) Z,Cy= A+ (X — f)(Ry — ), By = B(Z).
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The form of 6, is given by (4.5) and (4.6) with C defined by

(5.7) C=X-pE—-p)+AA= 2k-lfar(Ad + (X, — X)X, — X))
The derivation of 36”/dy follows the derivation in the proof of Theorem 5.
Thus, under the alternative hypothesis,

36

(5.8) AL

"(d)
= T¥

e =0, Tt = (WE®W) 'Wo, .

The derivation of 96, /dy also parallels the derivation in the proof of Theorem 5
with only the slight modifications that

0 0xX 9 0x
(59) _8<8A> fd{ A aiyd( -X) + (X - )( Xd)'}’%‘—fd a,;d

Thus, from (4.8) and (4.10), we have
96 _
m =TI — Mp) e,

with T, and M, given in (5.2). Using (5.9), (4.8) and (4.11) we find that

(5.10)

d
(5.11) ﬁ = S, (1 — M) 'Tyle (%, — %) + (%, — R)e]

+ (I = RoZg )ei(X —f) + (X —i)ei(I — RoZg ')

The calculation of v, 2 yields the same result as derived in (4.12)—(4.14) with the
addition of the factor f; on the right side. Inserting the factor f7 on the right side of
the expression for v; (4.15), replacing Z* by ¥, dropping the zero subscripts on W
and Z and replacing b, with b, (see 5.2) yields the expression for vy, The
remainder of the derivation parallels that in the proof of Theorem 5 yielding (5.2).

The simplification of v, (5.3) when there are explicit representations of the
maximum likelihood estimates under the null hypothesis results in M, = 0 as in the
proof of Theorem 5. The simplifications parallel those in the earlier proof and lead
to (5.3). 0

52. H(VC|mvc) versus H, ,. In this case we test the null hypothesis
H,(VC|mvc) that £, = - - - = X, versus the alternative hypothesis H, , without
this restriction.

THEOREM 7. The asymptotic nonnull distribution for the k-population likelihood
ratio statistic given by (2.3) for testing H,(VC|mvc) versus H, , is of the form (5.1)
where the variance v, is given by (5.2) with F; =0, Ff =0, B, =0, b, =0 and
C* = 3X_, f.Z3, where (T}, - -, Z}) is the value assumed under the alternative
hypothesis and not under the null hypothesis, and Z is the “maximum likelihood
estimate” of the common covariance matrix under the null hypothesis whose derivation
is described in Section (3.1) with (X;, Ay)) = (u3, Z%),d=1,--- k.
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Under the additional assumption that the maximum likelihood estimates have
explicit representations under the null hypothesis, the asymptotic variance simplifies,
becoming (5.3) after dropping the second term, 2(u} — po) Zq 'Z3Z (n — po)-

ReEMARK. The form of the asymptotic variance under this additional explicit
representation assumption is similar to a form obtained by Sugiura (1969) for
testing the null hypothesis 2, = - - - = X, in the nonpatterned case.

ProOF.. The proof uses the same techniques used in the proofs of Theorems 5
and 6 with 69 given by (5.5) and 6, given by

(5.12) 6 =¢[wE G E'G,]™

(tr Z_Ingn]{zfiﬂfd{Ad + (’_‘d - ﬁ’d)(id - ﬁ’d)/}})'
In this case, v; = 0 and the asymptotic nonnull distribution is independent of the
values pf, - - -, p¥ as long as these values have the hypothesized structures. The
details of the proof are omitted. []

53. H,(M|mVC) versus H,(VC|mvc). In this case we test the null hypothesis
that p, = - - - = m, versus the alternative hypothesis without this restriction.
Under both null and alternative hypotheses we assume X, = - - - = X,

THEOREM 8. The asymptotic nonnull distribution for the k-population likelihood
ratio statistic of the form (2.2) for testing H,(M|mVC) versus H, (VC|mvc) is given

by
(5.13)  limy L[ N7 {— (2/N)log A + log(IZ*|/[Z])} | = 9O, v,,),

where v, is given by S withZ¥f = - - - =Z¥ =% @f = - . - = Pf = ¢* T*
is the common variance matrix of the k populations, (uf, - - - , p¥, T*) is the value
assumed under the alternative hypothesis and not under the null hypothesis, and p, and
2, are the “maximum likelihood estimates” under the null hypothesis whose derivation
is described in Section (3.1) with X replaced by p*, X, replaced by p} and A, replaced
by Z*,

Under the additional assumption that the maximum likelihood estimates have
explicit representations under the null hypothesis, the asymptotic variance simplifies
becoming (5.3) with Ty =2*, d=1,-- -,k and B, replaced by B, = (u} — p*)
3 - &

ProOF. The forms of & under the null and alternative hypotheses are given by
(4.5), (4.6), (5.7) and (5.12) respectively. The proof is straightforward using tech-
niques from the proofs of Theorems 5 and 6. []

6. Discussion of results. Evaluating any of the asymptotic variances in Theo-
rems 5-8 at a point in the null hypothesis region results in a zero variance. This is
expected because the standard delta method yields first order results under the
assumption that the variances are evaluated at a point belonging strictly to the
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alternative hypothesis under consideration and not to any alternative hypothesis
that contains the null hypothesis.

In many studies with explicit representations of the maximum likelihood esti-
mates the problems can be transformed to achieve a simple canonical form. The
forms of the results in Theorems 5-8 for these special cases may be easily
simplified for specific problems using the same transformations. While it is im-
portant that the mean and covariance have the linear structure described in Section
Two, it is not necessary to explicitly represent them in this form in order to use the
distributional results of this paper.

It is expected that a typical application of these nonnull results will be to an
approximate power calculation or sample size calculation. Frequently in patterned
hypothesis testing problems, the investigator hopes that the null hypothesis, the
simpler pattern, is the true state of nature. This differs from the usual case in which
the investigator hopes the alternative hypothesis is the true state of nature. Thus it
becomes increasingly important that the test has high power against suitable points
under the alternative hypothesis.
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Lemma 1 and its proof as well as for simplifying the statement and proofs of
Theorems 3 and 4. Also both the referee and Associate Editor made many helpful
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