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PREDICTIVE LIKELIHOOD'

By DaviD HINKLEY
University of Minnesota

The likelihood function is the common basis of all parametric inference.
However, with the exception of an ad hoc definition by Fisher, there has been
no such unifying basis for prediction of future events, given past observations.
This article proposes a definition of predictive likelihood which can help to
remove some nonuniqueness problems in sampling-theory predictive inference,
and which can produce a simple prediction analog of the Bayesian parametric
result, posterior « prior X likelihood, in many situations.

1. Introduction. In 1920 Karl Pearson [10] posed “the fundamental problem of
practical statistics” as follows:

An “event” has occurred p times out of p + g = n
trials, where we have no a priori knowledge of the
frequency of the event in the total population of
occurrences. What is the probability of its occurring
times in a further r + s = m trials?

Pearson’s purpose was to reexamine the general applicability of Bayes’s earlier
solution, and the resulting controversy, described by Edwards [2], is of some
interest. However, the main question seems to have been largely ignored in the
intervening years, while parametric inference has dominated statistical thought.

In parametric inference, a fundamental concept is that of mathematical likeli-
hood, on which both frequentist and Bayesian methods rest. A corresponding
concept for prediction has been lacking. The present paper describes a definition of
predictive likelihood developed independently by the author and Lauritzen [7], and
shows how the definition relates to parametric likelihood and to Bayesian posterior
predictive distributions. Most of the results are different from, and developed
independently of, those in Lauritzen [7]. This paper is based on the author’s special
invited lecture at the 1975 Institute of Mathematical Statistics meeting in Atlanta,
originally written up in [6]. A recent related reference is [9].

Outline. The basic problem is discussed in Section 2. Section 3 describes the
main definition of predictive likelihood, establishes natural consistency properties
and demonstrates a correspondence with Bayes posterior predictive densities. The
discussion is deliberately nonmathematical and simple illustrative examples are
given. Section 4 briefly deals with an extension of predictive likelihood that takes
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PREDICTIVE LIKELIHOOD 719

advantage of the existence of invariant ancillary statistics. Section 5 briefly reviews
possible inferential uses of predictive likelihood, e.g., in defining unique frequentist
prediction intervals.

Notation. Throughout the paper upper case letters denote random variables,
lower case letters their realized values. The probability density, or mass, function
(pdf) of any random variable X at the value x is denoted by f(x); conditional pdf’s
are denoted f(x|@), f(x|y), etc. Special notation is used for data and predictand
random variables: Y is the collection of observable random variables, and Z is the
collection of predictand random variables (to be predicted after observing Y).
Unless otherwise stated, S and T correspond to functions (e.g., sufficient reduc-
tions) of Y and Z respectively, and R is always the minimal sufficient reduction of
all variables (Y, Z). Where Y and Z correspond to collections of individual X’s, m
and n respectively denote the sample sizes.

2. The problem. Suppose that X,,..., X,,,, are random variables whose
distribution is indexed by the unknown parameter #. Our problem consists of being
able to observe Y = (X,, - - - , X,,) and wanting then to make a predictive state-
ment about Z = (X,,,,, - - -, X,,.,) based on the observation Y = y. The predic-
tive statement is to be in the form of one or more confidence intervals, possibly
centered on a point estimate. Let lik(#|y) denote the likelihood function for 8 given
Y=y.

From a Bayesian point of view our problem is straightforward. Once the prior
distribution of ® is determined, and after Y = y is observed, the posterior predic-
tive distribution of Z given Y = y may be calculated. To be specific, if ® has prior
pdf p(#), then

2.1) f(8]y) < p(8)lik(8|y)
and the posterior predictive pdf of Z is

Q2 fzly) = [fO1)Azly, 0)dp = LLEL OpONKOly)dh

/p(0)lik(6]|y)dd
The standard form for a Bayesian 1008% prediction confidence region would be
the highest posterior density region

23) Ry(y) = (2 : fz1y) > ky)
where kg is a function of y chosen so that’
fRﬂ(y)f(Zl)’)dZ =B

The nonBayesian does not find our problem straightforward (standard frequen-
tist methods are outlined in Section 5). This is in some contrast to the situation
where inference about 6 is required, when the notion of likelihood provides a
possible parallel between Bayesian and frequentist methods. Thus we have highest
posterior density Bayesian confidence regions for 8 of the form

{0 :p(0)1ik(0]y) > a},
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and likelihood-based frequentist confidence regions for § of the form
{0 :1ik(8|y) > b};
for discussion see [1], Sections 7.2(v), 9.3(vii), 10.5(i). Both methods correspond to
likelihood ordering of the #-values when p(#) is constant, although, of course, the
confidence regions may still differ. There is no apparent parallel of (2.3) for the
frequentist, because there is no apparent analog of lik(#|y) for the predictand Z.
Thus for the frequentist there is no statistical instrument for uniquely defining a
prediction confidence region, whereas likelihood provides such an instrument when
dealing with .
By analogy with (2.1), a prediction likelihood function lik*(z|y) would satisfy

(24) fz|y) = a(y, 2)lik*(z|y),

where a(-, -) is determined by the marginal prior distributions of ¥ and Z. The
remainder of the paper is devoted to defining such a function lik*(z|y) and to
describing some of its properties. Thus the discussion focuses on a basis for
predictive inference, rather than on methods for such inference.

3. The Lauritzen—Hinkley predictive likelihood and its properties. R. A. Fisher
[5, page 134] suggested an ad hoc definition of predictive likelihood which used the
notion of the degree to which values of y and z support the true hypothesis of a
common @ value for the two sets of variables. We use the same basic notion, but tie
it more closely to parametric likelihood. Essentially we define the predictive
likelihood of the value z to be the relative frequency of the observation Y =y
given the value of the minimal sufficient reduction of (Y, Z) = (X}, - -+ , X,40)-
According to this definition, what we have observed () becomes more likely as the
predictive likelihood of the unknown (z) increases. As we shall see, the relationship
to parametric likelihood is very close. Similar concepts have been used directly in
the construction of frequentist confidence intervals by Faulkenberry [3] and Vit

[12].
We start with a slight simplification of the problem introduced in Section 2. We
suppose that ¥ = (X,,- - -, X,,) and Z = (X,,,,,- - -, X,,4,) are independent,

but that individual components X, need not be otherwise independent, nor need
they be identically distributed. The minimal sufficient reductions of ¥, Z and
(Y, Z) will be denoted by S, T and R respectively; R is clearly the minimal
sufficient reduction of (S, T). To emphasize that the value of r is determined by
particular values s and ¢ we sometimes write (s, #).

Because of sufficiency, prediction of Z given Y = y is statistically equivalent to
prediction of T given S = s; the conditional distribution of Z given T is completely
known. We then make

DerINITION 1. Let Y and Z be independent, with distributions indexed by the
common unknown parameter #. Let R = r(S,T), S and T be the minimal
sufficient reductions of (Y, Z), Y and Z respectively. Then if ¢ is uniquely defined
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by r and s, the predictive likelihood of T = ¢ given S = s is

3.1) lik*(¢|s) = f(s|r) = f(s|r(s, 1)),
and the predictive likelihood of Z = z is
f(z|lik*(¢]s).

The predictive likelihood is independent of @ by sufficiency of R.

Notice that this definition is symmetric with respect to S and 7, so that
lik*(z|s) = f(¢|r(s, ?)). With few exceptions (such as Example 2 below) a nontrivial
result is obtained from (3.1) only in the case of exponential family random
variables.

As a simple illustration of Definition 1, we use Pearson’s Bernoulli problem.

ExampLE 1. Let X|,---,X,,,, be independent Bernoulli variables with Pr
(X; =1/0) =6. Thenif Y =(X,,- - -, X,)and Z = (X, .}, - - -, X,,,,), we have
R = 27—+1nxj =S+7T,S= E}"_lxj’ T = ;n_+”r:+l)(}.

A simple evaluation of (3.1) shows that the predictive likelihood is hypergeometric,

e = (7)1 (737,

For the special case n = 1, this result gives “relative likelihoods” corresponding to
the Laplace law of succession, i.e.,

k*(X,.,=1s)  s+1

lik*(X,,,;, =0s) m-—-s+1’

this reflects a relationship between predictive likelihood and posterior predictive
density established in Lemma 2 below.

There are two desirable consistency properties of predictive likelihood that are
easily verified in Example 1 and that hold for general exponential families. In
words, these properties are (i) predictive likelihood converges to the true density of
T as the number m of observations increases; (ii) predictive likelihood converges to
the parameter likelihood lik(@|s) as the number n of variables to be predicted
increases. More formally, we have

LeMMal. LetY=(X,,- -, X,)and Z = (X,,.1»" * * > X,nsn) be such that the
X; are independent and identically distributed with exponential family density
f(x|0) = exp{ —0x + ¢(8) + d(x)}.
Let S=37X, T=27%1X, and R =S + T. Denote the maximum likelihood

J A A
estimators of 8 based on S alone and T alone by g and 8 respectively. Then, with

lik*(¢|s) defined by (3.1),
(i) as m — oo with n fixed,
(32) lik*(¢|S) = f(1|f5) + O,(m™")
and
lik*(1|S) = £(1]8) + O,(m~2);
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(ii) as n — oo with m fixed,
(3.3) lik*(7|s) = f(x|0;) + O,(n™")
and

1

lik*(T|s) = f(s|8) + O,(n™2).
Proor. Outlined in the Appendix.

In (3.3) the parameter § summarizes the infinite future (X, ...) and the
parameter likelihood should be expected as a limiting result. It is conjectured that
similar consistency results hold for the full generality of Definition 1. We might
note that none of the above consistency properties hold for the definition given by
Fisher [5, page 134].

Up to this point we have required that the components of Y and Z be
independent, but Definition 1 can be extended to cover the case of dependent
sequences of random variables. The essential points of Definition 1 are that R be
minimal sufficient for (Y, Z); that S be a sufficient reduction of Y; and that R be
determined by S and T where T is a function of Z. The extended definition takes
account of the facts that S may need to be larger than the minimal sufficient
reduction of Y, and that the minimal sufficient reduction of Z must be determined
by T and S (i.e., not necessarily by T alone).

DErFINITION 2. Let R be minimal sufficient for (Y, Z). Let S be sufficient for ¥
and let T be a function of (Z, S) such that (i) R is determined by (S, T'); and (ii)
the minimal sufficient reduction of Z is determined by (S, 7). In addition, we
require the function r(s, f) to have a unique inverse #(r, s) for each value of s. Then
the predictive likelihood of T = ¢ given § = s is

(34) lik*(t|s) = f(s|r) = f(slr(s, 1))
and the predictive likelihood of Z = z is
(3.5) f(z|s, t)lik*(¢|s).

The following two examples illustrate the differences between Definitions 1 and
2.

ExampLE 2. Let X,,: - -, X,, X,,4, be iid. with uniform density on the range
(0, 8), so that Z = X, ,, is to be predicted from Y = (X}, - - -, X,,). We define
X, = max(X,, - - -, X;). Then the minimal sufficient statistic R 18 X 41, m+1y

which is determined by

T=0 (Xm+l <S8 )9

T=Xm+] (Xm+] >S)

These statistics satisfy the conditions of Definition 2, and a direct calculation of
(3.4) gives

S = X(m, my and

lik*(¢|s) = m/ (m + 1) (r=0)
= ms"/ {(m + 1)t} (r > 0).
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It follows that the full predictive likelihood (3.5) for Z = X, , is

lik*(z|s) = (—r;—'—:—m (z <s)
= m (z >5).

Thus the likelihood is uniform over the observed range O, s).

If we had tried to apply Definition 1 with 7 = X,,,,, we could not have
distinguished different values of x,,,, below s. That is, t would not be determined
by s and » when r = s.

ExampLE 3. Let {X;:j=0, 1, -- -} be a stationary first-order Markov
binary sequence with
Pr(X,,, = b|X;=a) =0, (a,5=0,1).

Suppose that Y = (X,,- - -, X,,) is to be observed and that Z =
(X415 > Xuen) is then to be predicted. For any time-connected sequence
(X, X, -, X,) we define the matrix of transition frequencies Q(c, d) by

Qu(c,d) = number of a — b transitions in (X, -,X,).
The minimal sufficient reduction of (Y, Z)=(X,,: - -, X,4n) I8 R=
(X,, Q(1, m + n)). The minimal sufficient reduction of ¥ must be augmented by
X, so that

S = (X, Q(1, m), X,,),

in order for R to be obtainable from S and Z. The necessary function of Z is
=(X,+1 Q(m + 1, m + n)),

which is minimal sufficient for Z. Note that S is minimal totally sufficient in the

sense of Lauritzen [8].

Calculation of (3.4), although complicated, follows from results of Whittle [11].

In particular, for the special case n = 1 we obtain

4, x’m(l, m) + 1

2}=0qu,j(l, m) + 1 ’

lik*(x,, .4|5) =

which corresponds to the result of Example 1 applied to row x,, of Q(1, m).

The augmentation of the minimal sufficient reduction of Y is clearly necessary
for all Markov processes.

In Section 2 we alluded to the fact that there was no apparent analog of the
factorization (2.1) for the Bayes posterior predictive density (2.2) of Z given ¥ = y.
It is very easy to prove that such a factorization is possible using Definition 2.

LEMMA 2. The Bayes posterior predictive density of T given S = s factorizes as

(3.6) f(tls) = lik*(1]s )f(’f((")’”,
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where the last factor is the ratio of prior marginal densities of R and S.

Proor. For S and T, the Bayes posterior predictive density (2.2) is

_ [f(s. 10)p(8)d8
) = = s10)p(8)ds

By the sufficiency of R, the right hand side is equal to

[f(r|0)p(0)db
T 10 f5516)p(8)db
with r = r(s, f). But, by Definition 2, f(s, #|r(s, 1)) = f(s|r(s, t)) = lik*(¢|s), which
proves the result.

In principle, then, the only prior probabilities needed for prediction are those
connected with samples of size m and m + n. This requires less than specification
of the full prior density p(#) in many cases; in exponential families the specifica-
tion of f(r) for all m + n is equivalent to specification of p(@).

It should be noted that the posterior predictive density is statistically equivalent
to predictive likelihood only if the marginal prior density of R is constant for all
admissible values of r = r(s, t), rather than if the prior density p(#) is constant. In
particular, the equivalence will depend on the sampling model. For example, if in
Example 1 p(8) = 1, then R has a uniform distribution. But with the same p(8), the
sufficient statistic under inverse sampling does not have a uniform distribution.
This reflects the fairly obvious fact that the predictive likelihood alone does not
satisfy the (strong) likelihood principle ([1, page 39]) as a basis for inference.

4. Conditional predictive likelihood. The predictive likelihood of Definition 2
gives nontrivial results only when sufficiency provides a genuine reduction of
(Y, Z). Thus, for example, the definition is essentially vacuous for most location-
parameter models. However, in several common statistical models where suffi-
ciency provides inadequate reduction, the minimal sufficient statistic can be
expressed in terms of an ancillary statistic (with distribution independent of §) and
a conditionally sufficient statistic of low dimension. In such cases a conditional
predictive likelihood may be defined in terms of probability distributions condi-
tional on the values of the ancillary structure, which parallels the usual conditional
approach to parametric inference (see [5] and [1, page 38]). Here we briefly discuss
a conditional version of Definition 1.

Suppose that Y and Z are independent, with R, S and T as in Definition 1. Let
R, S and T be expressed respectively as (R *, 4), (S*, B) and (T'*, C) where 4, B
and C are ancillary. Because C is ancillary with known distribution, the prediction
problem is now equivalent to prediction of T* given C and S. Then one possible
definition of conditional likelihood is as follows.

DErFINITION 3. Under the above conditions

(1) k(1) = Jk*(1 s, ) = s LB



PREDICTIVE LIKELIHOOD 725

To avoid possible difficulties with nonuniqueness of ancillary statistics, we
should limit the definition to cases where 4, B and C are maximal invariants of R,
S and T with respect to the group structure of the probability model. With this
limitation it can be shown that lik*(z*[s, ¢) is determined solely by the maximal
invariant function of (s*, t") together with b and c. In the case of location
parameter models for i.i.d. variables, the predictive likelihood of T'* is equal to the
conditional density of the maximal invariant function of (S*, T*) given B = b
and C = c, so that the conditional predictive likelihood is then equal to the fiducial
density of T.

Definition 3 does not in general permit a factorization of the Bayes posterior
predictive density as in Lemma 2, unless B is empty.

5. Relation of predictive likelihood to frequentist prediction confidence regions.
For the problem formulated at the beginning of Section 2, an unbiased 1 — 8
prediction confidence region for Z is a set Pyg(Y) satisfying

(5.1) Pr{Z € Py(Y)|8)=1-8

for all 4. There are two classical methods for determining Py(Y), to each of which
the likelihood definitions of preceding sections relate.

The first method, attributed to Neyman, uses test critical regions as follows. We
suppose that Y and Z have pdf’s f(y|6,) and f(z|0,) respectively, and consider the
hypothesis H: 8, = 6,. If, for a specified alternative H,, an unbiased (similar) test
critical region Qp of level B can be found, then

(5.2) Pr{(Y,Z) € Qp; Hy} =B

One region Py(y) satisfying (5.1) is, then, the projection of the complement Qg
onto the subspace Y = y. For the particular alternative H ,, the “natural” choice of
Qp is the uniformly or locally most powerful critical region, if such exists, and in
many cases this leads to smallest confidence regions Py(y). However, the resulting
confidence region is, in general, characterized by the alternative hypothesis H,
used in constructing Qg. Thus the method as described does not uniquely define
one system of regions Pg(y), because H, is not uniquely defined. This difficulty is
removed by ordering the values of Z according to values of the predictive
likelihood lik*(¢|s), i.e., by requiring that

(53) inf, ¢ p () lik*(1]5) > sUp, ¢ p,(,)lik*(¢]s).

This corresponds to the notion of likelihood-based confidence regions for 8 ([1,
page 218)).

EXAMPLE 4. Suppose that X, - - -, X,,,, X, are ii.d. N(u, 7) with both p and
T completely unknown, and suppose that X, ,, is to be predicted after observing
X, ,X,. Here the possible artificial hypotheses H, and H, are numerous.
Definition 1 shows, after lengthy calculation, that for m > 2 lik*(x,, . ,|Z7x;, 27x?)
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is proportional to a Student- density with m — 2 degrees of freedom (not the usual
m — 1) for

’

{( m(m — 2) }%X,,,H—fm

m—1)(m+1) s

m

where X,, = m~'S7; and (m — 1)s2 = S7(x; — x,,)’. When m = 2 the predictive
likelihood is proportional to

—\2 /213
{s?+2(x;-x,) /3} 7.
We are thus led via (5.3) and (5.1) to the usual symmetric Student-¢ interval for

X, . i-e., using m — 1 degrees of freedom.

m

The second classical method for solving (5.1) is the pivotal method. Here a
pivotal or invariant function A(s, ) is used to determine a region wy such that

(54) Pr{h(S,T) € wgl0} =1-p8
for all 6, and then the prediction confidence region is
Pg(y) = {z: h(s, 1) € wg}.

The predictive likelihood may again be used to uniquely define Pg(y) via (5.3).
Notice that in problems with group structure, to which the pivotal method is
restricted, Definition 3 provides an immediate solution: A(S, T) is the maximal
invariant function of (S*, T*), whose conditional distribution determines Pg(y).
Example 4 is a trivial illustration of this.

APPENDIX

Proof of Lemma 1. The following is an outline of the proof for Lemma 1, part

(i). The essential requirements are that a central limit theorem expansion hold for §
1

and R with standardizing constant m2, and that the maximum likelihood estimator

A

O given S = s satisfy
(A.1) s = E(S14,).

The latter is a standard property of linear exponential families. For the case stated
in Lemma 1, if the X; are i.i.d. with pdf

f(x|0) = exp{ —0x + c(8) + d(x)},
then for § = 27_,X; we have
s+ mc’(0;) =0, E(S|8)=—mc(8).

To obtain the first result in Lemma 1, we write

lik*(1]s) = f(s|s+t)=f—}zL—0%f%yT) for all 6.
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Then, choosing § = 0;, we have
. R f(s16)
(A2) lik*(¢|s) = f(2]6,) X ———.
4 (716.) f(s + 16,

It remains to show that the ratio in (A.2)is 1 + O,(m™ 1. Now by (A.1) we can see
that

(A.3) s+t = E(R|6) + 0(1).

We can then evaluate f(s|0;) and f(s + t|0;) using the Edgeworth expansion up to
terms involving the fourth moments of X, as in [4, Section XVLI.2]; this requires
the existence of the fourth derivative of ¢(#). Formal substitution in the Edgeworth
expansion gives

(A4) 5(s16) = —o(@)(1 + o(m ™),
A 1 1
. s 0)=——-—+ m-2 o(m™!
(A5) f(s + 116, c,(mﬂ);:»{()( )H1 + o(m™)

by (A.1) and (A.3) respectively, where 0% = Var(X ]0;) and ¢(-) is the N(O, 1)
density. The required result follows immediately on taking the ratio of (A.4) to
(A.5).

The second result in part (i) of the lemma is a consequence of an expansion of
the first result using és —0=0,(m _%). Note that in order to show weak conver-
gence to f(¢|0) we need only assume that a central limit theorem applies to S and R
so that by (A.1) and (A.3) the ratio term in (A.2) is 1+ g,(1). Thus simple
consistency of lik*(¢|s) will hold quite generally if (A.1) is satisfied.

Part (ii) of the lemma follows from part (i) by reversing the roles of S and 7.
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