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ON COMBINING PSEUDORANDOM NUMBER GENERATORS'

By MARK BROWN AND HERBERT SOLOMON

City College, CUNY and Memorial Sloan-Kettering Cancer Center;
and Stanford University

A technique used in pseudorandom number generation is to combine two
or more different generators with the goal of producing a new generator with
improved randomness properties. We study such a class of generators and show
that in a strong sense the combined generator does offer improvement. Our
approach applies results from majorization theory.

1. Introduction. Many methods have been proposed, tested and employed for
generating pseudorandom numbers ([2], [3], [4], [5], [8], [9], [11], [12], [14]), [16], [18],
[19]). The goal is to produce strings of numbers which behave like independent
uniform [0, 1] random variables. The generators yield integers in the set
{0,1,---,m— 1}, which are then transformed to [0, 1] by division by m.
Suppose that X}, X,,- - - and Y}, Y,,- - - are strings of numbers generated by
two separate generators. Various suggestions have been made for combining the
two strings to produce a new string Z,, Z,, - - - which hopefully improves upon X
and Y. One method (discussed in Knuth [8], pages 26-27) is to set Z, = X, + ¥;
(mod m). Another, due to Maclaren and Marsaglia [11], which Knuth reports to be
excellent ([8], page 31), uses the Y string to randomly permute the X string.

For the additive generator Z, = X, + Y; (mod m) we obtain the following result
(Remark 1). For any k and corresponding choice of indices i} <i, < - -+ <
consider the vectors X, = (X;, - -,X;), Y, =(Y;,---,Y,) and Z, =
Z,---,2Z) Letp,, g9, and s, denote the respective distributions of X,, Y, and
Z,; p4» 44 and s, are probability distributions on OM* where M = {0, 1,- - - , m
— 1}. Define r, to be the uniform distribution over 9M*; r, is a vector of m*
components each equal to m~*. Let || - || be an arbitrary symmetric norm on R™
(IIx]| = ||[IIx|| where ILx is any permutation of x). Then |s, — .|| < min(||p, —

Telbollga = 7elD)-
For the generator suggested by Maclaren and Marsaglia a similar but weaker

result is obtained. Using Y to shuffle (X, - - -, X,,) results in improvement for the
joint distribution of X, - - - , X, but not necessarily for the marginal distributions
of subsets.
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The potential value of our approach is that it can provide additional justification
for some generators currently in use, and perhaps suggest new generators which
would then be analyzed by traditional methods.

In our analysis we treat the strings X and Y as independent random vectors. In
practice X and Y are deterministic strings of numbers. This creates a problem in
the strict application of our results to pseudorandom number generation.

2. Majorization. By definition ([6], page 45) an n-vector a is said to be
majorized by an n-vector b if upon reordering to achieve a, > a, > - - - > a, and
by > b, > - -+ >b,it follows that 3fa, < Z%p,fork =1,- - - ,n — 1 and Z7q, =
31b,. A function y, R" — R, is defined to be Schur convex ([13], page 1189) if,
whenever a is majorized by b, Y(a) < Y(b). Schur convex functions include sym-
metric convex functions which in turn include symmetric gauge functions and
symmetric norms ([1], page 229). By a symmetric norm on R” we mean a function
|| - |l, R® = R, satisfying: ||x|| > 0 for all x € R" with equality if and only if
x =0, lax|| = |a| ||x|| for all « € R, x € R", ||x + y| < ||x|| + ||y| for all x,y

€ R”, and || x| = ||IIx|| for all x € R" and for all permutations IIx of x. We note
that if 7 is the uniform distribution over {1,2,- - - ,n} (r() =1/n,i=1,-- - ,n)
and | - || is a symmetric norm on R”, then g(x) = ||x — r|| is a symmetric convex

function and is, thus, Schur convex. Some references for majorization are [1], [6],
[13] and [17].

Lemma 1 below contains four equivalent statements relating to majorization.
The equivalence between (i) and (ii) is due to Hardy, Littlewood and Polya ([6],
page 49); the fact that (ii) implies (iii) is found in [1], page 183 and (iii) = (ii) in [1],
page 181; the fact that (i) = (iv) is the definition of Schur convexity and (iv) = (i)
because Y(x,: - -, x,) = E{x(,), where x;, is the ith largest component of x, is
symmetric and convex, and, therefore, Schur convex.

LeMMA 1. The following statements are equivalent:
(i) a is majorized by b;
(ii) a = Pb where P is doubly stochastic;
(ii) a is a mixture of permutations of b, i.e., a = 3 p(IL;b) where (p,, - - - , p,) is
a probability vector and each 11,b is a permutation of b;
(iv) ¥(a) < Y(b) for all Schur convex functions .

THEOREM 1.  Suppose that X is a discrete random variable taking values in the set
X = {x,- - -, x,} with probability distribution p = (py - * * ,D,), Where p, =
P(x;), and Y is a random variable, independent of X, taking values in the set % . For
eachy € ¥ let T, be a 1-1 transformation of X. onto itself. Define Z = TyX and let
s be the distribution of Z. Then s is majorized by p.

ProoOF. Since 7, is 1-1 and onto the distribution of T,X is a permutation of p.
Thus s is a mixture of permutations of p. By Lemma 1 s is majorized by p. []
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3. Applications to pseudorandom number generation. Suppose that X =

(X1, -+ +, Xy) and Y are independent random vectors, with each X, assuming
values in I = {0, 1, - - -, m — 1}. Consider a subset of k indices 4 = {1 < i; <
i, <+ <ij <N} Define p, to be the distribution of X, = {X,- - -, X, }; p4

is a probability distribution on IM¥. For each y in the support of Y let T, be a 1-1
transformation of 9M* onto IM*, and let s, denote the distribution of TX. Define
r, to be the uniform distribution over IM* (r,(x) = m~* for each x € IM¥).

COROLLARY 1. Let s, and p, be as defined above. Then s, is majorized by p,.
Thus Y(s4) < Y(p,) for all Schur convex functions , and, in particular, ||s, — r,|| <
|p4 — rill for any symmetric norm, || - ||, on R™".

PROOF. The majorization of s, by p, follows from Lemma 2 with n = m* and
X = ONX. The other statements are consequences of majorization. (See Lemma 1
and our remarks on Schur convex functions).

ReMARK 1. Consider Z; = X; + Y, (mod m)i = 1,2, - - , N, where X, and Y,
both assume values in O = {0, 1, - - ,m — 1}. In this case X and Y play
symmetric roles. It follows from Corollary 1 that if g, denotes the distribution of
Y,=(Y,, -, 7,) then 5, is majorized by g,. Thus y(s,) < min(Y(p,), ¥(4,))
for all Schur convex functions. Also note that this conclusion applies to any subset
A of the index set. Thus, for all £ < N, all k dimensional marginal distributions of
Z are at least as uniform, in the sense we described, as are the corresponding
distributions of X and Y.

REMARK 2. If TyX is of the form (Ty Xy, - - -, Ty, Xy) where each TyX;is a
mixture of 1-1 onto transformations and X and Y are independent, then the
conclusion of Corollary 1 will hold for all 4. In addition, if we have an m X m
matrix B with rows labeled 0,- - - ,m — 1 and columns O, - - - , m — 1, with each
row and column containing each of the numbers 0, - - - , m — 1, exactly once, (an
m X m Latin square), then defining TyX; = B(X,, ¥;) leads to y(s,) <
min(Y(p,), Y(q,)) for all A. The additive generator, Z, = X; + Y, (mod m), is of
this form.

REMARK 3. We briefly consider a generator proposed by Maclarin and
Marsaglia [11], and discussed in Knuth [8], page 30-31. Knuth remarks that the
method produces sequences with excellent randomness properties and is quite
efficient in terms of computer time usage. Under this method the first k elements of
X are used to form a table. We observe Y; which tells us which element of the table
to choose as Z,. We replace this element by X, , ;. The process is then repeatedly
applied to generate the string. Suppose that a string of » numbers Z,, - - - , Z,, is
generated by this method. We artificially enlarge this set to size n + k by setting
Z, . ; equal to the entry which sits in the ith place in the table after the string of n
numbers has been generated. The new string (Z,,- - -, Z,,,) is thus a random
permutation of (X, - - -, X,,,,), induced by Y. Since a permutation of coordinates
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is a 1-1 onto transformation, OM*** — M+, Theorem 1 applies. Thus s, the
distribution of (Z,,- - -, Z,,;), is at least as uniform in our sense as is that of
Xy o5 Xoap)

In general, improving the uniformity of a joint distribution does not necessarily
improve the uniformity of marginals. For example, let p(0, 0) = p(1, 0) = .1 and
p(09 1) = p(l, 1) = '4’ PI'(Y = O) = PI(Y = 1) = °5’ To(i’j) = (i’j), Tl(i,j) =
U, D, (2, Z,) = Ty(X,, X,). Then s(0, 0) = .1, s(1, 1) = .4 and s(1, 0) = 5(0, 1) =
.25. Then s is majorized by p and the joint distribution of (Z,, Z,) is more uniform
on {0, 1} X {0, 1} than that of (X, X,). Nevertheless X, is perfectly uniformly
distributed while Z, is not.

REMARK 4. In Theorem 1 we show that y(s,) < y(p,) for all Schur convex y.
The Schur convex functions of greatest interest to us are distances from 7, under
symmetric norms. There are other relevant Schur functions which arise from
information theory considerations. If a is a probability distribution over 9M* then
g(a, r) = = copa(a)log(m*a(a)), the Kullback-Leibler information number for
discriminating between a and r, when a is true, is Schur convex; g(a, r,) > 0 with
equality if and only if a = r,, and, in interesting ways, can be interpreted as a
measure of discrepancy between a and r, (Kullback [10]). Similarly g(r, a) =
Secoum ¥ log(m~*/a(a)), the Kullback-Leibler information number for dis-
criminating between a and 7, when r, is true, is Schur convex, as is g(a, r;) +
g(r, a), the divergence between a and r,. Substituting these Schur convex functions
into the inequality y(s,) < y(p,), derived in Corollary 1, strengthens the assertion
that s is at least as uniform as p.

4. Combining several generators. Suppose we have a sequence of independent
random vectors X, X,, - - -, X,,, - - -+ . We combine X, , and X, to form a vector
Z, 4, then combine Z, , and X, to form Z, 4, etc. Assume that at each stage the
transformation is of the form Z, , = 7, x (Z,_, ,), a mixture of 1-1 transforma-
tions of IM* onto IM¥. Represent the transition from stage n — 1 to stage n by the
matrix P,, where P,(a, ) = Px(Z, , = B|Z,_, 4 = @) for a, B € IM*. Define s, ,
to be the distribution of Z, ,. Thens, , 4P, = s, 4 and s, 4 is majorized by s,_; ,
by Theorem 1; thus, by Lemma 1, P, is doubly stochastic. The process {Z, 4, n =
1,2, - - }is thus a nontime homogeneous doubly stochastic Markov chain on the
state space IM¥. Also assume that min, gPn o g =4, >A>0 for all n. Define
M, = max,s,(a), and m, = min,s,(«). We will show that M, — m, < (1 — m*Ay"
which implies that max,|s,(a) — m~*| goes to zero at a geometric rate. The
method employed below is well known in the theory of Markov chains. Now:

(1) Mn < Mn—l(1 - (mk - I)An) + An(l - Mn—l)
=M, (1- m*A,) + A,
(2) m, > mn—l(l - (mk - 1)An) + An(l - mn—l)

= m,_ (1 — mkA,) + A,
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Thus, by (1) and (2), M, — m, < (M,_, — m,_,)(1 — m*A) and thus, by itera-
tion, M, — m, < (1 — m*A)", which proves the result.

Under the weaker condition 3{°A; = co we get lim, , (M, — m,) = 0 but the
convergence need not be geometric. The condition 3A; = oo is not necessary for
convergence of M, — m, to zero (and thus of s, , to r,). For example, if A, = m —k
for any i thens, , = r, for alln > i.
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