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ESTIMATION PROBLEMS IN BRANCHING PROCESSES WITH
RANDOM ENVIRONMENTS

By J. P. Dion! AND W. W. EsTY
' Université du Québec & Montréal and Montana State University

Estimators are given for the two main parameters of the branching process
with random environments, namely, the mean of the environmental mean (the
average number of offspring per individual) and the mean of the logarithm of
the environmental mean. The latter parameter indicates the certain extinction
or possible explosion of the process. The consistency and asymptotic normality
of the estimators are shown in the context of Smith and Wilkinson. Consistent
estimators are also given for the corresponding variances and thus confidence
intervals are obtained for the two main parameters of the system.

1. Introduction. The branching process with random environment (B.P.R.E.) as
introduced by Smith (1968) and Smith and Wilkinson (1969) and generalized by
Athreya and Karlin (1971) is particularly well adapted to describe population
growth. It has been considered, for example, in the case of the growth of the
placenta of a pregnant woman (Winkel et al, 1976) or for the study of the
whooping crane population of North America (Keiding, 1976).

More recently, Becker (1977) used it to model the growth of an epidemic and
proposed a strongly consistent estimator for the criticality parameter. Apart from
that, estimation problems had yet received no systematic treatment. In this work,
estimators are given for two of the main parameters of the B.P.R.E., namely the
reproduction average per individual and the mean of the logarithm of the “environ-
mental mean,” this latter parameter the criticality parameter, indicating the certain
extinction or possible explosion of the process. The consistency and asymptotic
normality of the estimators are shown in the general context of Smith and
Wilkinson (1969). Consistent estimators are furthermore provided for the
associated variances.

Throughout the text, the notation is that of Athreya and Karlin (1971). Assume
that {§,,n =0, 1,- - - }, the environmental sequence, is formed by i.i.d. random
variables, with values in ©. For every { € O, consider the p.g.f., @/(s) = 272,
p/($)s’. For each realization of the process {¢,} and the associated random
sequences of p.g.f.’s, there evolves a population Z,, governed by the laws of the
standard temporally nonhomogeneous branching process.

The problems studied here are the estimation of p = Egi(l) and of = =
E(log ;(1)). Since E(Z,|Z, = 1) = p" and since, modulo mild integrability condi-
tions, extinction is certain iff 7 < 0, there is considerable interest in knowing the
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value of these parameters. Point estimators for p and # are given in Theorems 2
and 4, and asymptotic confidence intervals in Corollaries 2 and 3.

We will assume throughout that the process is supercritical (i.e., E(log /(1)) >
0), that E[[log ¢x(1)]] < o0 and E(—log(1 — ¢;(0)) < oo, that p = E(gy(1)) < oo,
0 < 0 = Var(pi(1)) < o0 and 0 < y*> = E(Var(Z,|$,, Z, = 1)) < oo. We will first
suppose that po($) = 0, V¢, and later remove that assumption.

2. Estimation of p and o’ Let us consider the sample {Z, Z,, - -, Z,}
formed by the first n generations of the B.P.R.E., with Z, = 1.
Of course, if one knew (g (1), - - - , % (1)), one would use the arithmetic mean

n"E',;;},wgk(l) as an estimator for p. This would give an unbiased, strongly
consistent and asymptotically normal estimator for p, since the {¢; (1)} are i.i.d.
with finite mean and variance. This suggests i = n~ 'S 2((Z,1/Z,) as an estima-
tor for p.

THEOREM 1. Let i = n~'3%_N(Z, .1/ Z,) and assume that py(§) = 0, V¢, p <
0, 0 < 0% y* < 0. Then

O E()) =

(i) Var(f)) = n~'o® + n~ % ZL0B(Z ).

PrOOF. (i) Since E(Z, .,/ Z,|Z;, §) = (1), it follows that E( ) = p.

(i) Var(@) = n S4zVan(Zes1/ Z) + 22,4 COV(Zy 11/ Zo Z1/ Z))- Since
E(Zis1/ Z)(Zjs/ Z)| 2y, Z), Zjy, §i) = @i, (1) - Z;41/Z; one has
E((Zk+l/Zk)(Zj+l/Zj)|Zk’ Z,2Z)= PZj+1/Zj or E((Zk+l/zk)(zj+l/zj)) = P«z,
implying Cov(Z; .,/ Z,, Zj+l/ Z)=0. Also Var(E(Z, .,/ Z|Z, §i) = Vaf‘Pf,‘(l)
= 02 and E(Var(Z, .,/ Z,|Z,, &) = E(YX($)Z "), where v*(§,) represents the
conditional variance of the number of offspring per individual, given the environ-
ment §,. Since § is independent of Z, (but not of Z, ,,, however) and since the
(&) are iid, EQX$)ZY = EG*GNEZY) = ¥ E(Z,"). 1t follows that
Var(Z,,,/Z,) = o* + y*- E(Z,"), a fact which emphasizes the interplay between
environmental and demographic variability (cf. Keiding, 1976, page 149). Thus
Var(f) = n"'0® + n~ 523" _VE(Z ).

COROLLARY 1. Under the hypotheses of Theorem 1,
B -,

Intuitively, one expects strong consistency and asymptotic normality to hold for i,
since Zy, ./ Z, is a good estimator for (1), given §., and since the sequence { ¢ (1)}
obeys the strong law of large numbers and the central limit theorem. The proof of the
next theorem makes only more precise this heuristic derivation.

THEOREM 2. Under the hypotheses of Theorem 1,
() fi—>,p as n— oo;

1
@) n2(f— p)/o—->p,NO, 1) as n—oo.
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ProoF. Put g = n~'S;_4e; (1). The part (i) w111 be proved by showing that
(i — ) >,.<.0 and the part (ii) by proving that nZ(;.L )/ 6 —p0.

(i) Recall (Athreya & Karlin, 1971, Theorem 1, page 1845) that Z,/%} _te; (1)
—asns0W > 0. Hence Z / — @ _ (1) >,,0, which implies that
(”_12" -I(Zk+l/Zk) n~ 20 -o‘P; (1)) —,s 0.

(ii) Since E(fi — p) = 0, we will show that Var(n Z(p, — )) = 0, then appeal to
Tchebyshev’s inequality to conclude that n 2( g — ) —,0.

Var(n%(ﬁ —i) = ”_1[27(_-1 Var(e;, (1) = Zit1/Zy)
+22]’<kC°V((‘P§k(1) - Zk+l/Zk)’ (‘P},(l) - Z,+1/Z,))]

But E(#,() — Zisr/ZXWD) = Z41/ Z)\Zis Zys1s Zp §i0 §) = 0 and thus
Cov(H (D) ~ Zirr/Z), (94(1) = Z;41/2Z)) = 0.” Furthermore, Var(g,(1) —
Zei/Z) —>k_,°°0 since Var(gy (1) — Z,11/Zy) = y2E(Z; ") as shown previously.
So n~'Sr_tVar(e; (1) — Z,,,/Z,) — 0, which completes the proof.

Note. It is interesting that an asymptotic confidence interval for u can be
deduced if 0® > 0 is known. Knowledge of y?> would not be required, a situation
different from the classical Galton-Watson case.

If o2 is unknown, it can be estimated by its corresponding empirical variance sj,
where s2 (n — 1)7'25 (Zk+ 1/ Z, — fi)>. That it is strongly consistent but will tend
to shghtly overestimate o2 is proved in the next theorem.

THEOREM 3. Under the hypotheses of Theorem 1,
) E(sz) = o2+ n" W2 _LE(Z"); and

2
(ll) S _)a.s.n—»ooo *

ProOF. Note that s2 = (n — )7 'S} Zy41/Z — ) — n(n — 1)7'(ji — w.
By taking the expectatlon and invoking Theorem 1, one obtains part (i). For part
(i), one uses further the decomposition

(Zesr/Zi — 1 = (Zier/ Ze — G (D) + (9, (1) — p)*
+2(Ze 10/ 2, — <P§k(1))(¢§k(1) — ).

Recall that if {x,} and {y,} are two sequences of real numbers with x, —0 and
n='2% _ vl = C < oo, one has n™'Z% _ xp, — 0.

Since (Zk+1/Zk ‘Pg (1) =450, ”_12 (Zk+l/Zk ‘P; (D)(‘ng(l) )
..0. Since also i — p—,,0, it follows that sZ—(n—=1" 13 voo(s (1) — )’
s _O and by the strong law of large numbers, that

, 2
53 —as E(9;,(1) — p)” = 0%
COROLLARY 2. Under the hypothesis of Theorem 1,

ni(fi —p)/s, »pN(, 1).
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3. Estimation of = and Var log ¢y1). Consider now = = E log ¢i(1). If
(95, (1), -+ -, ¢ _ (1)) is known, an obvious and nice estimator for « is the corre-
sponding arithmetic mean

Xiog = n ™~ 'Z54log ¢, (1).
Its properties are summarized below:

ProposITION A.  If Var log @¢(1) is positive and finite,
@) EXp) = m;

(i) Xjog =457 as n— c0; and

(iii) n7(Xiog — m) —pN(O0, Var log gi(1)).

Using the sample {Z, Z,,- - -, Z,}, one would thus expect # =
n~'31_tog(Z, .,/ 2Z,) = (log Z,)/ n to behave nicely for estimation purposes. This
estimator was studied by Heyde (1975, page 50) in a different context. In fact, the
following properties hold here:

THEOREM 4. Assume Var log gy(1) is positive and finite. Let 7 = (log Z,)/n.
Under the hypotheses of Theorem 1,
(@) E(F) < m;
(ii) #—>, 7 as n — o0; and
(iii) nZ(7 — m) -, N(O, Var log g{(1)).

ProOF. By Jensen’s inequality, E(log(Z,.,/Z|$) < log E(Zy,\/Z|$) =
log ¢ (1). This implies E log(Z, .,/ Z;) < E log ¢ (1) = 7. Hence E(#) < #. Fur-
thermore, since (Z,)/Z;_og; (1) >, W > 0, then log Z, — Z3Zglog ¢ (1)
—,slog W, from which Va > 0, (log Z,)/n* — 23 _glog ¢, (1)/n* —,,0. Invoking
Proposition A, one readily obtains (ii) and (iii).

Notes. 1. The properties (i) and (ii) tell us that # will tend to underestimate 7
although it is strongly consistent. An equivalent version of (ii) was given by Becker
(1977).

2. The property (iii) may be of independent interest since it does not depend on
the limiting distribution of W. If = were known, it could be used to predict the
population size at time n, giving a partial solution to a problem encountered by
Keiding (1976) while studying the whooping crane population. The property (iii) is
also strongly related to part (b) of the theorem in Keiding & Nielson (1973).

To give a confidence interval for 7, one needs now a consistent estimator for Var
log ¢;(1), in the case when it is unknown. A natural estimator which has this
property is the corresponding sample variance:

Sieg = (n — 1) 'S5 log(Ze 11/ Z,) — 7).

THEOREM 5. Under the hypotheses of Theorem 4,
Sing —>as.Var log gi(1).
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Proor. The proof is entirely analogous to the one in Theorem 3 (ii), using the
fact that log(Z, .,/ Z,) — log ¢; (1) =, 0.

COROLLARY 3. Under the hypotheses of Theorem 4,
n2(F =)/ 5105 > pN(0, 1).

4. Extension to the case py($)>0. Assume now that p($) > 0, V{ and let 4 be
the set of nonextinction of the supercritical B.P.R.E. It is known that P(4) > 0.
Intuitively, one expects the asymptotic results of Sections 2 and 3 to hold on the set
A. And of course if they hold on the set 4, they will hold conditionally on Z, > 0,
which is what is really needed for inference purposes.

If the B.P.R.E. is defined on some probability space (%, B, P), denote by
P,(-) = P(-|A). Then it is clear that with respect to P,,

Z, /TG ow; (1) >, W > 0.

Also note that if under P, the environmental process is formed by i.i.d. random
variables, then the environmental process will still obey the strong law of large
numbers and the central limit theorem under any Q < P, in particular Q = P, (cf.
Renyi, 1958), provided second moments exist. These are the basic tools needed to
extend the asymptotic results of Section 2 and 3 to the case py({) > 0. Minor
obvious modifications make the proofs go through, with the exception of Theorem
2, part (ii), which does not seem to admit an extension by the techniques of this

paper.

5. Conclusion. The estimators for p and # have been shown to be consistent
and asymptotically normal in the context of Smith and Wilkinson. It seems
worthwhile to extend these results to the case of random but varying environment
and to study the multitype case.

The authors found at the “Conference on Galton-Watson processes and related
topics” a stimulating “random” environment. Thanks are due to S. Durham and N.
Keiding for interesting discussions and to the referee for many comments and
suggestions and for pointing out the existence of Becker’s paper.
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