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AN ALTERNATIVE TO THE FRIEDMAN TEST WITH CERTAIN
OPTIMALITY PROPERTIES

By S. SCHACH
Dortmund University

R. L. Anderson proposed a x>-type rank statistic for the nonparametric
analysis of a randomized blocks design. In this paper the asymptotic distribu-
tion of the test statistic is derived under a sequence of alternatives contiguous to
the null hypothesis. Using Bahadur’s concept of local approximate slope, it is
shown that the test is optimal within a large class of rank tests including the
tests proposed by Friedman and by Page. The results are extended to BIB
designs. Ties are considered.

1. Introduction. In 1959 Anderson [1] proposed a nonparametric test for the
analysis of a randomized blocks experiment, which was rediscovered recently by
Kannemann [5]. The method can be described as follows: consider a randomized
blocks experiment consisting of N blocks. Rank the observations in each block
separately. Define

(1.1) D,; = number of blocks in which treatment j receives rank k.

Compute the x2-type test statistic

N 2
(1'2) = %zi_lzf_l(D,q - ;)

and reject the hypothesis of no treatment effect if 4 is too large. (Note that
25Dy =2 \Dy; = N, Z{_\2F_,D;; = Np, and that under the hypothesis ED,;
=N/p)

In this article we derive some asymptotic properties of the Anderson test. In
Section 2, it is shown that under the hypothesis (p — 1)/pA has an asymptotic
x(zp_ jp-distribution. In Section 3 the asymptotic distribution of 4 as well as some of
its competitors is obtained under a contiguous sequence of alternatives. Section 4
extends these results to BIB designs. Section 5 is devoted to efficiency comparisons.
It is shown, using Bahadur’s concept of local approximate slope, that Anderson’s
test has an optimality property: it is always as efficient as the optimal test of the
Friedman type. The same holds with respect to tests of the Page type and with
respect to the locally most powerful test. Section 6 contains some remarks about
handling of ties.

2. Asymptotic distribution under the hypothesis. Let X; (i=1,---,N;j=
1, - -, p) be the observation under treatment j in the ith block. As usual, we
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538 S. SCHACH

always assume that observations in different blocks are independent. Anderson
derived the asymptotic distribution of 4, under the null hypothesis of no treatment
effect. But since our proof is considerably shorter and mainly serves as an
introduction of notation, it is included here.

THEOREM 2.1.  For each 1 < i < N let (X,, - - -, X,,) have an absolutely continu-
ous distribution symmetric in its p arguments. Then (p — 1)/pAy, converges in law to
a x2-distribution with (p — 1)* df, as N — oo.

ProoF. Define R; = rank of the jth observation within the ith block and set
2.1) zZW =1 if R;=k;
=0  otherwise.

By direct computation, using the fact that all rank permutations are equally likely,
one obtains

. 1
22 EZM = =
22) 0=
and
(2.3) Cov(z®, z9) = 2=1 for j=j,k=Fk;
: ov(Zg), Ziy) = 7 or j=j,k=k);
1
=— for j#j,k#k;
P(p-1)
= — —1—2 otherwise.
p
Let
Z(i) = (Zl(ll)’ Zl(é)y R ZI(;J)9 Zéll)9 Y Z[S;) /, 1 i< N9
then this result can be written as
5 1
2.4 EZ(’) =1
(24) 7
and
25) S = Cov Z® = ;—}TM,, ® M,
where I’ = (1, 1, - -, 1), I, = unit matrix of order p,
26) M,,=1,,—Il,11'

and ® denotes the Kronecker product of matrices.
Because of the independence of the Z®, 1 < i < N, the multivariate central limit
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theorem implies
@7) N‘%(E?'_,Z(i)—gl) SeN(©O,3)  as N oo,

Since M, is idempotent, one gets
-2 -1
(2.8) D=(p-1)TMOM}=(p-1)3,

and hence (p — 1)Z is idempotent. By a standard result from multivariate analysis
(e.8- Rao [8], page 443) it follows that (p — )N "=V, ZzD — (N /p)1))%, where

i=]

llx|I> = x’x, converges to a x?-distribution with r = (p — D)tr = = (tr M, = (p
— 1)% Since Ay = p/N|=¥_,ZD — (N/p)1|]? this concludes the proof.

3. The asymptotic distribution under contiguous alternatives. In this section we
assume that the observations have the joint density
(3.1) O =TIL4II 1f( - ),
where the block effects o;, 1 <i < N , are arbltrary and the treatment effects have
the structure '

(32) ng =N "?cj

with

(33) SP_1=0, ZP_c?=1¢,>0.
Furthermore it is assumed that f’ exists and that

(3.4) )= [ (g((x)) ) A(x) dx < oo

Related to this sequence of alternatives, we consider the sequence
(3.5) Py = szy- 1Hf-1f(xij - a)

belonging to the hypothesis. Since we consider rankings within blocks only, our
results do not depend on shifts between blocks, therefore, w.l.o.g., we assume
a;=0,i=1,---,N for the rest of this paper.

For the proof of the theorem of this section it is convenient to introduce the
notation

| £(x)
3.6 X) = ;
(3.6) ¥(x) - e
37 Zy=3,Z"  with elements Zy, =S¥, Z®;
1
(38) = —SLZ (X)) = - NI oS w(X,);
(3.9) a§ = EY(X), where XU) = jth order statistic from

a size p sample from f,d = (d,,- - - , d)).



540 S. SCHACH
LeMMA 3.1. Under {Py} probability we have Cov(Ty, Zy , )= — N 2 /(-
)dyc;.

Proor. Since EY(X) = 0, and because of the independence of the rankings in
different blocks, one gets

— N_fl COV(TN, ZN’ k,j)
= NN—%E27=101N‘I’(X11)ZI(CJI')
= EZf_cp(X,)ZE)
= j-’»=121;,_127=1E[c,¢(X”)Z,((1)|R1, =l Ry =j,]
‘P(R” = l,’ R]_] =J)
= S2_ 37, E[W(X,)|Ry = I', Ry, = k]
'P(R” = l’, Rl_] = k)
, 1 1
= 2o Z 1 BU(X D) 2(p 1) + chMX(k))?’

1 1
d +=)=——dc,
( C)( k)(p(p ) P) p—l (2]
since 28_d, = 2F_,c; = 0.

THEOREM 3.2. Under the sequence {Qy) the statistic Sy = N ~3(Zy — (N/p)1)
is asymptotically N(p, =) distributed, withp = — 1/(p — 1)d ® candZ =1/(p —
)M, ® M,, where M, c, d are defined by (2.6), (3.2) and (3.9), respectively.

PROOF. Set
(3.10) Ly =log II\,II lf( o,N) — log Hliv=1Hf=1f( ) 108

By Theorem VI, 2.1 of Hajek and Sidék [4]

(3.11) Ly — Ty— —3¢,I(f) in {Py} probability.

Let A, A, 1 <k, j < p be arbitrary constants. Define the vectors
(3.12) A=A Ay, Aps Aoy v s App), and A=(A, )"
Set ‘

(3.13) Uy = NSy

We show that under { P, } probability

N

N\, _
(3.14) RN = AOTN + 2%-]25= lAkj(ZN, k,j - ;)N

= AoTN <+ UN —)BN(O, 02),
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with
(3.15) o = NTX
and
|
¢, 1(f) | —_11 d'®c
(3.16) = "i"": _________ .
;—:—l—d ®c : 1 j‘lp ® Afp

Since Ry is the sum of N independent and identically distributed random variables,
each summand having expectation O and finite variance, asymptotic normality
follows from the classical central limit theorem. For the computation of I" we use
Lemma 3.1, (2.5) and the fact that Exp(X,.j)2 = I(f) under { Py}.

Because of (3.11), (3.14) implies

(3.17) Ry =MALy + Uy = A(Ly — Ty) + Ry —eN(—3A,c,I(f), NTX).
Since A is arbitrary, we get (Cramér-Wold technique)
(3.18) (Ly, Uy) =>eN(p, A) in { Py} probability,
with p = — %col(f)’ =0, A, =cI(f) Ap=-1/(p - 1)272-|2Z=1>‘kjckdj
and Ay, = 1/(p — D\'M, @ M \. By LeCam’s third lemma (see Hajek & Sidak [4],
Lemma VI, 1.4)
(3.19) Uy >eN(A5, Ap)  under { Q) probability.
Using the Cramér-Wold technique once again, we obtain
-1 1 -
(3.20) Sy —>BN( 1—)—_——Td ® ¢, pTlM” ® Mp) under { Qy} probability.
CoRrOLLARY 3.3. Under {Qy} the statistic (p — 1)/pAy has an asymptotic
x(zp_ 1y, s-distribution, where the noncentrality parameter 82 is given by
1
p—1
PROOF. Obviously (p — 1)/pAy = (p — DI|Syl* = [(p — 1)3SylP*- Since (p —
1)%SN has an idempotent covariance matrix of rank (p — 1)* the result follows
from the preceding theorem, since (d ® ¢)'(d ® ¢) = d’'d- c’c.

25'\p 2
262 d

(3.21) 82 =

Let a, - - -, a, be arbitrary numbers with 37_,4, =0, a =(a,," - - , 4,). De-
fine
(322) V; = 2%.1a, 21, Zf) = 35 4, Dy, 1<j<p.

Obviously ¥ = 1/pS%_,V, = Na = 0.

DEFINITION.  Tests haiving rejection region >?_, ij > Cy, , are called Friedman
type tests (Friedman [3]).
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REMARK. In the case of the classical Friedman test we have g, = k — 3(p + 1).

COROLLARY 3.4. Let V™) = N™3(V,, ¥y, - - -, V.. Then in {Qy) probability
V® SoN(p, Z) withp= — 1/(p — 1)a’'d- ¢, 2 =1/(p — 1)a’aM,, and
1 p-—1
(3.23) TN = F a,a 25’_1[/1-2 ‘—)B XPZ_ 1,82
where
(3:24) 82 = =1 (@d)c’c/aa.

Proor. Evidently
(3.25) V) = (a’ ® 1,)Sy.

Asymptotic normality, therefore, follows from the preceding theorem, and

~@® 1)( )(d ®c)=—ad-c

—@® 1)( )(M ® M)(a® I)

1
(aMpa)®Mp=p_ da-M,.

-1 1
The limit distribution of {(p — 1)/a’a}?V™ therefore, has expectation —a'd-
1
c¢/{aa(p — 1)}2 and covariance M,, which is idempotent and of rank p — 1.
Hence (p — 1)/a'a||V™|P > x2_\ w1th 82 = (a'd?-c'c/(@a(p — 1)).

Let b, - - -, b, be arbitrary numbers with 37_,5, =0, b =(b,, - - - , b,)". De-
fine
(3.26) =32_ b33N\ Z) = 32_,b,Dy, 1<k<p.

DEerFINITION.  Tests havmg rejection region 32_ W2 > Cf ., are called dual
Friedman type tests. (The term “dual” has been proposed by K. Kannemann in an
unpublished manuscript.)

COROLLARY 3.5. Let W™ = N™i(W,,- - -, W,), then, in {Qy} probability
W™ 5.N(p, Z), withp = — 1/(p — D)¢’'b-d, = = 1/(p — 1)t'bM, and
~ 1
(3.27) Ty = N pb/ 2k-IWk “’ﬁXp 1,8%
where ‘
(3.28) 8% = 1 ; (c¢’b)’d’d/b'b.

PrOOF. Similar to proof of Corollary 3.4, using the obvious duality.
Leta,, - --,a,; b,,' - -, b, as before. Set
(3:29) = zk-lzj-lakbztal zZp = =125 =105 Dy



ALTERNATIVE TO FRIEDMAN TEST 543
DEerFINITION.  Tests based on rejection regions Xy > Cy , are called Page type
tests (Page [7]).

REMARK. In the classical Page test we have g, = b, = j — 5(p + 1).

COROLLARY 3.6. Under { Qy} probability

——l 1 ’ ’ ’ . ’
N ZXN—>EN(—p_lad bc,p_laa bb).
ProoOF. From Corollary 3.4
_1 , 1 P |
N zXNsb.V(N)—>BN(—P_lad-bc,p_laabMpb).

4. Extension to balanced incomplete block designs. A BIBD is represented by a
design matrix E = (e, e, - - -, ¢,) of order N X p consisting of 0’s and 1’s and
such that E 1 = b 1, b = block size, ¢/e; = r = number of replicates (1 < j < p)
and ¢/e, = A1 < k #j < p).

For such designs the relations

4.1 N-b=p-r

and

(4.2) Ap(p—1)=Nbb-1)
hold.

The idea of the Anderson test can be extended to such designs: assign ranks to
the observations within blocks, construct a b X p matrix D with

(4.3) D,; = number of elements i € {1,- - - , N} with R; = k

1<k<p, 1<j<b
and compute
N 2
(4'4) = %Eb_lzf,.](ij - ;) .
Reject the hypothesis of no treatment effect if 4 is too large.
Define E; = {j: ¢; = 1}. Then the Qy densities of the observations are assumed
to have the form

4.5) Oy = Hi'v-l jeE,f(xxj - 0_/N)
The corresponding { Py} sequence is given by
(4.6) Py = I \1L e g f(x;)-

We are interested in the asymptotic distribution of A,. For this purpose assume
that a sequence of N X p BIBD is given, where N runs through (a subset of) the
integers. Furthermore, suppose that 6,y = N ‘%cj, P16 =0, Z_f=c,>
0, b, p constant, whereas A = Ay = Nb(b — 1)/p(p — 1), r = ry = Nb/p. In con-
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nection with (4.4), note that under { Py}, ED; = ry/b = N /p. As in Section 2 set
Zy =Dy, Dy, - - Dlp’ Dy, ot s Dy - - Dbp),’

THEOREM 4.1. Under the sequence {Qy} the statistic Sy = N "%(ZN — N/p) is
asymptotically N(p, Z)-distributed, with p = — 1/(p — 1)d ® c and Z = 1/(p —
DM, ® M,, where d = (d,, - - - , dy) with d, = E Y(XP), X = jth order statistic
among b observations from f.

ProoF. The proof consists of a slight extension of the proof to Theorem 3.2.
Therefore only the differences are indicated. Obviously, under Py, E Z,g) =¢;/b
and

@n  Cowz. 29 = eer for k=k,j=
1
for k#k',j#J
B(b — 1) I 7
L otherwise.
b2

Using relations (4.1) and (4.2) one arrives at the result
N

(4.8) Cov(Zy) = 21

M, ® M,
with M, defined by (2.6).
Defining
Ty = —N~3i32_,cSY e(X,)
and proceeding as in the proof of Lemma 3.1, one obtains
N2Cov(Ty, Zy 1)
= - 2?’- 125 1eileijCIE‘P(Xi1) ZIE}’
= _2¢-127=1ei1‘—’y012?n=1E[ V(X)) Ry = m, R; = k]
*P(R; = m, R; = k)

A r N
B (b(b -1) + '5)9"11: ="7-1 ¢;d, by (4.1) and (4.2).

Hence, under { Py} probability, using Liapounov’s theorem,
(4.9) ALy + A’N-%(ZN - %1) —¢ N(1, N'TX)
with
(4.10) NP 0)

° 4 09 P 0
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and

(4.11) ,

where now Ly = log II\_\I,c z f(X; — 8)/f(X;). By LeCam’s third lemma the
result follows.

This theorem enables us to derive the asymptotic distribution of the Anderson
statistic for BIB designs.

COROLLARY 4.2. Under {Qy} probability (p — 1)/pAy converges to a
x(2P — 1)1y, s>-distribution with

(4.12) 82 =
where the d; are given by (3.9), but from a sample of size b.

S0

PrOOF. (p — 1)%SN has an idempotent covariance M, ® M, and rank (M, ® M,)
=tr M, -tr M, = (b — 1)(p — 1). Furthermore, (p — Duw'n=1/(p — 1)d ®
Y d®c)=1/(p — 1)d'dc’c.

REMARK. Friedman type, dual Friedman type, and Page type tests can be
constructed for BIB designs just as for complete block designs. The results of
Corollaries 3.4.—3.6. hold with the obvious modification that the d; are defined on
the basis of a sample of size b.

5. Efficiencies. In this section we return to the basic model with block size
equal to number of treatments p and additive block effects. Unfortunately it does
not seem to be easy to compare the various tests of Section 3 with respect to their
Pitman efficiencies, since the test statistics have, under H, different limiting
distributions. Therefore, we use Bahadur’s [2] concept of comparisons of asymp-
totic slopes and take the local ratio of slopes as our measure of efficiency. It turns
out that the local slopes are in all cases given by the noncentrality parameters
under contiguous alternatives as derived in Section 3. Let the data have the joint
density
(5.1) ’ Oy = Hliv=1ﬂf-1f(xy' -G - o)
with ¢ = (¢}, - -+, ¢,) fixed, Zf¢; = 0, I(f) < oo. Denote the probability measures
by P, y. In order to compute the Bahadur slope a test statistic Sy has to satisfy
three conditions:

@) P,n(Sy < x)— F(x), with F(-) a continuous cumulative distribution func-
tion.
(ii) For some constant 0 < a < oo

(5.2) log(1 — F(x)) = —-a—;i(l + o(1)) as x— o00;
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(iii) For some nonnegative function b(c)
S _
limN_mPc,N(l—Al' - b(c)l > s) =0 forevery &> 0.
Nz

Then the asymptotic slope is given by

(5.3) G(c) = ab(c)
We take

54 SN=(p ; ! AN)% for the Anderson test;

= (TN)% as given by (3.23) for the Friedman type test;
~ 1
= (Ty)? as given by (3.27) for the dual Friedman type test;
| 1
= |Xy|{Na’'ab’b/(p — 1)} 2 as given by (3.29) for the Page type test.

Then, from the results of Section 3, it follows that in all cases S, has an asymptotic
x-distribution. For such distributions Bahadur [2] has shown that (5.2)(ii) is
satisfied with @ = 1. For the local comparison it thus suffices to compute b(c) and
the rate at which l;(Ac) converges to zero as A — 0.

THEOREM 5.1. Under the assumptions (5.1)

2
(5.5 (p—1lim,_ , b (Aéc) =||c||?||d|* for the Anderson test;
= (a'd)?||c|*/||a|? for the Friedman type test;
= (c’'b)?||d||*/||b|* for the dual Friedman type test;
= (a'd)*(c'b)*/||a||%.||b||* for the Page type test.

PrOOF. Since the proofs of the various results are very similar we restrict
ourselves to the Anderson case. Because of the independence of blocks the strong
law of large numbers implies

D, o

(5.6) - T as.  as N - o,
where
(5.7) 9 = P(R,, = k).
Hence

1p—1 -1 N\
8 5 £ P Ay = (LN‘z_)Zj=12’-n(ij - ;)

PSP o_1 2 (P
as. (P - 1)Zj=12k=l W’Cj - ; = b(C) .

Let S{? be the class of all choices of {r}, -+, r,_,} from {1,2,---,j—1,j+
1,---,p}with {r,,,, - -+, r,} being the complementary set. Then

(59 ﬂ;cj) = ErESk(DfH’;;llF(x - cr,)H7=k+l(1 - F(x - Cr,))dF('x - ¢)
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and therefore

an©)
(5.10) aﬂ 7 I C, for m ),
c”‘ c=0
——(p-1G  for m=}
where

G o= (222 Ym0 - Ry ar)

On the other hand

(512) 4, = Ey(x¥) =p(7; ~ 1) SR - F(x)y‘k%f(x)dx

= p(p — 1)C,, by partial integration.

Finally
_ B(Ac) ardy 2
613 im0 = (o - vtz (G2 o)
c=0
1 1\
=(p-132_32_|4 .(———+—)
(p )kljl[kcjp(p_l) p]
__ b a2
= Sy 1Pl

Using the notation p, , = u'v/||u|| ||v]|| for p-dimensional vectors u, v with u’ - 1 =
v - 1=0, we get

COROLLARY 5.2. The local approximate Bahadur relative efficiencies for shift
alternatives are given by

(5.14) e (Friedman type / Anderson) = p?,
e (Friedman dual type / Anderson) = p},
e (Page type / Anderson) = p? ;- pZ..
Proor. Obvious.

REMARK 1. With the limitation imposed by the particular concept of efficiency
used, the result shows, that the Anderson test is always asymptotically equivalent to
the Friedman type test with optimal scores E y(x“), (1 < j < p). However, these
will only be known, when the type of f(-) is specified completely. For the Anderson
test such knowledge is not required. Similarly with respect to the other tests.

-A comparison between the various tests of Section 3 for the BIBD yields the
same result as given in (5.14), except that X is now from a size b sample. The



548 S. SCHACH

optimality property also extends to the compa'rison with the locally most powerful
rank test with respect to certain restricted classes of alternatives, as will be shown
in the following theorem. By definition, a rank test for the problem of analyzing a
randomized blocks experiment is to be a test which depends on the observations
only through the ranks Ry(1 <i < N, 1 < j < p) within blocks.

THEOREM 5.3. Consider testing
H: Py =TI f(x; — o)

against

K : Qn(c) = 1-1 '=1f(xij -0 - "})
with ¢ # 0, 2%_,c; = 0, and a differentiable f > 0. For any c the Anderson test is
asymptotically as efficient as the locally most powerful rank test for testing H vs.
K. = {Qn(c): A > 0}.

Proor. Using Hoeffding’s result (see e.g. Lehmann [6], page 254) it can be
shown, that the locally most powerful test is equivalent to the Page test with
optimal scores and optimal regression constants. Details are omitted here.

REMARK 2. It should be pointed out that the locally most powerful rank test
requires knowledge of the constants ¢; and d, = E y(X *), whereas the Anderson
test does not.

Finally, comparing the Anderson test for the BIBD with that of the complete
block design, one obtains

(5.15) e (BIBD, complete block design/Anderson)
1

b _ 1 5zje-ldj,zb

l ’

p—1 frdp

where d, = E (X /), X = j* order statistic from a size n sample, and & = (b
— Dp/b(p — 1) = efficiency factor. To the extent that 1/(b — I)Zf_ldj,z,, ~1/(p
- DA ldjz,Jp (both of these expressions approximate I( f)), the efficiency is given by
&, as in the classical normal-theory case.

ReEMARK 3. It should be noted that similar efficiency comparisons can be
carried out for alternatives more general than location shifts: let X; be distributed
according to F(x — a;, §) with § = 0, under H and 0 = 6§, + ¢, ¢ # 0 under K.
Then, by the same reasoning as above, it can be shown that the efficiency of the
Anderson test is the maximum of the efficiencies of Friedman type tests, or dual
Friedman type tests, or Page type tests.

6. Ties. Kannemann [5] suggested that when ¢ > 1 observations X;, - - - , X;

are tied, Z should be defined as 1/¢ for these ;’s and the correspondmg k’s.
When computmg a Friedman type test statistic, this method corresponds to taking
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average scores for tied observations (= midrank method in the case of the classical
Friedman test). Whereas, for these Friedman type statistics the conditional asymp-
totic distribution, given the tie structure, is still the xj_, distribution, if the variance
is adjusted properly, the situation is not so neat when the same procedure is used
for the Anderson test. This can easily be seen from the following

LEMMA 6.1. Assume that the order statistics of the ith block satisfy
(6.1) XD =x@=...=x0 cxtt) = ...
= x(+n) < veeo= Xttt
Define

. Zg) = tl lf/YlJ = X(tl+12+ ce ) and
1 ~

(6.2) bt o+t <k<t +- - +y
=0 otherwise.

Then, under the hypothesis, the conditional covariance, given the tie structure, has the
form :

%U,I 0 0
(6.3)° CovZ(")=; 0 gUtz 0 -1I'|® M
’ p(p—1) b 4
P
0 0 U,
\ s )]

where U, = t; X t; matrix whose elements are ones.

PrROOF. By straightforward computation one obtains
1

6.4 EZY) =~
(6.4) & >
as in the unconditional case, and

(6.5) EZ,S)Zk(?r:,=—;- for j=jandt,+ - - +4_, <k kK <t;+---+1

4
=0 for j = j'otherwise;

t[ - ]

=— for j#j, and

tp(p — 1)

tl + M +t1_l <k,k,<t|+ M +tl,

-1 for j #j', otherwise.

p(p—1)

From these results (6.3) follows immediately.
Given the tie structures of the blocks 1, - - - , N, the covariance matrix of the Z,

vector is the sum of matrices of the type (6.3). It is obvious that in general such a
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sum is not idempotent (up to a fixed constant) nor can its rank be determined
easily. Apart from assigning ranks randomly within ties, a method which might
waste a considerable amount of information, the most reasonable procedure might
well be to diagonalize numerically the sum of the conditional covariance matrices
of type (6.3) and then to construct the corresponding statistic with a conditional
asymptotic x2-distribution.
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