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INVARIANCE PRINCIPLES FOR THE COUPON COLLECTOR’S
PROBLEM: A MARTINGALE APPROACH!

By PRANAB KUMAR SEN
University of North Carolina

For the coupon collector’s problem, invariance principles for the partial
sequence of bonus sums after n coupons as well as the waiting times to obtain
the bonus sum #(> 0) are studied through a construction of a triangular array
of martingales related to these sequences and verifying the invariance principles
for these martingales.

1. Introduction. Consider a sequence {Qy, N > 1} of coupon collector’s situa-
tions )
(ll) QN = {(aN(l)’pN(l))’ T (aN(N)’pN(N))}’ N > 1,
where ay(s) and py(s) (> 0) are real numbers and ¥_, p(s) = 1. Consider also a

(double) sequence {Iy,, k > 1} of (row-wise) independent and identically distrib-
uted random variables (i.i.d.rv), where, for each N(> 1),

(1.2) P{Iy,=s}=py(s) for s=1,---,N.
Let then
(1.3) Y = ay(Iyp), if Iy & (Invp - 5 Ive—1)s
=0 otherwise, for k& > 1;
(1.4) ZNn = zn_lYNk, n 2> 1 and YNO = ZNO = 0-

Zy, is termed the bonus sum after n coupons in the collector’s situation . If the
ay(s) are all nonnegative, Z,, is nondecreasing in n(> 0), and for every ¢ > 0, let

(1.5) Uy(2) = min{k : Z,, > t}.

Then, Uy(?) is termed the waiting time to obtain the bonus sum t in the coupon
collector’s situation Q.

Asymptotic normality of multi-dimensional marginal distributions of {Z,} and
{ Un(9)} has been studied by Rosén (1969, 1970) and Holst (1972a, b, 1973), among
others. The object of the present investigation is to propose and formulate an
alternative approach to this problem based on the weak convergence of a suitably
constructed martingale sequence associated with the Z,,. The basic regularity
conditions are outlined in Section 2. Section 3 deals with the asymptotic normality
of Z,, through the proposed martingale approach. Section 4 is devoted to some
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COUPON COLLECTOR’S PROBLEM 373

general remarks concerning the applicability of this martingale approach for
studying invariance principles for the partial sequence {Zy,, k < n} as well as the
corresponding sequence of waiting times.

2. Preliminary notions. Note that by (1.2)—(1.4), for every N(> 1),

@1 EYy = Z_1ay()pn(s)[1 = pu(s)]*7s k> 1L EYyo=0;
(2.2) O%n = EZy, = ZV_1ay(s){1 —[1 = py(5)]"},n > 1, EZy, = 0.
Let us denote by
(2.3) byn = SN_1ay(s)[1 — 7], n >0,
24) d2, = 3N a}(s)e™PO(1 — e=rn))

— n(EN_ ay (s)py(s)e PO, n>0;
(2.5) Ay, = N2V _lay(s)), for r=1,2,3,4.
We assume that
(2.6) supy {max, ., » Npy(s)} < M, < o0;
(2.7) limy_, o, { max, ¢, <wlay(s)|/ N2 43,} = 0;
(2.8) lim infy_ [ (ZY_ 83 (s)pn(s))/ Ax,] > M, > 0.

Note that xe™* <e™!, Vx>0 and for 0<x<1, 0<e™ — (1 —x)" <
nx%~"*, Hence from (2.2) and (2.3), we have

[bNn — baml = 'ZsslaN(s)[e—_WN(S) -{1 _PN(S)}n]I

(29) s-l'aN(S)le(S){npN(S)e npN(s)} e”'M Ay,
Vn>0,N > 1.

In fact, if the ay(s) are all nonnegative then ¢3, > ¢,,. Also, noting that e ~*(1 —
e ") < x, Vx > 0, we obtain from (2.4) that

(2.10) i < ZY_1ai(s)e O[] — &= O]
< nzs-laN(s)PN(S) <nM Ay, = O(nANz), Vn2>21,N > 1.

Further, usmg the facts that for 0 <x < I, (1 — e ™) = (1 — e *)2izbe ™ >
x(1 = 30)25be %, [N 1an(s)pa(s)e” ""”"(s)]2 S 13 (s)py(s)e 2 (by the
Schwarz inequality) and for 0 <k < (n — 1)/2and 0 < p < N~ M, e~@+hPp —
e~MP 3 e=Cn=DP/Y] — g=3(1+Dp] 5 o=Gn=DM/2N[] _ ¢=3(1+Dp] we obtain that
for N > M|,

(2.11) din > (1= 3N 7'M 2520 { SN @ ()py(s)e =t 0om

— (Z_1an(s)py(s)e” W"(s)) }
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> (1 = 3N ~'M)Sizh{ SV @ (s)pn(s)e™ " HOPO[ 1 — e == )]}
> (1 = LN 'M,)e=Cr=DM/2N] (5 4 1) /2]SN. a3 ()py(s)[ 1 — e 3+ IP].

Now, by (2.6), (2.7) and (2.8), At;zlz(s : pN(s)>e/N)a1%/(s)pN(s) > Ay, 2V 1a3(s)pn(s)
— & Ve > 0, and noting that for py(s) >¢/Nandn/N >n > 0,1 — exp(—3(n +
Dpn(s)) > c(e, ) > 0, we obtain from (2.11) that if

(2.12) 0 < lim inf,_ N ~'n < lim supy_, N ~'n < oo,
then lim infy_,.(d2,/ndy,) > 0. Thus, under (2.6)~(2.8) and (2.12),
(2.13) 0 < lim infy_,(d3,/ndy,) < lim supy_, (d3,/ndy,;) < .

We are primarily concerned with the limiting behavior of the partial sequence
A (Zwx — d¥i; k < n). Since dy,'ay), s = 1, + -, N remain invariant under any
scalar multiplication, we may set (without any loss of generality) that

(2.19) Ay, = N7'2V_iai(s) ~ 1.

Then, by (2.9), (2.13)-(2.14) and the fact that 42, < Ay, we have
dy,{max, ;< lone — d¥il} — 0, so that we may equivalently consider the partial
sequence dy,(Z,;, — ¢nx; k < n). In the remainder of this section we consider a
basic lemma to be used repeatedly afterwards. Let Qy, = py(Iye), & > 1 and let

8vi(Yni Oni) u = 1, - - -, p(> 2) be such that
(2.15)
g (0,p) =0, maxl<u<p{maxl<s<lvlgNu(aN(S)’ PN(S))I} < My 3, supyMy 3 < ©
and
(2.16) max|<u<p{21sv-||gNu(aN(s), PN(S))I} S My 4

supy N ~'My , < o0.
Note that by (2.15) and (2.16), for some My, s < My ;M ,,

(2.17) max1<u<u'<p{ZIsv-1|gNu(aN(5),PN(S))gNu'(aN(S)’PN(S))l} < My s

LEMMA 2.1.  Under (2.6), (2.15) and (2.16) for every 0 = vy <y, < - - <p, <
n,

(2.18) EHﬁ-lgNu( YN»,,’ QN»V)
= Hﬁ= lEgNu( YNVH’ QNV,,) + O(N_IMI{’,_‘J[MN, 3 v N~ lM13,4])’

(2.19) COV[ eni( Y Ons)s 8va( Yoy QNy,)] = O(N [My sV N My 4]),

(2.20) V[ gNl(YNv,’ QNv,)] = 0([N_IMN,5] /\[(N_IMN, 4)2]).
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ProOF. We shall prove (2.18) and (2.19); the proof of (2.20) follows on similar
lines. Note that

EH‘Z-lgNu( Yo, ‘INy,,) = 21<s.¢~--;eap<1vﬂf}=|{ gvian(s,), Pa(s.)
[1 =24 pn(s) 1" " 'pls.))

(221) = 2l<s.a'&~-~=,:'&s,,<1vHﬁ-|{ gNu(aN(su)’PN(su))pN(Su)e—y“pN(s")[1 + O(N_I)]}
(by (2.6))

= 2|<s.=;e~--aes,<NHﬁ-l{gNu(aN(Su)’ pN(Su))pN(su)e_y“pN(s“)} + O(N _p_le\’/, 4)’
by (2.6) and (2.16). Similarly, for each (=1, - - , p),

(2.22) EgNu( Yy, QN»,,) = 2.1 gvlan(s), pu(s))py(s)e ™" + O(N -ZMN, 4)’
where, by (2.6) and (2.16), the first term on the right-hand side of (2.22) is
O(N ~'M,, ,). The product of the p factors of the first term in (2.22) involves N”
terms whereas (2.21) involves N?! = N - .. (N — p + 1) terms; by (2.15) and
(2.16), the contribution of these N” — N7 terms is O(N ~2.M, ;. M%~,"). Hence,
the proof of (2.18) follows from (2.21)-(2.22). For p =2, N2 — N® = N and by

(2.6) and (2.17), 7., gy 1(an(s), Pu()8En2(an(S), Pu()pi(s)e ™ ¢1+"Pv6) = (N —2),
so that (2.19) follows on parallel lines. []

3. Asymptotic normality of bonus sums. The main result of this section is the
following

THEOREM 3.1.  Under (2.6)—(2.8) and (2.12), dy,(Zy,, — ®n,) has asymptotically a
standard normal distribution.

PrOOF. Unlike the earlier proofs of this result [due to Baum and Billingsley
(1965), Rosén (1969, 1970) and Holst (1972a, b)), our proof rests on a construction
of a (triangular array of) martingales related to {Z,,}. Let B, be the sigma-field
generated by {1y, j < k}, k > 1 and let B, be the trivial sigma-field. Then, for
every N, B, is nondecreasing. For every N, n(> 1), we define

(3.2) X = Yy (1 + Q)< le=mm,

Onvi = pn(In) k > 15 X3 = 0,
(3.3) &R = 2Isv-1“N(~")PN(~5')‘3_n"""(s)[1 + PN(S)]k_l, k>1,£60=0,
and consider the sequence
(34) /\’;W = XW - E(szl%Nk—l)

= (X — &) + S42IXW0N (1 + 04,) ",
k>1; X@ =0.
Then, on denoting by
(3.5) SR =3k XP, k>0 and ER =350, k>0,
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we obtain from (3.2)—(3.5) that

(3.6) &R = SV jay(s)e P O{[1 + n(9)]e - 1}, k > 0;
(3.7) S = S5 Yy [ (1 + Q) — Qi1+ On) '] —ER, k> 05
(38) E(S-'I(\?k)IG‘BNk—I) = S~I(;‘k)—l) Vk > 1)

so that for every N, n(> 1), {S%, By,; k > 0} is a martingale. From (2.6) and

(3.6), it readily follows that

3.9) IER — ¢nal = O(1)  forevery N,n.

Also, note that 21':-' il YNiQ]Nie_an(l + On) T < 21l YamlQui <

Z).lan(s)lpa(s) < MpAg ~ Mg, by (2.6) and (2.14), while for x € (0, 1), 1 >
""‘(1 + x)* > 1 — nx?, so that under (2.6) and (2.12), we have from (3.7) that

|S{ — Z,, + én,| is bounded, with probability one. Thus, by (2.13), (2.14) and the

above, we conclude that for every € > 0, there exists an 9(,(e), such that, under
(2.6)—(2.8) and (2.12),

(3.10) P{dy'|S5) — Zy, + dy,| >€} =0, YN > e
Consequently, it suffices to show that under (2.6)—(2.8) and (2.12),
(3.11) L(dy,'SE) — (0, 1).

Now, for the martingale-difference array {dy, X\; k < n} by (3.4)
(3.12) X < Yol + 18R] + 521 Y0 O 1<k<n,
where ' vl < ZX 1|aN(5)|PN(S) < MZA’ ~ M,. Also, |Yy,| < max,,cnlan(s)|
= o(N?) = o(dy,), by 2.7), @.13) and (2.14). Finally, (Z}2|Yy,/0n) <

SN lan(s)lpa(s) < M12A 2 ~ M1 , Vk > 1. Hence, for every ¢ > 0, there exists an
9y (€), such that

(3.13) P{max, ;. dn, | XR| >} =0, VYN > N,(e);
the above equation also insures that for N > Ny(¢),

G14) a2 B([XRTIXGR > e dy,)|Bye1)} =0 wp. L.

Hence, to prove (3.11), we make use of the dependent central limit theorem of
Dvoretzky (1972), which for a martingale sequence, satisfying (3.14), demands only
an extra condition that

(3.15) de{2n_1[1R]} > 1,  in probability,
where
(3.16) 12 = E([XR11Bni—1) = V(XABri—1)

= 3N_ a3 (s)pn(s)e ™21 + py(s) P40
_Zﬁgiy2 QN,,e_2nQN'(1 + QNV)Z(k_l)

- (gglg thlYNvQNv _nQNV(l + QNv)k 1)2’ k> 1
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By steps similar to those after (3.12), it follows that the /{2 are all bounded with
probability 1, while, by (2.13)-(2.14), dy,> = 0(n~"). Hence to prove (3.15), it
suffices to show that

(3.17)

Ay Sh o E(I2) > 1 and max ¢, c,|Cov(I$2, 1) -0  as n—co.

For this, we note that forr = 1,2and 1 <» <k <n,
(3.18)  EY}, Qe ™2(1 + Q,,) %P
= S @ ()P2()[1 = puls) ] e O[T + py(s) s

(319) EYN"|QM’|e _nQN'I(l + QNv,)k_lYNv;Qsz(l + Qsz)k_le_"Q”"Z

= 2 =10n(8)ay ()P ()P (s") {exp(— mpy(s) — mpy(s)}(1 + pu(s)) ™",
(1+ 2u() 7 [1 = pa(s) = pu() ] 7' [1 = ()] (9> w).

Using (3.18) and (3.19) for the last two terms in (3.16), summing over k(1 < k < n)
and using the approximation that [1 + py(s)]"e =" = 1 + O(N ~%n) (by (2.6)), the
first assertion in (3.17) follows by direct steps. For the second assertion, we define
gv(Yvi On) a8 Y3, 0ne 221 + Qu Y% (or Yy, Qpe™ (1 + On) 7Y,
and note that both (2.15) and (2.16) hold with M, ;= 0(1) (or O(N ~ 2)) and
My s~ M, (or M 12) and hence, the result follows by repeated use of (2.18)—(2.20)
for the individual terms in the expansion of {2I(” in (3.16). [

We may remark that, intuitively, one may attempt to work with the alternative
construction: ¥, = Y, — E( YuulBrx_1), k > 1, ¥yy = 0. Then, one would have

(3:20) Z~Nn = 2';(=1ka = 2';:=1{ Yy — ZN_1ay(s)pn(s) + 25;}YNVQNV}

= (Zy, — pn) — Z)oi(n — k)[ Yy, On — EYNVQNP]‘
Whereas the asymptotic normality of d,;,'ZNn may be proved along the same lines
as in §,$,',’,), the second term on the right hand side of (3.20) is not generally o,(n %),

so that this particular construction may not be very helpful for the desired
normality of dy,(Zy, — ¢n,)-

4. Invariance principles and the martingale approach. For an arbitrary positive
integer b and {my < -+ <ny} satisfying 0 < lim inf,_, N "'n;y <
lim sup,_, N ~'n,y < o0, Rosén (1969, 1970) has studied the asymptotic multinor-
mality of the standardized from of {Zy, ,- - - NnbN} We may remark that the
martingale approach considered in Section 3 remains applicable in this case too.
Let us define X and S{2, k > 0, as in Section 3. Let then

(4.1) Xp=Xp, 0<k<n
=0, k >n;
and S = S*_ X, k > 0. Note that SO = S for k < n and S = §® for
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k > n. Moreover, (3.10) holds for each n; (j =1, -, b), and hence, we may
equivalently consider the case of an arbitrary linear compound (where A # 0)
(4.2)

1 A 1 A 1 Y
(Zh- AN 180 = Ndzpe S0 ARG0) = N ISR RE say,
N

(where X3, = ZIb-_, 1}\1.)? If,'zN), k > 1) and establish the asymptotic normality of the
statistic in (4.2). For this, we note that by (3.2), (3.4) and (4.1), E(X%|Bre—1) = O,
for all k£ > 1. As such, the same martingale central limit theorem (as in Section 3)
can be applied to establish the desired asymptotic normality.

Let us now consider the case of Uy(¢), defined by (1.5) where the a,(s) are
nonnegative. Let [x] denote the largest integer < x. Then, we have, by definition,

(4.3) P{Uy(t) >x} = P{Zyy<t}, forall x,t>0.

As such, with the aid of (4.3), one can “invert” the results concerning Z,, in
Theorem 3.1 and obtain the asymptotic normality of U,(¢). A similar treatment
holds for the multidimensional case.

Finally, we like to stress the importance of the proposed martingale approach in
the study of invariance principles for the bonus sums (or the waiting times). For an
arbitrary 7 (0 < T < ), let J = [0, T, and, for every N, consider the sample
process Wy = { Wy(x), x € J}, by letting

(4.4) Wi(x) = N~ 3(Zyinx — Snins)s x €.

Then, W, belongs to the space D[J], endowed with the Skorokhod J,-topology.
The convergence of the finite-dimensional distributions (f.d.d.) of { Wy} to those of
some Gaussian functions follows from the results of the earlier part of this section;
see also Rosén (1969, 1970). Hence, to establish the weak convergence of { W)}, we
need to show that { Wy} is tight.

THEOREM 4.1.  Under (2.6)—(2.8) and (2.14), { Wy} is tight.

PrOOF. By (1.4) and (4.4), W,(0) = 0 with probability 1, VN. Hence, to prove
the theorem, it suffices to show that for every ¢ > 0 and n > 0, there exist a
8 : 0 <8 < T and an integer N, such that for every x € J and N > N,,

(4.5)  P{sup[|Wy(y) — Wy(x)|: x >y > (x — 8§)\V 0] >e} <nd/T.
Suppose that in (4.4), we replace Zyy,) — ®ninx bY Siiakp * € J, and denote the
resulting process by W,. Then proceeding as in (3.9)—(3.10), it follows that for
every ¢ > 0,

(4'6) llm SupN—»oop{suprJIWN('x) - I;‘V'N('x)l > 8} = O'

Hence, it suffices to prove (4.5) with WN replacing W,,. Towards this note that
@7  N7(SE - SR) = N2(SE — S@) + N1 (SR - SE), Yk >o.
Since { S\, Byx; kK > 1} is a martingale, by (3.12), (3.14) and (3.17) [insuring that
CRAR — EIGD/ djing —,1, VX € J), we are in a position to use Theorem 2 of
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Scott (1973) [under Condition (B)] which insures the weak convergence of the
above martingale sequence (implying its tightness), and hence, under (2.13) and
(2.14), we obtain that for every ¢ > 0 and n > 0, there exista 6 : 0 <8 < T and an
Ny, such that for N > Ny, n = [Nx], x € J,

(4.8) P{max, o,V 2S5 — S| > e/2) <n8/2T.

Also, if we choose (> 0) so small that M, < 1, then, for [n — k] < 8N, (n — k)
{max, ., yPN(5)} < 8M, < 1, by (2.6). Hence, for n > k > (n — 6N) A\ O, we
obtain from (3.7) that

(4.9) N_il(gﬂﬁc) SX'JQ) Sl &k i (Ya Oni) — Eg, . (Yni Oni) ]
where )
(4.10)

81, 1(a, b) = N™3a(l — e="=P8)[ ¢=4(1 + b)* — be=*(1 + b)'""],
1<i<k<n<NT.
Note that by (2. 6) —(2.7), for every n <.NT, (2.15)-(2.17) hold Wlﬂ’l My ;=
ON~'(n — k)N ‘7(maxl<s<zv|azv(S)I)) = O((n — k)/N), My, , = OWN(n — k)
and My, s = O(((N — n)/ NP). Hence, by (2.19)-(2.20) and (4.9)—(4.10), we obtain
that

(.11) E{[N73(8 - S|’} < m*[(n - 0/NT,
k:NT >n>k>(n—-6N)\VO,

where M*(< o0) does not depend on §. By (4.11) and Theorem 12.2 of Billingsley
(1968, page 94), we conclude that for every n < NT, T < o,

(4.12) P{maxn_8N<k<nN‘?||§§,’§2 - S@| > 8/2} < K*¢™ %% K*< oo,

and K* does not depend on ¢ and 8. For every ¢ > 0,7 > 0 and T < o0, we choose
8(> 0) so small that § <ne?/2K*T, so that the right-hand side of (4.12) is
< 178/T. From (4.8) and (4.12), we obtain that

(4.13) P{max,_sveicN 21K — S| >¢) <n8/T,
VNT >n>k >(n—06N)\VO,

and this completes the proof of (4.5) (for V~VN). 0

We conclude this section with the remark that the weak convergence result for
the bonus sum process can be transmitted into the weak convergence result for the
corresponding waiting time process. Since, given Theorem 4.1 and the convergence
of f.d.d.’s (studied earlier), such a transmission follows directly from the results of
Vervaat (1972), the details are omitted.
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