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THE GENERALIZED POLYA’S URN DESIGN FOR SEQUENTIAL
MEDICAL TRIALS

By L.J. WEI
University of South Carolina-Columbia

In comparing K(> 2) treatments in a medical trial, suppose that the
response of the patient to treatment is dichotomous. We propose and analyze a
class of simple and nondeterministic treatment assignment schemes which tend
to put more patients on better treatments. These schemes are also applicable
when we have delayed responses from patients.

1. Introduction. In comparing K(> 2) treatments in a medical trial, suppose
that eligible patients occur singly and must be treated when they arrive. The major
goal of this trial is to gather sound data from current patients to derive information
about the effectiveness of these K treatments for the benefit of future patients.
Another goal of this trial is to treat each current patient in the best way which we
can. This is due to the ethical problem of studies on human beings. These two goals
are contradictory to some extent. Our purpose is to provide a treatment assignment
scheme which tends to put more current patients on better treatments, but is also
able to give us reliable information about treatment effectiveness after the trial is
over.

To meet the ethical requirement, Zelen (1969) introduced the play the winner
rule (PW) for comparing two treatments 4 and B into medical trials. This rule can
be described as follows: a success on a particular treatment generates a future trial
on the same treatment with a new patient; a failure on a treatment generates a
future trial on the alternate treatment. The PW rule may be implemented by
placing in an urn balls marked with an “A4” whenever a success is obtained with
treatment A or a failure with treatment B. Similarly balls marked with a “B” are
placed in the urn whenever a success is obtained with treatment B or a failure with
treatment 4. When a new patient enters the trial, the treatment assignment is
determined by drawing a ball randomly from the urn without replacement; if the
urn is empty, then the assignment is determined by the tossing of a fair coin. In
practice, the time to observe the response of a patient to treatment is much longer
than the time between patient entry. Therefore, most assignments are determined
by the tossing of a fair coin. This results in an approximately equal number of
patients on each treatment and the PW rule is of little value.

In the case when the response of the nth patient to treatment is known before the
(n + 1)th patient enters the trial, i.e., the response is instantaneous, the PW rule
can be modified so that after each success we continue to use the same treatment
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and after each failure we switch to the other treatment. Zelen (1969) called this rule
the “modified play the winner rule” (MPW) which has been studied extensively
from selection and ranking theory approach. A good summary is given by Hoel,
Sobel and Weiss (1975). The MPW rule tends to put more patients on the better
treatment, but it is too deterministic and may introduce bias to the trial. Hoel and
Sobel (1971) have extended the idea of the MPW rule to the case when more than
two treatments are compared. They introduced the cyclic play the winner rule
(PWC) which is defined in the next section. Again, this PWC rule is too determinis-
tic and is not applicable when we have delayed responses from patients to
treatments.

Efron (1971), Pocock and Simon (1975), and Wei (1977, 1978) have considered
some nondeterministic treatment assignment rules in tedical trials, but they did
not take the ethical problem into consideration.

In this article, a class of new treatment assignment rules is proposed and
analyzed in Sections 3 and 4. These rules tend to put more current patients on
better treatments, but they are not deterministic and allow the delayed response of
the patient to treatment. Another important feature of these new rules is that it is
fairly easy to implement them in a real trial.

2. The cyclic play the winner rule (PWC). At the outset of the trial, we order
the K given treatments at random and use this ordering in a cyclic manner.
Suppose that the response of the patient to treatment is instantaneous and dichoto-
mous. Let p; denote the probability of the single trial success for treatment i/ and let
g=1—p,wherei=1,2,...,Kand 0 <p; < 1. After each success, we treat the
next patient with the same treatment; after each failure, we switch to the next
treatment in the ordering scheme; after completing the cycle, we go back to the
first treatment. This assignment scheme is called the cyclic play the winner rule
(PWC) (Hoel and Sobel, 1971).

The PWC rule can be regarded as a Markov chain with K states corresponding
to K treatments after the ordering of treatments is fixed. Define the random
variable T, to be T, = i, if the nth patient receives treatment i. Then, the transition
probabilities are:

P(JTn=ilTn—1=i)=pi’ P(Tn=i+ llTn—l=i)=qi’
P(T, = K|T, = K) = pg, and P(T,= 1T, = K) = gy,
where i =1,2,..., K — 1. It is easy to see that this chain {7} is irreducible,

positive recurrent, aperiodic and has a stationary distribution &= (¢, ..., ),
where

&=(1/9)/25:(1/9) i=1...,K

It follows that £ is also the limiting distribution of the Markov chain {7,}. Let
N,(n) be the number of patients treated by treatment i after n assignments, then by
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Theorem 4.2.1 of Kemeny and Snell (1960),
N(n)/n—,8, i=12...,K, asn— .

If the ordered p values are denoted by pj;; < py; < ... < pigp, then the corre-
sponding £ values keep the same ordering, i.e., the PWC tends to put more patients
on better treatments. But the PWC is completely deterministic after the first
assignment and is not applicable when we have delayed responses from patients.

3. The generalized Polya’s urn design GPUD (W, a, 8). We still randomly
label these K treatments at the outset of the trial. The requirement of having
instantaneous responses in the last section is not needed for this new assignment
rule. This rule can best be explained by a generalized Po6lya’s urn scheme in the
following manner. An urn has balls of X different colors. We start with w; balls of
color i, i = 1,..., K. When an eligible patient arrives at the experimental site, a
ball is selected at random from the urn. We observe its color i and return the ball
to the urn. Treatment i is then assigned to this patient. When the response of a
previous patient to treatment / is available, we perform the following operations: (i)
if the response is a success, we add a(> 0) balls of color /; (ii) if the response is a
failure, we add B(> 0) balls of each color j, wherej = 1,2, ..., K and j #i. This
treatment assignment rule is called a generalized Pdlya’s urn design and is denoted
by GPUD (W, a, B8), where W = (w,, . . ., w,)". Obviously, this design is applica-
ble when we have delayed responses from patients to treatments.

If there is no information about the relative effectiveness of these K treatments
at the outset of the trial, we let w, = w, i = 1, ..., K. We will concentrate on the
scheme GPUD (wl, K — 1, 1), where 1 =(l,..., 1), because it most closely
parallels the PWC scheme.

In the rest of this article, we analyze the GPUD (W, a, B) based on the
assumption that the response of the patient is instantaneous. Let X, =
(X, - - - » X,x) denote the composition of the urn after n successive assignments.
Also, let Z(2) = (Z\(¥), . . . , Zx(?)) be a K-type continuous time Markov branch-
ing process (Mode, 1971; Athreya and Ney, 1972). Assume that (i) Z(0) = W; (ii)
the life time of particles of all types are unit exponentials; and (iii) an ith type
particle creates, on death, new particles of all types according to the probability
generating function f(s), where

fis) =sf .. sEisshy .. kg + 57t
Then, it is easy to see that the processes {X,; n=0,1,2, ...} and {Z(1,);
n=20,1,2, ...} are equivalent, where {7,; n =0, 1,2, ...} denotes the split
times of the process {Z(¢); ¢t > 0}.

Since £(0) = O for all i, it follows that 7, —, 00, as n — oo (page 1807, Athreya
and Karlin, 1968). Therefore, any limit relation which holds almost surely as ¢ — oo
for the process {Z(?); ¢t > 0} is also valid for the process {Z(7,); n =0,1,2, ... }.
Let p(s) = f(s) — s, i=1,2,..., K. Then it can be shown that
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(9%4(8))/(35,95)|y=y < o0 for all j, / and i=1,2,...,K. Also, since m,; =
(0p(8))/3s;]3=y > 0, there exists a f, > 0 such that each element of the matrix
exp(t,M) is positive, where
mx J = api’ J = i’
= Bg, J#i
and M = [|m;;||xx k- It follows that the process {Z(¢); ¢ > 0} is nonsingular,
supercritical, and positive regular with extinction probability zero.

If we let N(n) be the number of patients treated by treatment i after n
assignment when GPUD (W, a, B) is utilized, i = 1, 2, . .., K, then N,(n) essen-
tially is the number of splits, among the first #, which are of type i, of the process
{Z(); ¢t > 0}. From Theorem 5 of Athreya and Karlin's paper (1967), we have

(3.1) Ni(n)/n .59 = Ui/2f=1%
where v = (v;,..., ) is a left eigenvector (with positive components) of M
corresponding to the maximal positive eigenvalue A. Also, it is easy to show that for

each i
Z()/251Z(t) >, 8  as t— 0.

It follows that _
(312) Xm’/zjianj a5 as n— oo.

Since the matrix M is positive, there always exist a maximal positive eigenvalue A
and a corresponding left eigenvector with positive components. For K = 2, it is
easy to get A and v of M. The ratio N(n)/ No(n) then tends to (¢(p, — p,) + (6%,
—-p)l+ 4q1q2) )/24,, with probability one, as n — oo, where ¢ = a/S. We note
that this asymptotic ratio is increasing in ¢ when p, > p,. Therefore, the larger ¢ is,
the more patients the GPUD assigns to the better treatment. But, if ¢ is too large,
then the GPUD becomes pretty deterministic and is vulnerable to experimental
bias (c.f. Section 4).

When K > 2, A and v are difficult to get analytically. However, it is not the case
for GPUD (W, K — 1, 1). For this situation, obviously, K — 1 is an eigenvalue of
the matrix M. But the maximal eigenvalue A of M is bounded by max(Z5_,m;) =
K — 1. (cf. page 120, Cox and Miller, 1965). It follows that the maximal positive
eigenvalue A = K — 1 and the ith component of the corresponding left eigenvector
is v; = 1/g;. If the ordered p values are denoted by Py S P < - .. < Prgp then
the corresponding ¢ values keep the same ordering: Py < Py < - < i We
note that, for the design G(W, K — 1, 1), ¢, = £, where & is defined in Section 2,
i=12,...,K. It follows that the PWC rule and the GPUD (W, K — 1, 1) tend
to place the same proportions of patients on better treatments as the size of the trial
increases.

We also report some results from small-sized trials. Table I shows the compari-
son between the PWC rule and the GPUD (1, K — 1, 1), where K = 3. In most
cases of this table, the GPUD (1, 2, 1) tends to put more patients on better
treatments than the PWC rule does.
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Table I.
Comparisons between GPUD (1, 2, 1) and PWC rule
GPUD(1,2,1) PWC rule
expected no. of patients expected no. of patients
Py P2 Pa n treated by treatment treated by treatment
1 2 3 1 2 3

4 2 1 6 2.2581 1.9399 1.8021 2.2292 1.9249 1.8458
12 46710  3.8330  3.4960 4.4677 3.8581 3.6742
18 7.1104  5.7155 5.1741 6.7093 5.7892 5.5016
27 10.7933 8.5286 7.6781 10.0713 8.6857 8.2430

.6 3 2 6 2.3916 1.8751 1.7333 2.4108 1.8321 1.7571
12 5.0679 3.6407 3.2914 48604  3.6591 3.4805
18 7.8129 53747  4.8124 7.3087 5.4867 5.2046
27 11.9885 7.9470  7.0645 10.9811 8.2281 7.7908

8 4 2 6 2.5982 1.8419 1.5599 2.7568 1.6730 1.5702
12 5.7051 3.4897  2.8052 5.6510  3.3047  3.0443
18 8.9670  5.0595 3.9735 8.5457 49363  4.5180
27 14.0068 7.3372  5.6560 12.8878  7.3837  6.7285

9 5 3 6 2.6278 1.8338 ' 1.5384 2.9476 1.5604 1.4920
12 58504  3.4415  2.7045 6.1829  3.0068  2.8103
18 9.2827 49459  3.7714 94169 44536  4.1295
27 14.6445 7.0910  5.2645 14.2680  6.6238 6.1082

The scheme GPUD (W, K — 1, 1) appears a little drastic in its early stages
especially when K is large. Some alternatives may be considered. For example, we
can take a =/ for the /th success, / =1,2, ... . But for this scheme, the
corresponding continuous time process {Z(f)} is no longer Markovian. In general,
it is difficult to analyze a non-Markovian process.

4. Nondeterminicity of the GPUD (W, a, 8). If the physician knows or
guesses which treatment a patient will receive before he selects the patient, then he
may, consciously or subconsciously, bias the trail by his choice as to who is or is
not a suitable patient. A natural measure of this kind of bias is the expected
number of correct guesses of treatment assignments the physician can make if he
guesses optimally. The best strategy against the GPUD (W, a, B) is to guess the
treatment on the basis of which is most likely to be used in the next assignment. It
follows that the probability of having a correct guess at stage (n + 1) is

(4.1) E(maxlgigK(Xm'/zf;anj))'

From (3.2) and the dominated convergence theorem, (4.1) converges to
max, ;< x$;, Where ¢, is defined in (3.1). Since M = ||m;|| is positive, €; cannot be a
left eigenvector of M, where €; is a 1 X K vector whose components are all zero
except for the ith component, i = 1,2,..., K. It follows that max,; x¢; < L.
Therefore, the GPUD (W, a, 8) is not deterministic and is not vulnerable to
experimental bias.
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