The Annals of Statistics
1978, Vol. 6, No. 6, 1184-1238

HADAMARD MATRICES AND THEIR APPLICATIONS
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University of Illinois at Chicago Circle and University of Newcastle

An n X n matrix H with all its entries +1 and —1 is Hadamard if
HH'’ = nl. It is well known that n must be 1, 2 or a multiple of 4 for such a
matrix to exist, but is not known whether Hadamard matrices exist for every n
which is a multiple of 4. The smallest order for which a Hadamard matrix has
not been constructed is (as of 1977) 268. Research in the area of Hadamard
matrices and their applications has steadily and rapidly grown, especially
during the last three decades. These matrices can be transformed to produce
incomplete block designs, #-designs, Youden designs, orthogonal F-square de-
signs, optimal saturated resolution III designs, optimal weighing designs, maxi-
mal sets of pairwise independent random variables with uniform measure, error
correcting and detecting codes, Walsh functions, and other mathematical and
statistical objects. In this paper we survey the existence of Hadamard matrices
and many of their applications.
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1. Introduction. Very often the most difficult problems can be stated with
deceptive simplicity. This is particularly true in mathematics, and many well-
known problems are of this type. Typical are:

Fermart’s last theorem, that if the integer n is three or greater, there exist no
nonzero integral solutions x, y, z to the equation x” + y" = z";

Guthrie’s four-color conjecture for planar maps, that the regions of any map on
the plane can be colored with four or fewer colors so that no two adjacent regions
are assigned the same color;

the van der Waerden conjecture, that the permanent of a doubly stochastic square

n

matrix of side » is at least n!n™";

Goldbach’s conjecture, that every even integer larger than 2 is a sum of two
primes.

All of these problems have been known for a long time; the solution of the
second has only recently been announced by Appel and Haken (1976), and the
others are unsolved.

We are concerned here with a similar conjecture which has stimulated consider-
able interest among mathematicians and statisticians over recent years. This is the
Hadamard matrix conjecture, sometimes referred to as Paley’s conjecture, although
it is implicit in some writings from before Paley’s time. If » is a positive integer
divisible by 4, is there a square matrix H of order n, having all its entries +1 or
—1, such that HH' = nI? ‘

The first four problems which we mentioned are peculiar in that it can be argued
—and has been argued—that their real worth lies in the mathematical by-products
which have resulted from failure to solve them. These attendant results have often
been more useful than would be the solution of these problems themselves by
elementary means. For example, attempts to prove Fermat’s last theorem and the
other number-theoretical problems have led to the theory of algebraic numbers, the
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concept of ideals in rings, as well as a number of beautiful insights into the nature
of prime numbers.

However, the Hadamard matrix conjecture is different in nature. Although a
number of associated ideas have been developed in the search for Hadamard
matrices, the very existence of these matrices has extensive consequences in many
fields of research, such as optimal design theory, information theory and graph
theory. For example, a Hadamard matrix can be interpreted directly as a weighing
design. The equivalence of Hadamard matrices and a class of balanced incomplete
block designs (see Theorem 4.1, below) means that one can use them to construct a
range of block designs, Youden “squares” and generalized Youden designs. They
can be used in forming optimal fractional factorial designs, orthogonal arrays and
orthogonal F-square designs. For this reason, the present paper presents a brief
review of the importance of these matrices in various fields with special reference
to areas of statistical interest. We also present a comprehensive bibliography. It
should be realized that we do not attempt anything like a complete survey of the
construction or the pure-mathematical properties of Hadamard matrices; the
interested reader should consult Wallis, Street and Wallis (1972), and J. Wallis
(1973c). More elementary introductions can be found in the relevant chapters of
Ryser (1963), Hall (1967), and Street and Wallis (1977).

We adopt the following notations:

(i) In writing out matrices, + and — are used as abbreviations for +1 and
-1.

(ii) I denotes an identity matrix, J a square or rectangular matrix with all
entries + 1, and 1 a column vector with all entries + 1. In all cases the dimensions
should be deduced from the context.

(iii) A’ denotes the transpose of the matrix 4.

2. Hadamard matrices. A square matrix H of order n whose entries are +1 or
— 1 is called a Hadamard matrix of order n provided that its rows are pairwise
orthogonal, in other words
2.1 HH' = nl.
Equation (2.1) implies that H is nonsingular, and has an inverse n~'H’; conse-
quently

H'H = nl.

This tells us that the columns of a Hadamard matrix are also pairwise orthogonal.
Furthermore, it can be interpreted as saying that a matrix is Hadamard if and only
if its transpose is Hadamard.

As an example, a Hadamard matrix of order 4 is given by
+

(22) H= *

I+ 1+

++++
+1 1+
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Historically, these matrices were discussed as far back as 1867 by Sylvester, who
found that they arose in connection with a problem on tesselations. However, they
arose in a very natural way from the following considerations. Suppose 4 = (g, ) is
a square matrix of order »n with real entries such that |a;;| < M for every i and j.
Hadamard (1893) proved that the absolute value of the determinant of A cannot
exceed M"nin. -Since (det H)? = det H’ - det H = det(H'H) = det(nl) = n”,
therefore for M = 1; a Hadamard matrix of order n attains the maximum determi-
nant value. Hadamard showed further that these matrices are the only ones which
attain the bound. (This is why the name “Hadamard matrix” has been used.) For a
brief survey of results on this “maximum determinant” problem, see Brenner and
Cummings (1972). Statistical aspects of the maximum determinant problem are
discussed by Hedayat (1978); see also Section 5.5. .

There exist Hadamard matrices of orders 1 and 2, but it can be shown that every
other Hadamard matrix has order 4 for some positive integer ¢. Hadamard
matrices of infinitely many orders have been constructed, and it has been conjec-
tured that one exists for every ¢, but no general proof is available, and the number
of unsettled orders is infinite. However, no case is known of an order divisible by 4
which has no Hadamard matrix. The smallest order which is undecided is 268. The
most recent and comprehensive listing of the orders for which Hadamard matrices
are known is that of Seberry (1978).

Prior to Paley’s time Sylvester (1867) noted Hadamard matrices of orders which
are powers of 2, essentially using Theorem 3.1 below, and Scarpis (1898) proved
that when p is a prime congruent to 3 (modulo 4) then there is a Hadamard matrix
of order p + 1, while if p is a prime congruent to 1 (modulo 4), then there is a
Hadamard matrix of order 2(p + 1). Paley (1933) discovered two constructions
(Theorems 3.2 and 3.3 below) which generalize Scarpis’ theorems. These results
enable one to find Hadamard matrices of many small orders, and after Paley’s
paper there were only six orders not yet constructed in the range from 1 to 200,
namely 92, 116, 156, 172, 184, and 188.

The next major constructions were discovered by John Williamson. In 1944 he
published valuable generalizations of some of Paley’s work, which did not, how-
ever, yield any new orders under 200. He also gave a new type of construction,
which we outline below in Section 3.3. Williamson constructed a Hadamard matrix
of order 172 by this method. Later, Baumert, Golomb and Hall (1962) used
Williamson’s method to construct a Hadamard matrix of order 92, and conse-
quently one of order 184; and then Baumert (1966) constructed a matrix of order
116 similarly.

Williamson’s method was generalized by Baumert and Hall (1965a) who found a
matrix of order 156. Further generalizations were given by Cooper and Wallis
(1972), J. Wallis (1973a), and Turyn (1974), and research in this area is continuing.

Table 1 presents a summary of the construction of small Hadamard matrices
(orders up to 200).
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Suppose H is a Hadamard matrix of order » containing a submatrix of order n,
which is itself Hadamard. What do we know about #,? Cohn (1965) showed that
n, < n/2. For example, no Hadamard matrix of order 12 can contain a Hadamard
matrix of order 8. Thus, if one hopes to construct a Hadamard matrix of order n by
augmenting a Hadamard matrix of order n, with n — n; rows and columns with
entries +1 or —1 then a necessary condition is n — 2n, > 0. -+

All of the above discussion ignores the question of how many different Hada-
mard matrices of a given order might exist. This is a very difficult question to
answer. First, it is necessary to decide what is meant by “different” Hadamard
matrices. It is usually agreed that two Hadamard matrices are essentially the same
if one can be obtained from the other by a permutation of the rows, or of the
columns, or by negating certain rows, or columns. Two Hadamard matrices are
called equivalent (or Hadamard equivalent) if one can be obtained from the other
by a sequence of these operations; or alternatively two Hadamard matrices H; and
H, of the same order are equivalent if there exist signed permutation matrices P,
and P, for which P,H, = H,P,, where a signed permutation matrix is a matrix in
which each row and each column has exactly one nonzero entry, and that entry is
from the set {1, — 1}. It is known that Hadamard matrices of orders up to 12 are
uniquely determined up to equivalence; Hall (1961) showed that there are precisely
five equivalence classes of matrices of order 16 and (1965) three of order 20. Other
results have been discovered by Rutledge (1952), Stiffler and Baumert (1961),
Baumert (1962), Wallis and Wallis (1969), Bussemaker and Seidel (1970), Newman
(1971), W. D. Wallis (1971a), (1971b), (1972a), (1972b); Gordon (1974), Norman
(1976), Longyear (1978), Cooper, Milas and Wallis (1978), who used integral
equivalence of matrices to obtain lower bounds on the number of equivalence
classes, including the following theorem:

THEOREM 2.1. Given any positive integer N, there are infinitely many orders at
which there are at least N equivalence classes of Hadamard matrices under Hada-
mard equivalence.

TheNmetl910ds show that the smallest such order will be at most 32", where
n= —% (square brackets denoting integral part); but this is clearly not the

best possible result.

Another method of discussing equivalence is to consider the weight of a Hada-
mard matrix, the number of entries equal to +1, as introduced by Schmidt and
Wang (1977). W. D. Wallis (1977) investigated the use of W(H), the maximum of
all the weights of Hadamard matrices equivalent to H, but his results tend to
suggest that W(H) will not be a useful tool in investigating Hadamard equivalence.

Bussemaker and Seidel (1970) and Cooper, Milas and Wallis (1978) have
examined other equivalence relations; and various authors (such as Bhat (1972a),
(1972b) and Singhi (1974), (1975)) have discussed isomorphism among the balanced
incomplete block designs which we shall associate with Hadamard matrices in
Theorem 4.1 below.
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Given a Hadamard matrix, one can negate every row whose first element is — 1,
thus obtaining an equivalent matrix whose first column is all + 1’s. Similarly, the
first row can be converted to all +1’s. A matrix in this form will be called
normalized. For example, given

T+ -+ 4+

-+ + +
(23) + o+ -+

L+ + + -]
one can first negate row 2, forming

T+ -+ +]
(24) R

+ + + -
and then column 2, to obtain

+ + + +

+ + - -
(2:5) + - - +

+ - + -

which is normalized. A matrix whose first column is all positive will be called
seminormalized; (2.4) presents a seminormalized matrix which is in fact not normal-
ized. It is clear that one can normalize or seminormalize a Hadamard matrix in
many different ways. This observation is important because, as we shall see in
Section 4.1, one may be able to construct nonisomorphic BIB designs from the
same Hadamard matrix.

Table 2 presents representative normalized Hadamard matrices of all orders up
to 32. Because of the special interest in order 188, a Hadamard matrix of that order
is exhibited in Table 3.

There has been some interest in the existence of a square (1, — 1) matrix H, , of
order n + 1 all of whose n X n diagonal submatrices are Hadamard. Pesotan and
Rahgavarao (1975) have found that the determinant of an H,,, is, at most,

n"/z(l +[n_n%])

n

For n+ 1 =35 there exists an H, with determinant 48; this is the maximum
possible determinant in the class of all matrices of order 5 with entries +1 and —1
(see Section 4.1). This matrix is exhibited below.

+
I

+
Further discussion of this problem can be found in Pesotan, Raghavarao and
Raktoe (1977) and Raghavarao and Pesotan (1977).

H5=

++++
I+ 1+
+o+ 1+
| +++

+
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The problem of whether an incomplete Hadamard matrix can be extended to a
Hadamard matrix has been discussed by Shrikhande and Bhagwandas (1970), and
by Vijayan (1976). Here by an incomplete Hadamard matrix we mean an m X n
matrix B having all its entries +1 or — 1, such that m < n and BB’ = ml.

3. Construction of Hadamard matrices

3.1. Early constructions. The easiest construction of Hadamard matrices is
embodied in Theorem 3.1. The symbol ® denotes direct product of matrices: if 4
is the matrix with typical entry g, ;, then

anB ap,B
A®B= ayB  ayB

J?

THeoReM 3.1. If H, is a Hadamard matrix of order m and H, is a Hadamard
matrix of order n then H; ® H, is a Hadamard matrix of order mn.

+
+
+

I+ 1+

+

ExaMpLE 3.1. There is a Hadamard matrix of order 4, namely
+ —
(Note: this matrix is the matrix of (2.2) with its second and third rows inter-
changed.)

+ +
+ o+ + +_
[+ Ile[1 I]-
+
By repeated use of the Hadamard matrix of order 2 as H,, we obtain

COROLLARY 3.1. There is a Hadamard matrix of order 2* for every positive
integer k.

THEOREM 3.2 (Paley (1933). If p“is a prime power and p* + 1 = O(mod 4), then
there is a Hadamard matrix of order p® + 1.

ProOOF. Suppose the members of the field GF(p*) are labelled ay, a;, a,, - - -,
in some order. A matrix Q of order p* is defined as follows. The (i, j) entry of Q
equals x(a; — a;), where x is the quadratic character on GF(p“), namely

x(0) =0,

x(6) =1 if b is a nonzero quadratic element
(perfect square) in GF(p®),

x(b) = —1 if b is not quadratic.

Then writing

|0 T -
S—[_l Q], H=1+S5,

H is a Hadamard matrix.

ExampLE 3.2. To construct a Hadamard matrix of order 12, we observe that
12 = 11 + 1. The quadratic elements of GF(11) are 1, 3, 4, 5 and 9; using the
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natural ordering ay = 0,4, = 1,- - - , a,o = 10, Q and H are
[0 - + - -+ 4+ o+ -+
+ 0 - 4+ - - - + + + -
-+ 0 - 4+ - - - 4+ + +
+ - + 0 - + - -+ +
+ + - 4+ 0 - 4+ - - - +
o=+ + + - + 0 - + - - -
- + + + - 4+ 0 - 4+ - -
- - + + + - + 0 - + -
- - - 4+ + + - + 0 - +
+ - - - 4+ + + - + 0 -
- + - - - 4+ 4+ + - + 0
[+ + + + + + + + + + + o+
- + - 4+ - - - + 4+ + - +
- + + - + - - - 4+ + + -
- - + 4+ - + - - - + + +
- + - + + - 4+ - - - 4+ +
H=- + + - + + - + - - - +
- 4+ + + - + + - + - - =
- - + 4+ + - 4+ + - + - -
- - - 4+ 4+ + - 4+ + - + -
- - - - 4+ 4+ + - 4+ + - +
- - 4+ - - = 4+ + + - + +]

THEOREM 3.3. Suppose p* is a prime power and p® + 1 = 2(mod 4). Then there
is a Hadamard matrix of order 2(p* + 1).

Proor. Using the quadratic character x in GF(p®), a matrix Q is constructed
as in Theorem 3.2, and
N
s-[1 o}

H=s®[1 FTl+re[t C]

then

is the required Hadamard matrix.

ExaMpLE 3.3. ‘As 12 = 2(5 + 1), where 5 is prime and 5 + 1 = 2(mod 4), we
can use Theorem 3.3 to construct a matrix of order 12. The quadratic elements in
GF(5) are 1 and 4, so

0 + + + + +
23;:’: + 0 + - - +
o=/ - + 0o + -] s=Ft + 0 4+ -~
_ 2 1 0 + + - + 0 + -
+ - - + o0 + - - + 0 +
+ - - + 0
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10+ 4+
Pl ++ I +++++

+H++++++++ 1+
L+ 1+ 1+ 141+ |
L++ 1+ 14+1 11+
FIEL I+
L4+ 1 ++41 | ++
FU0+1 0 ++1 1+
+Hl+++ 100 ++
L+ 1 L ++1+1 14+
L+++1 11 ++++
LT+ 141 1+ 1+

Gruner (1939-40) showed that a Hadamard matrix of order n = k? can be
constructed if £k — 1 and k + 1 are both prime powers. The case k = 18 gave a
Hadamard matrix of order 324; this order had not beeh constructed at that time.

Williamson (1944) generalized Theorems 3.2 and 3.3 to:

THEOREM 3.4. If there exists a Hadamard matrix of order h, h > 1, and p* is an
odd prime power, then there is a Hadamard matrix of order h(p® + 1).

The proof may be found in Williamson (1944), Hall (1967), and Wallis, Street
and Wallis (1972).

3.2.  Construction of special Hadamard matrices. The matrix S of Theorem 3.2
is skew, and it has been found that matrices like this play a special role in the
theory of Hadamard matrices. So we define a skew-Hadamard matrix to be a
Hadamard matrix of the form

H=S+1
where S is skew. S will satisfy
(3.0 SS' = (n-1)1,
where 7 is the order of H. The matrix S of Theorem 3.3 also satisfies (3.0) when
n = p® + 1; but in this case S is symmetric. A symmetric matrix with zero diagonal
and =+ 1 elsewhere is called a (symmetric) conference matrix if it satisfies (3.0). These
matrices can be used in the construction of Theorem 3.3 and will yield a Hada-
mard matrix. Conference matrices were introduced by Belevitch (1950) and their
relation to Hadamard matrices was studied by Goldberg (1966), Goethals and
Seidel (1967), Belevitch (1968) and J. Wallis (1971a). Skew-Hadamard matrices and
conference matrices are in a sense analogous objects, as is clear from the treatment
in Delsarte, Goethals and Seidel (1971), J. Wallis (1971a), (1972b), and Turyn
(1971). Skew-Hadamard matrices and conference matrices have been used in many
constructions, most of which are detailed in Wallis, Street and Wallis (1972).

Because of the importance of skew-Hadamard matrices it is of interest to
determine which matrices are equivalent to skew-Hadamard matrices. Longyear
(1976) obtained three criteria for determining if a given Hadamard matrix is
skew-Hadamard equivalent. One of her criteria states that a Hadamard matrix H is
skew-Hadamard equivalent if and only if there exists a signed permutation matrix
P such that H + 2P is a Hadamard matrix. While this criterion is quite general it is
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not useful in computation. Her other two tests are most practical for computer use
and for use by hand. As an application of her results, she has shown that of the five
equivalence classes of Hadamard matrices of order 16, exactly two do and three do
not contain skew-Hadamard representatives, and that of the three classes of order
20 one does and two do not.

There has been some special interest in the construction of symmetric Hadamard
matrices. These are used in a number of constructions; in particular, a pair
comprising a skew-Hadamard matrix M and a symmetric Hadamard matrix N
such that the product MN is symmetric is called a pair of amicable Hadamard
matrices; amicable Hadamard matrices arise in several constructions (see J. Wallis
(1971b), (1973b), and Wallis, Street and Wallis (1972)). Symmetric Hadamard
matrices with constant diagonal, such as

+

+
+

+1++
| +++

+4+ 1

have also been studied. Such matrices can only exist when the order is a perfect
square; it seems reasonable to conjecture that they exist for all such orders, but
infinitely many cases remain unconstructed. For further details see Bose and
Shrikhande (1970), and W. D. Wallis (1969a), (1971c), (1972c). These special
matrices are just one example of a special class of block designs, discussed in the
above papers and also by Ahrens and Szekeres (1969), W. D. Wallis (1969b),
(1970a), Bose and Shrikhande (1971) and Rudvalis (1971). One result to which we
shall refer later is:

THEOREM 3.5. If there exists a set of n — 2 pairwise orthogonal Latin squares of
order 2n, then there is a symmetric Hadamard matrix with constant diagonal of order
4n?,

A Hadamard matrix is called regular if the sum of the elements in any row
equals a constant. It can be shown that a regular Hadamard matrix has order a
perfect square, 4n% say. The number of entries equal to +1 in a row will be
constant, either 2n2 — n or 2n* + n. In the first case any two rows will have n> — n
positions wherein both have entry + 1; the second case has the same property but
the constant is n? + n. The matrices of the second type can be derived from the
first by simple negation.

THEOREM 3.6 (Szekeres (1969)). If there is a Hadamard matrix of order 4s, then
there is a regular Hadamard matrix of order 16s2.

PROOF. Suppose H = (#;;) is a normalized Hadamard matrix of order 4s. We
construct a matrix G, of size 16s* X 16s?, by defining
g4.sp+q,4si+j = hq,i+lhj,p lfp >i
g4.\p+q,4si+j = _hq, ihj,p+l lfp <i

g4sp+q,4si+j = _1 lfp =i
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for 0 <p,i <4s—1and 1 <gq,j < 4s. Then G is a regular Hadamard matrix.

Several other techniques have been used to construct regular Hadamard
matrices. In particular, Shrikhande and Singh (1962) prove that the Hadamard
matrices of Theorem 3.5 are regular. Goethals and Seidel (1970) prove that if both
n—1and n + 1 are odd prime powers, then there is a regular (and symmetric)
Hadamard matrix of order n% This is particularly useful when n = 2 (mod 4), as
for example when n = 10 a matrix of order 100 is obtained. Another construction
for regular Hadamard matrices is given by Wallis and Whiteman (1972).

3.3. Williamson’s method. Many exciting results have stemmed from the basic
ideas put forward by Williamson (1944). Consider the array

A B C D
_| —B A -D C
3.1 H=| — pa D 4 —Bl
-D -C B A
If A, B, C and D are replaced by square matrices of order n, H becomes a square
matrix of order 4n. One can attempt to choose 4, B, C and D in such a way that H
will be a Hadamard matrix.

If HH' is considered as a block matrix with n X n blocks, then the diagonal
blocks each equal A4’ + BB’ + CC’ + DD’. This must be 4nl for H to be a
Hadamard matrix. The (1, 2) block is B4’ — AB’ + DC’ — CD’. This will be zero
if AB’= BA’ and CD’ = DC’. Similar results hold for the other off-diagonal
elements. So we have:

THEOREM 3.7. If there exist square (1, — 1) matrices A, B, C and D of order n
which satisfy

3.2) AA’ + BB’ + CC’ + DD’ = 4nl
and, for every pair X, Y of distinct matrices chosen from A, B, C, D,
(3.3) XY =YX/,

then they can be used in (3.1) to construct a Hadamard matrix of order 4n.
ExAMPLE 3.4. Let
+ + o+ + - -
A=[+ + +}, B=C=D=[— + —}.
o+ o+ o+ -
Then
AB’=BA'=[: - :]

and clearly every other possible combination satisfies XY’ = Y X'. Moreover

3 -1 -1
-1 3 -1
-1 -1 3

3 3 3
3 3 3
3 3 3

A4’ = , BB =CC'=DD'=
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so AA’ + BB’ + CC’ + DD’ = 121 = 4nl. So these matrices satisfy the theorem.
The Hadamard matrix is

L4+ 1 ++ | +++++

++++ I H I+ I+
o S I S o B I

4+ +++ 1
+++++ 10+ +

T

I
FH I+ I+ 44+
i+ ++ 1 ++++
I +++4+1 01+
L+ 1 ++++ 1|
I l++++++1 11+
L4+l ++++ 1+ 1+

i+l +++ 1+

The basic difficulty lies in finding the matrices 4, B, C, D. Williamson made
certain simplifying assumptions: first, he assumed that 4, B, C and D are
symmetric matrices, so that the condition XY’ = YX’ reduces to saying that 4, B,
C and D commute. Then he made the further assumption that in each of the
matrices, the (i + 1, + 1) entry was equal to the (i, j) entry; for example:

al a2 a3 a4 D a"
a, a, a, . az - G,

a a a a,:* - a
= -1 1 2 -2

(3.4) =17 a. a 4 - -a,
n—2 n—1 n 1 'n—3

az a3 a4 a5 D al

and the whole matrix is determined by its first row. (One assumes that row and
column numbers are reduced modulo » when necessary.) Such a matrix is called
circulant. Circulant matrices have already occurred above: when a =1, the
matrices Q of Theorems 3.2 and 3.3 are circulant. Every such matrix is a
polynomial in the matrix K,

0 1 0 O 0
0 0 1 O 0
K=|0 0 0 1 0
0 0 0 O 1
1 0 0 O 0
(The matrix of (3.4) is a;I + a,K + a;K* + - - -+ +a,K"™ ') Since polynomials in

a given matrix commute, Williamson’s 4, B, C and D are commutative, and only
the condition (3.2) remains to be satisfied.

While Williamson’s assumptions are very restrictive, it has been found possible
to satisfy them in all the small cases. Williamson (1944) solved the case n = 43
(4n = 172), Baumert, Golomb and Hall (1962) solved n =23 (4n = 92), and
Baumert (1966) solved n = 29 (4n = 116). More recent results, including the first
construction of infinite classes of matrices, are in Turyn (1972), Whiteman (1973)
and J. Wallis (1973d), (1974), (1975a). In Table 4 we list first rows for circulant
matrices 4, B, C and D which may be used to construct Hadamard matrices of the
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Williamson type for order 4n, odd n < 25. Many of these matrices are taken from
Baumert and Hall (1965b) and Wallis, Street and Wallis (1972).

Various constructions for skew-Hadamard matrices have been made using the
Williamson method. J. Wallis (1971c) used the array (3.1) to construct the first
known skew-Hadamard matrix of order 92. See also Blatt and Szekeres (1969),
Hunt (1972) and Hunt and Wallis (1972). Another approach was used by Goethals
and Seidel (1970), who modified the array (3.1). Further developments of their
construction, and other adaptations and results, can be found in Yang (1971),
Whiteman (1972), Wallis and Whiteman (1972), J. Wallis (1975b) and Spence
(1975b), (1977).

Another method of generalization is to change the size of the array (3.1). The
original array has every variable exactly once per row and column. It has been
shown by various authors in various ways that such an array exists at sizes 1, 2, 4
and 8, and no other (Folkman (1967), Spencer (1967), J. Wallis (1970), Storer
(1971), Taussky (1971), Spence (1972)). Storer (1971) points out that the theorem is
essentially contained in Hurwitz (1898).

The arrays of size 1 and 2 are trivial, and the array of size 8 can give rise to no
new Hadamard matrices. So attention was directed toward arrays in which the
same variable could occur more than once in the same row. We define a Baumert-
Hall array H of order 4¢ to be a 4¢ X 4t array whose elements are *4, £ B, =C
and * D, constructed in such a way that if 4, B, C and D are replaced by (1, — 1)
matrices which commute, then HH’ is the 4¢ X 4¢ block matrix with diagonal
elements {(4A’ + BB’ + CC’ + DD’) and other elements zero.

THEOREM 3.8. If there exist square matrices satisfying the conditions of Theorem
3.7 and if there exists a Baumert-Hall array of size 4t, then there is a Hadamard
matrix of size 4tn.

ExaMPLE 3.5. The array

[ 4 4 4 B -B Cc -C -D B C -D -D
A -A B -4 -B -D D -C -B -D —-C -C
A -B -4 A4 -D D -B B -C -D C -C
B A -A -4 D D D C C -B -B -C
B -D D D A4 A4 A C -C B -C B
B -C -D D A -4 C -4 -D C B -B
D -D B -B A -C -A 4 B C D -D

-¢c -C - - C A —-A -A -D B -B -B
D -D -B -B -B C C -D A A A D
-D -C C C C B B -D A -A D -4
Cc -B - C D -B -D -B A -D —-A A
- -D -D -C -C -B B B D A —-A4 -4

is a Baumert-Hall array of size 12. If we replace 4, B, C, D by the circulant
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symmetric matrices generated by the following first rows:

4+ + - - + - + 4+ - + - - +
B: + - - — 4+ 4+ + + + + - - -
C: + + + - + + - - + + - 4+ +
D: + + — + - + 4+ + + - + - +

we obtain a Hadamard matrix of order 156.

The array of Example 3.5 was found by Baumert and Hall (1965a) and gave the
first proof of the existence of a Hadamard matrix of order 156. In 1970, Welch
found an array of order 20. Subsequently other arrays have been found by J. Wallis
(1973a), Cooper and Wallis (1972), and Turyn (1974); see also Lakein and Wallis
(1975). Using a computer, Turyn (1975) constructed a Baumert-Hall array of order
188; the construction depends on Theorem 6 of Turyn (1974). This gave the first
known construction of a Hadamard matrix of order 188.

These ideas were generalized by Geramita, Geramita and Wallis (1976). They
define an orthogonal design of order n and type (sy, 85, - *,5), 5; > 0, on the
commuting variables x;, x,, - + -, x;, to be an n X n array A with entries from
{0, = x;, * x5,- - -, = x;} whose rows are formally orthogonal, such that each
row has precisely s, entries either x, or —x;. It can be shown that if 4 is an
orthogonal design row-wise, it is also orthogonal column-wise. Therefore, if 4 is an
orthogonal design, then

A4 = A4 =3 _ (s x)1,

A Baumert-Hall array is an orthogonal design of order 4¢ withs, = 5, = 55 = 5, =
t. Orthogonal designs have application in the construction of Hadamard matrices,
and also in the construction of weighing designs (see Section 4.4 below). Plotkin
(1972) makes the very strong conjecture that every Hadamard matrix of order 8»
can be obtained from specializing some orthogonal design of order 8n and type
(n, n, n, n, n, n, n, n), i.e., every Hadamard matrix of order 8» may be obtained
from an orthogonal design of the order and type above by setting the variables all
equal to 1. He shows that the existence of a Hadamard matrix of order n implies
the existence of three types of orthogonal designs.

Orthogonal designs are surveyed by Geramita and Wallis (1974), which appeared
while Geramita, Geramita and Wallis (1976) was still in press. Subsequent develop-
ments are found in Geramita and Verner (1976) and Cooper and Wallis (1976a),
(1976b).

3.4. Other constructions. Many constructions of Hadamard matrices involve
difference sets. If G is an abelian group with v elements, a (v, k, A) difference set D

in G is a set of k elements g, g,, - - * , g, of G such that the differences +(g; — g),
where 1 < i < j < k, comprise every nonzero element of G, precisely A times each.

THEOREM 3.9. If there is a (4t — 1,2t — 1, t — 1) difference set, then there is a
Hadamard matrix of order 4t.
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PrROOF. Suppose D is the difference set, and G is the abelian group of order
4t — 1 containing D. Construct a square matrix 4 of order 4¢ — 1 as follows. First,

label the elements of G as gy, 8;,* * * , g4, in some order. Then put g; ;=1 if
g — g isin D, and g; ; = — 1 otherwise. Finally, let
1 1
H= ;
[1 A ]

REMARK. The constructions of Paley essentially involve difference set methods.

Difference sets are discussed at length by Ryser (1963), Hall (1967), Storer
(1967), and Baumert (1971). They have been generalized to supplementary dif-
ference sets (see J. Wallis (1972a)). Difference sets and supplementary difference
sets have been used by many authors in the construction of Hadamard matrices;
see, for example, Brauer (1953), Turyn (1965), Johnsen (1966), Szekeres (1971),
Wallis and Whiteman (1972), Mann and McFarland (1973), Spence (1975), Dillon
(1976), among others. Difference set methods have been useful in the construction
of Williamson-type matrices.

Dade and Goldberg (1959) used permutation groups to construct Hadamard
matrices. Unfortunately, Hall (1969) showed that as a consequence of the Feit-
Thompson theorem, their methods do not give matrices of any orders not already
found by Paley.

Bush (1971a), (1971b), (1971c) used finite projective planes to construct Hada-
mard matrices; however, as was pointed out by W. D. Wallis (1972c) and by Bush
(1973), the actual prerequisite is the existence of a sufficiently large set of orthogo-
nal Latin squares; see Theorem 3.5.

An important recent technique is that of J. Wallis (1976), who has used
orthogonal designs and other methods to prove that given any positive integer g,
there exists an integer r, dependent on ¢ such that a Hadamard matrix exists for
every order 2'q where ¢+ >r. The Hadamard conjecture is that r = 2; the best
known result is:

THEOREM 3.10 (J. Wallis (1976)). Suppose q and t are natural numbers, and
t > [2 logy(q — 3)]. Then there is a Hadamard matrix of order 2.

This means that for each g there is only a finite number of orders 2’g for which a
Hadamard matrix is not known.

Further techniques for the construction of Hadamard matrices can be found in
Spence (1967), J. Wallis (1969a), (1969b), (1972c), and Whiteman (1971), (1976).
Various attempts have been made to construct Hadamard matrices by computer;
for the application of “backtrack” programming to this end the reader is referred to
Hall and Knuth (1965). :

4. Applications of Hadamard matrices in design theory. Research on the ap-
plication of Hadamard matrices has been steadily growing over recent decades,
and this is why we have written this outline of their uses. In particular, the
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application of Hadamard matrices to the theory and construction of experimental
designs has been of considerable importance. It was realized very early that
Hadamard matrices are equivalent to certain block designs; but other links to
block designs have only been realized more recently. Similarly, the application of
Hadamard matrices as weighing designs is natural and obvious, but the applica-
tions to other types of design such as group divisible designs and optimal resolution
3 designs have only been discovered recently. In this section we demonstrate how
Hadamard matrices can be used to construct all these designs, and also 3-designs,
Youden designs, factorial designs and orthogonal arrays; and we indicate the
relationship to generalized Youden designs and to orthogonal F-designs.

4.1. Hadamard matrices and balanced incomplete block designs. Let T be a set
of v treatments. A t-design with parameters v, b, r, k, A, on T is a block design
consisting of b blocks each of size k£ such that (i) no treatment appears more than
once in a block, (ii) every treatment appears in r blocks, (iii) every subset of size ¢
appears in exactly A, blocks of the design. Several interesting applications of
t-designs are given by Hedayat and John (1974). A 2-design is better known as a
balanced incomplete block design (BIB design), and some authors refer to a
3-design as a doubly balanced incomplete block design. When v = b the 2-design is
called symmetric. It is useful to notice that a ¢-design is also an e-design for every
e <1, so parameters A;, A,, - - - , A,_, are also defined for every t-design; A, = r,
and A, is usually denoted simply by A.

With each r-design we can associate a v X b matrix N, called the incidence
matrix of the design, by letting ,; = 1 if the ith treatment appears in the jth block
and zero otherwise. It is clear that N uniquely determines the design. Two designs
having the same parameters, with incidence matrices N, and N,, are said to be
isomorphic if there exist permutation matrices P and Q such that N, = PN,Q.

If H is a normalized Hadamard matrix of order 4¢ then the matrix obtained by
deleting the first row and the first column of H will be called the core of H; if A is
the core then

THEOREM 4.1.  The existence of a Hadamard matrix of order 4t is equivalent to
the existence of symmetric BIB designs with the parameters

(i) v=b=4t—1Lr=k=2t—1,A=t-1;
(i) o=b=4t—1,r=k=2t,A=1.

PROOF. Assume H to be normalized Hadamard matrix of order 4¢ and let 4 be
the core of H. Then N, =1(J + A), N, =1(J — A4) are incidence matrices of BIB
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designs with the parameters (i) and (ii) respectively. It is clear that the above
processes are reversible.

ExampLE 4.1. If we start with the normalized Hadamard matrix

+ + + + + + + o+

+ + + - + - - -

+ - + + - + - -

|+ - - + + - + -

H=ly - - - + + - +

+ + - - - + + -

+ - + - - - + +

L+ + -+ = = = 4]

we obtain the incidence matrices

1 1.0 1 0 0 O] (0.0 1 0 1 1 1]
01 1 01 00 1 00 1 0 1 1
001 1 010 1 100 1 0 1
Ny=lo o o0 1 10 1|, Ny=[1 11001 0}
1 00 01 1 0 01 1 10 0 1
01 00 01 1 1 01 110 0
(1. 0100 0 1] | 01 01 1 1 0]

Numbering the rows of N, as 0, 1, 2, 3, 4, 5, 6, we see that N, corresponds to the
BIB designs with blocks

046, 015, 126, 023, 134, 245, 356,
while N, is the incidence matrix of the complementary design, J — N,.
It is known that from the family of BIB designs with v = b one can construct

other BIB designs. Therefore one can relate more BIB designs to Hadamard
matrices. For example,

COROLLARY 4.1. The existence of a Hadamard matrix of order 4t implies the
existence of BIB designs with the parameters

() v=2t—-1,b=4t-2,r=2t-2,k=t—-1,A=t-2;
(i) v=2t,b=4t—-2,r=2t—-L k=t,A=t—1;
(i) v=2t—-1,b=4t-2,r=2t,k=t,A=1.

PROOF. Let N, be as in the construction of Theorem 4.1. Rearrange (if neces-
sary) rows of N, and bring it to the form

1 N,
o)
Then N, and N, are the incidence matrices for designs with the parameters in (i)
and (ii) above. It can be easily shown that N =3(J — N;) is the incidence matrix
for a design with the parameters in (iii).
It is to be noted that from a given Hadamard matrix one may be able to produce

several nonisomorphic BIB designs with the parameters specified in Theorem 4.1
and Corollary 4.1. For example, Bhat (1972b) has shown that each of the three
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nonisomorphic Hadamard matrices of order 20 gives rise to two nonisomorphic
BIB (19, 19, 9, 9, 4) designs, and thus has constructed six nonisomorphic designs
with these parameters. Recently, Singhi (1974) has shown that these are the only
nonisomorphic solutions of BIB (19, 19, 9, 9, 4) designs.

Bhat and Shrikhande (1970) have proved that if for any ¢ a solution exists for a
BIB design with v=b=4t—1, r=k=2t—1, A=1t—1, then the number of
nonisomorphic solutions to a BIB design with v = b= 12"*2— 1, r=k = 2"*1 — |,
A = 12" — 1 tends to infinity as n tends to infinity. Singhi (1975) has obtained some
related results and has developed a technique for generating a large number of
nonisomorphic BIB designs with v=b=4t—1, r=k=2t—1, A=t—1. For
example, he has shown that there exist at least 57 nonisomorphic BIB designs with
v=b=3lr=k=15A="7.

THEOREM 4.2. The existence of a Hadamard matrix of order 4s implies the
existence of a 3-design with the parameters v =4s, b=8s—2, r=4s— 1, k=2s,
A3 =5 1.

Proor. Let A be the core of a normalized Hadamard matrix of order 4s. Then

_|:U+4) (J-4)
v %

N

is the incidence matrix of the required 3-design.

A BIB design is called quasi-symmetric if every block intersects exactly one block
in y treatments and intersects all other blocks in x treatments, for some constants x
and y. The design formed by taking two complete replications of a symmetric BIB
design is quasi-symmetric; Stanton and Kalbfleisch (1968) show that any other
quasi-symmetric design must have the same parameters as the design in Theorem
4.2, and in fact, W. D. Wallis (1970b) shows that the 3-designs of Theorem 4.2 are
the only quasi-symmetric designs with these parameters.

It should be mentioned that there do exist BIB designs with these parameters
which are not 3-designs; Stanton and Mullin (1969) give examples in the case s=2.

ExampLE 4.2. Consider the Hadamard matrix of order 8 which was used in
Example 4.1. The corresponding 3-design of Theorem 4.2 has incidence matrix

1 101 0 0 0 0 01 01 11
o1 101 0 O0T1TO0TO0OT1TO0T11
0 0110101 100T1TT0 1
000 1101 1110010
1 0001 10011100 1
0100 01 1 1011100
1 0100 01 01 0T1T1T1UO0
1111111000 O0O0 O O]

Recall that a regular Hadamard matrix is one in which the sum of the elements
in any row equals a constant.
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THEOREM 4.3. The existence of a regular Hadamard matrix H of order 4n? is
equivalent to the existence of symmetric BIB designs with parameters

i) v=b=4n’r=k=2n>—nA=n*-n,
() v=b=4n,r=k=2n*+nA=n*>+n.

PrROOF. It is easy to see that i(J — H) and 1(J + H) are the incidence
matrices of the required designs; and the construction is clearly reversible.

The various constructions for regular Hadamard matrices, outlined in Section
3.2, can be used to construct block designs via Theorem 4.3. For example, from
Theorem 3.6 we have:

THEOREM 4.4. If there is a Hadamard matrix of order 4s, then there exist
symmetric BIB designs with parameters :

(i v=0>b=16s*r =k =28s—2s, A =4s%> — 2s,
(i) v=>b=16s%r =k =8s*+ 25, A\ = 45> + 2s.

4.2  Hadamard matrices and group divisible designs. Various generalizations of
BIB designs have been considered. We discuss one case—group divisible designs—
which form a subclass of partially balanced incomplete block designs (PBIB) with
two associate classes.

A group divisible design is a block design based on v = mn treatments, consist-
ing of b blocks of size k, k < v, in which each treatment appears r times, whose
blocks and treatments can be rearranged so that the v X b incidence matrix N of
the design satisfies

NN =|

where G is the n X n matrix (r — A)I + A,J and D is the n X n matrix A,J, for
some nonnegative integers A, and A,. Two treatments either occur together in A;
blocks, in which case they are called first associates, or else they occur together in
A, blocks, and are called second associates. (Observe that if A, = A, then we have a
BIB design.) Group divisible designs are commonly classified into three subfami-
lies:

singular, where r — A\, = 0;

semiregular, where r — X\, > 0 but rk — vA, = 0;

regular, where r — A\; > 0 and rk — vA, > 0.

Hadamard matrices can be utilized in the construction of group divisible designs,
as is seen in the following three theorems which are based on some results of Bush
(19770b).
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THEOREM 4.5. The existence of a Hadamard matrix of order 4t implies the
existence of group divisible designs with parameters

() v=12t, b=16t—4, r=8t—2, k=6t; m=3, n=4¢, \\ =4t — 2,
A, =4r-1

(i) v=16t—4, b=12t, r=6¢t, k=8t —2; m=4t—1, n=4, A\, =24,
A, = 3t

PrOOF. Let B be a normalized Hadamard matrix of order 4¢ whose first
column is deleted. Then N, = (J + K)/2 and N, = Nj are the incidence matrices
for designs with parameters (i) and (ii) respectively, where

B B —-B -B
K=\B -B B —-B
B —-B -—-B B

Two treatments in design (i) are first associated if they are within the first 4, the
second 4¢ or the last 4¢ row indices of N,. Otherwise they are second associates. In
design (ii) the first associates are those groups of treatments (columnwise in N,)
with indices 7, i + 4t — 1, i + 8¢t — 2, i + .12t — 3, for various values of i. The
theorem follows from the fact that the block matrices in N, are the incidence
matrices of BIB designs with parameters listed in Theorem 4.1.

THEOREM 4.6. The existence of a Hadamard matrix of order 4t implies the
existence of group divisible designs with parameters

() v=16t—4,b=16t—4,r=8t -3, k=8—3;m=4,n=4t— 1\ =
4t — 3, N\, =4t -2

() v=16t—-4,b=16t—4, r=8t—L k=8t—1;m=4n=4t—1, A
=4t — 1, A, =41

ProOF. Let A be the core of a Hadamard matrix of order 4¢. Then N, =
(J+ L)/2 and N, =(J — L)/2 form the incidence matrices for designs with
parameters (i) and (ii) respectively, where

—A A A A
A -4 A A
A A -4 A
A A A -4

L=

The association schemes of these designs are defined similarly to those of design (i)
in Theorem 4.5.

THEOREM 4.7. The existence of a Hadamard matrix of order 4t implies the
existence of a group divisible design with parameters
v=4t,b=8t -4, r=4t -2,k =21
m=2,n=2t,\;, =2t —2,\, =2t — L.
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PrOOF. Let M be the incidence matrix of a design with parameters (ii) as in

Corollary 4.1 based on a Hadamard matrix of order 4¢. Then
M M
N =
[ o)

is the incidence matrix of the required design. The association schemes are defined
according to the partitioned form of N.

Bush (1977a) shows that nonisomorphic solutions to a family of semiregular
group divisible designs can be given if there exists a Hadamard matrix of order 4+,
t > 1. His result is:

THEOREM 4.8. If a Hadamard matrix of order 4t, t > 1, exists, then there will be
always multiple nonisomorphic solutions to the semiregular group divisible design with
parameters )

v=4t—-2b=4,r=2t,k=2t—-1;,m=2t—-1,n=2,A\,=0,\, = 1.

Proor. Construct the incidence matrix of a design with parameters (i) as in
Theorem 4.1 based on a Hadamard matrix of order 4¢. Select arbitrarily any 2¢ — 1
rows. Denote these rows as 1,2, - - -, 2t — 1. With this enumeration, supply an
additional block containing 1,2, - - ,2¢ — 1. Then in the ith row of our num-
bered subsets of rows put in i whenever a one is encountered in the incidence
matrix, but put in 2¢ — 1 + i whenever the entry is zero. The result will be a design
with the required parameters. By an elegant argument Bush (1977a) shows that at
least two nonisomorphic solutions can be obtained by different selections of rows
even though the same Hadamard matrix is used.

4.3. Hadamard matrices and Youden designs. Let T be a set of v treatments. A
k X v Youden design on T is a k X v array filled out with the elements of 7" with
the properties that every row of the array is a permutation of the set T (ie., a
randomized complete block in the usual terminology of statistical design), and the
array is a BIB design with respect to the columns.

It is well known that the existence of a k X v Youden design is equivalent to the
existence of a symmetric BIB design based on v treatments in blocks of size k; an
easy algorithm for converting symmetric BIB designs to Youden designs is given in
Hartley and Smith (1948). Thus it follows from Theorems 4.1 and 4.4 that there are
Youden designs of sizes (2t — 1) X (4t — 1), (2¢) X (4t — 1) and (82 — 2f) X
(16£%) whenever there is 2 Hadamard matrix of order 4¢. Similarly, the existence of
a regular Hadamard matrix of order 4n? implies the existence of (2n? — n) X (4n?)
and (2n% + n) X 4n? Youden designs.

ExampLE 4.3. The following two Youden designs are constructed based on N,
and ¥, in Example 4.1.

NSO
S W =
—\ N
N O W
W -
£ D W
DN W N -
AP LN
SOV AW
—_ QN L
DO SNW
W= O
-D-N.'—O
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Kiefer (1975a), (1975b) has generalized the concept of Latin squares and Youden
designs to generalized Youden designs as follows: A b; X b, array is said to be a
generalized Youden design based on v treatments if the array is a generalized
balanced block design row-wise and column-wise. Here by a generalized balanced
block design consisting of b blocks of size k each and v treatments (k may exceed
v) we mean a block design in which a treatment may appear more than once per
block; if treatment i appears »; ; times in block j, then there are constants r and A
such that

z_l;-lnij =r 2_1;=lnijnhj =A
for all 4 and i, h # i, and that for all i and j
|n;; — k/o| < L.

Such a generalized Youden design will be denoted by GYD (v, b,, b,). A GYD is
said to be regular if b, = O(mod v) or b, = O(mod v); otherwise it is called
nonregular. Youden designs and Latin squares are examples of regular generalized
Youden designs. Kiefer (1975a) has proved that, under the usual linear additive
model for two-way elimination of heterogeneity, a GYD (if it exists) is A-, D-, and
E-optimal in the regular case. A nonregular GYD is 4- and E-optimal; a nonregu-
lar GYD is D-optimal unless v = 4.

The basic ingredients for the construction of generalized Youden designs are
Latin squares and BIB designs. Indeed, the BIB designs associated with Hadamard
matrices can be directly utilized for the construction of these designs. Kiefer
(1975b), among other results, has shown that the existence of a Hadamard matrix
of order 4t implies the existence of the following series of generalized Youden
designs:

v =41 b =21(4 — DQf - 1),i=1,2,f,>0,f, > 2.

For the construction of this series of designs and other series based on Hadamard
matrices we refer the reader to Kiefer (1975b).

4.4. Hadamard matrices and fractional factorial designs. Hadamard matrices
are intimately connected to factorial experiments in which each factor is at two
levels. Plackett and Burman (1946) utilized Hadamard matrices for the construc-
tion of optimum multifactorial experiments. Other statisticians have used Hada-
mard matrices for a variety of experiments under a variety of optimality criteria.
Applications of Hadamard matrices to the area of optimal regression theory have
been noticed recently by workers in the area of optimal design theory. A complete
treatment of the subject can be found in Hedayat (1977). We now survey the key
results:

Let ¢ be an integer. A fractional factorial design is said to be of resolution 2¢ + 1
if it satisfies the condition that under the usual model all effects of order ¢ or less
are estimable whenever all effects of order higher than ¢ are assumed to be zero. A
fractional factorial design is said to be of resolution 2¢ if all effects of order ¢t — 1
or less are estimable whenever all effects of order ¢ + 1 or higher are assumed to be
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zero. A fractional factorial design is said to be saturated if the number of
observations (runs) is equal to the number of parameters in the model to be
estimated. A fractional factorial design is said to be orthogonal if the covariance
between any two estimable effects is zero.

THEOREM 4.9. The existence of a Hadamard matrix of order 4t implies the
existence of an orthogonal saturated D-optimal resolution 3 fractional factorial design
for 4t — 1 factors each of two levels.

Proor. Let H be a Hadamard matrix of order 4. Seminormalize H and delete
the first column. Denote the remaining 4¢ X (4t — 1) matrix by H. Then F =
3(H + J) is a desired fraction if we consider the rows of F as the treatment
combinations from a 4¢ — 1 factorial each at two levels denoted by 0 and 1.

THEOREM 4.10. The existence of a Hadamard matrix of order 4t implies the
existence of a resolution 4 design with 8t runs, an experiment on 4t factors each at two
levels.

Proor. Let H be a seminormalized Hadamard matrix of order 4¢. Let 4¢
treatment combinations be the rows of (H. + J)/2 and additional 4¢ observations
be (J — H)/2.

REMARK. It is known that the number of observations in the design constructed
by Theorem 4.10 is minimum.

THEOREM 4.11. The existence of a Hadamard matrix of order 4t implies the
existence of an orthogonal saturated resolution 3 fractional factorial design based on
8t — 4 factors each at two levels and one factor at four levels.

ProoF. Let H be a normalized Hadamard matrix of order 4¢ whose firit
column is deleted. Write H as H = [C, : C,] where C, is the first column of H.

Then
Cc, G C,
D=
[3C1 c, -G

is the required design where the columns of D correspond to factors and the rows
correspond to treatment combinations.

It is to be noted that one can collapse the four-level factor to three levels and
obtain a fractional factorial design equivalent to the design of Margolin (1968).
Further information regarding such designs are given in Dey and Ramakrishna
(1977).

THEOREM 4.12. The existence of a Hadamard matrix of order 4t implies the
existence of a D-optimal design with 4t runs, (X, Xp, * * * , Xig—1), | =
1,2, - -, 4t to fit the first order model in 4t — 1 variables.

E(Y)=0p+ 01x) + - -+ + 04_1x4,

assuming that the design point coordinates x;; all lie in the range [—1, 1].
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Proor. Let H be a Hadamard matrix of order 4¢. Seminormalize H and delete
the first column. The rows of the remaining matrix when considered as the points
of the design have the stated property.

ReEMARK. One may consider Theorem 4.9 as a corollary to Theorem 4.12.

Because of its symmetry and uniformity properties, the vertex-set V, of a
d-dimensional cuboctahedron (the difference body of a regular d-simplex) is useful
as an experimental design for the exploration of a response over a spherical region.
Doehlert and Klee (1972) have studied the problem of coordinating the containing
space so as to minimize the number of levels at which the controllable variables are
required to appear. The authors have used Hadamard matrices and certain other
combinatorial configurations for reducing the number of levels for each controlla-
ble variable. Further work on these problems has been done by McCarthy, Stanton
and Vanstone (1976). In this context it should be pointed out that the problem of
constructing a Hadamard matrix of order n + 1 is equivalent to the problem of
constructing an n-dimensional regular simplex whose vertices are a subset of the
vertices of an n-cube (see, for example, Dedo (1968)).

4.5. Hadamard matrices and optimal weighing designs. Suppose it is required to
determine the weights of p objects using a chemical balance (two-pan balance) and
standard weights; n weighings may be made. In each weighing there are two
decisions to be made:

(1) should a given object be included in the weighing or not;

(@) in which pan should it be weighed? Assume the objects to be numbered
1,2,- - -, p; and define X ; by

x;;=+1 if object j is to be placed in the left-hand pan during
weighing i;
x;; = — 1 if object j is to be placed in the right-hand pan during the
weighing i;
x,;=0 if object j is to be omitted from weighing i.
Then the n X p matrix X = (x,;) completely characterizes the weighing experiment.
Let us write w;, wy, -+ -, w, for the true weights of the p objects, and
Y1s Y2 * * +, ), for the results of the n weighings (so that the readings indicate that

the weight of the left-hand pan exceeds that of the right-hand pan by y, in the
weighing of i); denote the column vectors of w’s and y’s by W and Y respectively.
Then the readings can be represented by the linear model
Y=XW+e,

where e is the column vector of e, e, - - - , e,, and ¢; is the error between observed
and expected readings. We assume that e is a random vector distributed with mean
zero and covariance matrix o?l. This is a reasonable assumption in the case where
the objects to be weighed have small mass compared to the mass of the balance.
Under these assumptions the best linear unbiased estimator of W is W =
(X’X)™'X'Y with covariance of W = ¢*(X’X)"!. It has been shown by Hotelling
(1944) that for any weighing design the variance of W, cannot be less than ¢2/n.
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Therefore, we shall call a weighing design X optimal if it estimates each of the
weights with this minimum variance, o2/ n. By Proposition 1’ of Kiefer (1975a), an
optimal weighing design in our sense is actually optimal with respect to a very
general class of criteria. It can be shown that X is optimal if and only if X’X = nl.
This means that a chemical balance weighing design X is optimal if it is an n X p
matrix of +1 whose columns are orthogonal. Thus we have:

THEOREM 4.13. Any p(< n) columns of a Hadamard matrix of order n constitute
an n X p optimal chemical balance weighing design.

An optimal weighing design is clearly A-, D-, and E-optimal in the following
sense. A weighing design X is said to be A-optimal if the trace of (X'X)~! is
minimum, D-optimal if the determinant of (X’X)~! is minimum, and E-optimal if
the maximum eigenvalue of (X’X)~! is minimum among the class of all n X p
weighing designs and for the model of response specified above. If the balance has
not been corrected for the bias we may assume the bias to be one of the p objects,
say the first one.

Hadamard matrices can also be used for weighing objects using spring balance
(one-pan balance). The spring balance problem is different from the chemical
balance problem in that the elements x; ; of the matrix X are restricted to the values
of 0 and 1. In this case no design exists with Var of W, = 0?/n because X’ X never
becomes nl. However, a D-optimal spring balance design can be constructed for
p = n — 1 objects using n — 1 measurements if a Hadamard matrix of order 4n
exists. The procedure is easy. Let X = N,, the incidence matrix of the BIB design
in (i) of Theorem 4.1. In this case the variance of each estimated weight is
4(n — 1)0?/n. Thus we have:

THEOREM 4.14. The existence of a Hadamard matrix of order n implies the
existence of a saturated D-optimal spring balance design for n — 1 objects using
n — 1 weighings.

The weighing design
1 1
X ‘[ 1 J- Nz]

can be used as a biased spring balance design, where the bias corresponds to the
first object. With such a design the variance of estimated weights of objects
2,3,---,n will be 402/ n. This is the minimum possible variance as has been
shown by Moriguti (1954). Therefore we have:

THEOREM 4.15. The existence of a Hadamard matrix of order n implies the
existence of a saturated A-optimal biased spring balance design for n — 1 objects
using n weighings.

In Theorems 4.14 and 4.15 the term saturated implies that in the usual analysis of
variance no degrees of freedom will be left for the errors. For a more detailed study
of optimal weighing designs, the reader should consult Mood (1946), Raghavarao
(1971) and Banerjee (1975).
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It is sometimes not possible to weigh all the objects simultaneously in one
weighing. Accordingly one asks about weighing designs in which exactly k objects
are weighed each time. In the case of a design with as many weighings as objects,
so that the matrix is square, one asks for a matrix X of order p with exactly k
entries * 1 per row and the rest zero, such that X’X is diagonal. In the case of an
unbiased balance it is best to have exactly k entries = 1 per column, so one seeks a
matrix X with entries 0, — 1 and + 1, which satisfies

X'X = kl.

It has been conjectured, see J. Wallis (1972b), that such a matrix exists whenever
0 < k < p. Considerable work has been done on this conjecture recently; for a
survey of the results up to 1974 and a bibliography, see Geramita and Wallis
(1974). Hadamard matrices are important in the constructions.

Federer, Hedayat, Lowe and Raghavarao (1976) found an interesting application
of spring balance weighing designs in crop experiments. Forage crop researchers
determine the proportion of legume, weed, and grass contents of hay by sampling
and hand separation or by visual estimates of the relative proportions. The
sampling and hand separation method is costly and time consuming and both
procedures are subject to biases. A method employing spring balances weighing
design theory is presented by the above authors as an alternative to the presently
used methods.

In closing this section it should be mentioned that the designs used in the
weighing problems are applicable to any problem of measurements, in which the
measure of a combination is a known linear function of the separate measures with
numerically equal coefficient and a homoscedastic error term.

4.6. Hadamard matrices and orthogonal arrays. An orthogonal array of size N,
with k constraints, s levels, strength # and index A is an N X k array whose entries
are drawn from a set S of s objects, with the following property. Whenever a
subarray is formed by deleting all but ¢ of the columns, the N rows of the
remaining N X ¢ array contain each of the s* possible row vectors of length ¢ over
S precisely A times in its rows.

To avoid triviality, it is assumed that s > 2. The array is referred to as an OA
(N, k, s, t, A). These parameters are clearly redundant, as N must equal As’.

ExampLE 4.4. Here is an OA4 (9, 4, 3,2, 1):

ONN = = ONN~=O

r

VRO ———0 0O
N=ON=ON—~=O
—ONON—=N—~O
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THEOREM 4.16. The existence of a Hadamard matrix of order 4t is equivalent to
the existence of

() an OA@t, 4t —1,2,2, 1);
(i) an OA(8t,4t,2, 3, 1).

ProOF. (i) Suppose H is a seminormalized Hadamard matrix of order 4:.
Delete the first column of H. The remaining matrix is the desired array. Con-
versely, given an OA4 (4t, 4t — 1, 2, 2, 1), relabel its elements as +1 and —1. Then
the above procedure can be reversed.

(ii)) If H is a Hadamard matrix of order 4¢ then

4= -&]

is an array with the desired parameters.

ExampLE 4.5. Consider the Hadamard matrix
+

+
+

| +++

+4++
L4101

(i) If the first row is negated so as to seminormalize the matrix and the first
column is deleted, one obtains the O4(4, 3, 2, 2, 1)

I+ 1+
I ++ 1

++ 11

(i) The OA(8, 4, 2, 3, 1) obtained from the original matrix is

Il ++++1
T+ 1++1+
+1 111 ++4+

F i+ 1+

L .

4.7. Hadamard matrices and orthogonal F-square designs. An F-square design
of order n and frequency vector (A, - - ,A\,)onaset {a;,---,a,}isann Xn
array such that g, appears A, times in each row and column of the array. Such a
design will be denoted by F(n; A}, - - - , A,). Note that A, + - - - + A, = n, and
that an F(n; 1, 1,- - -, 1) is a Latin square of order n. If F, and F, are two
F-square designs of order n on {a,,- - -,a} and {b}, - - -, b} with frequency
vectors (A\;, -+ -+ ,A)and (u,, * - -, p,) respectively, then we say F, is orthogonal to
F, if, upon superposition of F, on F), g is superposed upon b; exactly A;y; times.
Let ¥ be a set of ¢ pairwise orthogonal F-square designs each based on a set
consisting of k elements. Then from Hedayat, Raghavarao and Seiden (1975)
we know that ¢ < (n — 1)?/(k — 1). ¥ is said to be a complete set if t = (n — 1)
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/(k —1). For more information on the theory and applications of these designs see
Hedayat and Seiden (1970), Hedayat, Raghavarao and Seiden (1975), Federer
(1977) and Kirton and Seberry (1978).

THEOREM 4.17. The existence of a Hadamard matrix of order 4t implies the
existence of a complete set of (4t — 1)* orthogonal F(4t; 2t, 2t) designs.

ProoF. Let H be a normalized Hadamard matrix of order 4¢. Let C; be the ith
column of H. For each pair C; and C, i,j = 2, - - -, 4, construct the array F;; by
putting + in the (s, ¢) entry of F), if the product of the sth entry of C; and the rth
entry of C; is + and putting — otherwise. Then it is not difficult to verify that the
resulting (4t — 1)* arrays form a complete set of orthogonal F(4¢; 2t, 2¢) designs.

EXAMPLE 4.6. Let

+ + + +
|+ - + -
H= + + - _|I
+ - - +
Then we have:

+ - + - + + - - + - - +
-—- + - + - -+ o+ -+ + -
Fa=y - 4 = Fn=4 4+ - 2, Fu=y4 - 4
-+ - 4+ - - 4+ + -+ + -
+ - + - + + - - + - - +
+ - + = + + - - + - - +
F32__ + — + F33—_ — + + F34 _ + + — >
-+ - 4+ - - 4+ + -+ 4+ -
+ - 4+ - + + - - T3 +
-+ - o+ - - + + - o+ -
Fo=_ + - 4> Fo=_ _ 4 4, Fu=_ 4+ 4+ -
+ - + - + + - - + - - +

S. Other applications of Hadamard matrices. It is only recently that the appli-
cability of Hadamard matrices outside of design theory has been recognized. In
this section we outline the applications in sets of pairwise independent random
variables, binary codes, information processing and maximum determinant prob-
lems.

5.1. Hadamard matrices and a maximal set of pairwise independent random

variables. Suppose R = {X,,- - -, X,} is a set of v mutually independent random
variables on a set of n points. Then it is well known that
(5.1) v < log, n.

If we relax the condition of mutual independence and assume only that the

elements of R are pairwise independent, then clearly the constraint (5.1) can be
relaxed to

(5.2) v<n-1

If v =n — 1 then we know something about the elements of R; the X; can take
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precisely two distinct values with positive probability. For each » > 3 one can
always construct a maximal set of pairwise independent random variables if we put
no additional restriction on X;. Suppose we insist that each X; should assign the
measure n~! to each point (uniform measures); then the problem of constructing a
maximal set of such pairwise independent random variables is not completely
solved because of the following theorem which is due to Lancaster (1965).

THEOREM 5.1. The existence of a maximal set of pairwise independent random
variables on n points (such that each of its members assigns the measure n~" to each
point) is equivalent to the existence of a Hadamard matrix of order n.

ProOOF. Let H be a seminormalized Hadamard matrix of order n. Delete the
first column of H and denote the remaining matrix by H. Now associate each of
the given n points with one of the rows of H, and associate the n — 1 random
variables with n — 1 columns of H, so that the jth random variable takes the value
x;; at point i, where X;; is the entry in the (i, /) position in H. Clearly these n — 1
random variables are pairwise independent because of the orthogonality of col-
umns of A and the uniform measure which each random variable assigns to the n
points associated with the rows of H. Observe that each random variable takes two
distinct values, 1 and — 1. It is clear that this process is reversible.

ExampLE 5.1. Using the Hadamard matrix
+
H —3

++++
++ 11

+

+1 1+

one obtains

H=

+1 1+

I+ 1+
++ 11

The three variables X,, X, and X, defined by H, are as follows:

X, takes value 1 on points 1 and 3, value —1 on points 2 and 4;
X, takes value 1 on points 3 and 4, value —1 on points 1 and 2;
X; takes value 1 on points 1 and 4, value —1 on points 2 and 3.

The variables are pairwise orthogonal.

REMARK. Theorem 5.1 shows that a maximal set of pairwise independent
random variables with uniform measures on n points can exist only if n=
O(mod 4).

5.2. Hadamard matrices and binary codes. We commence this section with a
brief introduction to coding theory. For further information, the reader is referred
to the recent books of Blake and Mullin (1975), MacWilliams and Sloane (1977),
and the survey by Sloane (1972).
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In transmitting information one represents the pieces of information by
sequences of symbols. The process of representation is called coding, and the
symbols are called code symbols. A sequence of code symbols is called a code word.
This terminology is sufficiently broad to cover the case of ordinary conversation in
ordinary human languages, but we are especially concerned with the types of codes
which are needed when electronic transmission is used. In this case it is usual to
require that the set of code symbols be small. In particular a binary code (2
symbols) is very applicable because of its natural correspondence to the two states
in which a switch can be: open or closed. Code words are of constant length; this
obviates the need for a special symbol to represent the break between words.

We refer to the medium through which communication will take place as a
(communication) channel. Often the channel will contain random signals which can
corrupt the message: we say the channel is noisy. For example, in radio communi-
cation over a long distance, the channel is often noisy, and this is very true of
communication with satellites and spacecraft. For this reason it is desirable to use a
code in which the various words are sufficiently different so as to make it unlikely
that one word will be corrupted into another.

A block code is one in which all code words have the same length n. Let F be a
set with ¢ distinct symbols which is called the alphabet. In practice g is generally 2
and F = {0, 1}. In most of the theory one takes ¢ = p” (p prime) and F = GF(q),
the finite field of order ¢. Using the ¢ symbols of F one forms all n-tuples, i.e., F”,
and calls these n-tuples words and n the word length. Note that F” is a vector space
over F if F is a finite field. A block code of g symbols is simply a subset of F”". If
F = GF(q) then a block code © over F is called a linear code or (n, k)-code over F
if € is a k-dimensional linear subspace of F”. Given any two code words, the
Hamming distance between two code words is defined as the number of compo-
nents in which the words disagree. A distance d code is one in which the minimum
of all the Hamming distances between the words is at least d. The error-detecting
and error-correcting capacity of a code are directly related to d as we shall see
shortly.

ExampLE 5.2. Consider the code with four words

A = 111110
B = 111001
(5:3) C = 000110 "
D = 000001

This is a block code of word length 6. The distances between 4 and D, and B and
C, are 6; all other distances are 3. So it is a distance 3 code.

Suppose a word is sent in the code (5.3) and is received with one or two errors.
Since the distance is 3, the word will not equal any code word. Thus one can detect
as many as two errors in a code word. More generally, a distance d code is a
(d — D)-error detecting code.
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Suppose the word 111111 is received. If the probability of error is sufficiently
small that the chance of two errors is negligible, then the word which was
transmitted must have been 111110, or 4; if any one error is made then one can
similarly work out the original code word. We say (5.3) is l-error correcting; an
e-error correcting code is one in which the assumption that no more than e errors
are made per word enables one to decode any received message. A distance d code
is (3)(d — 1)-error correcting.

These two results are best-possible. For example, the code (5.3) is not capable of
detecting certain 3-error words (for example, A could be transmitted as B), nor is it
2-error detecting (either 4 or B could be transmitted as 111111). A similar
observation applies to every distance d code which is not distance d + 1. So codes
with large distance are desirable. An (n, M, d; q) code means a set of M code
words of length n with ¢ symbols and Hamming distance d. An (n, M, d; q) code is
optimal if M is as large as possible for given n, d and g. Plotkin (1960) obtained the
following bounds for binary codes:

G4  M<2f=Y if d isevenand d <n <2d,
2d —n
(5.5) M<2n if d isevenand n =24,
d+1 . .
(5.6) M<2[m] if d isoddand d<n<2d+1,
(5.7) M<2n+2 if d isoddand n=2d+ 1.

Levenshtein (1964) proved that the Plotkin bounds are tight, in the sense that
there exist binary codes which meet these bounds, provided that enough Hadamard
matrices exist. It is well known (see, for example, MacWilliams and Sloane (1977))
that the existence of codes which meet bounds (5.4) and (5.5) implies the existence
of codes which meet bounds (5.6) and (5.7). Therefore, in constructing codes which
meet the Plotkin bounds we may assume that d is even. First, we need the following
composition technique. Suppose we have an (n,, M|, d,;2) code C, and an
(ny, My, d,; 2) code C,, M, > M,. We can construct an (n, M,, d; 2) code C with
n = an; + a,n,, and d > a,d, + a,d, for any values of ¢, and a, from C,; and C,
as follows. We paste a, copies of C, side by side, followed by a, copies of C, to
obtain

C1 Cl o« o Cl C2 Cz e C2

L]

a,
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Now omit the last M, — M, rows of C, to obtain the desired code. We denote this
code by a,C, @ a,C,.

We are now ready to construct binary codes which meet the Plotkin bounds.
From Bose and Shrikhande (1959) and Levenshtein (1964) we can conclude the
following results:

THEOREM 5.2. The existence of a Hadamard matrix of order 4t implies the
existence of the following optimal codes: (4t, 8t,2t;2), (4t — 1, 4¢,2t; 2), (4t —
1, 8¢, 2t — 1; 2) and (4t — 2, 21, 2¢; 2).

PrOOF. Let H be a normalized Hadamard matrix of order 4¢. Then the 87 rows
of the two matrices WP =1(J + H) and W =3(J — H) form a (4¢, 8¢, 2¢; 2)
code. To construct other codes form the matrix K by deleting the first column of
H, and the matrix L by deleting all rows of K which start' with +1 and deleting the
first column from the resulting matrix. Then the 4¢ rows of W) =3(J + K), the 8¢
rows of W and W® =1(J — K), the 2t rows of W =3(J + L) form the
remaining codes respectively.

ExampLE 5.3. From the Hadamard matrix H of order 4¢ = 12,

+ + + 4+ + + + + + + + 4
+ - 4+ - + + + - - - + -
+ - - + - + + + - - - 4+
+ + - - + - + + + - - -
+ - + - - + - + + + - -
gy=l+ - -+ - - + - + + + -
+ - - - 4+ - - + - + + +
+ + - - - + - - + - + +
+ + + - - - + - - 4+ - +
+ + + + - - - + - - + -
+ - 4+ + + - - - + - - +
IR T S S I
we can construct the following codes:

1 11 1 1 1 1 1 1 1 11

1 o101 1100010

1 00 1 01 1 1 00 01

1 10 01 01 1 1 000

1 01 00 1 01 1 1 00

w1 0 0 1 0o 01 01 1 10

71000 100 1 0 1 11

1 100 01 00 1 0 11

1 11 00 01 0 O0 1 01

1 1110 0 01 0O0T1O0

1 01 1 1 0 0 01 001

1 10 1 1 1 0 0 01 0O
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O~ O~ O0O—O —
OO~ O OO — O — —
O~ 00O —~O ——O
O~ 00O~ O O —
O~ 00O —O O — —
COO0O—~O = — O — ——
COO—~ O Ot — O
CO—~O O~ =00
O~ O~ O~ O OO
CO—~— O —~—= =0 0O —
O~ O~~~

Coocoo0ocOoO0CO0COO
Il

~
an
N

EN

— O OO0 O —O

—— O OO~ = O —~0O O

—~FO OO~ OO O —

—_ OO~ — O~ OO —~O

—_O T~ — O —~0 0 —0OO0O

—et ot et O OO —~O OO

— et O OO OO0 —

O OO~ O OO ——

— O OO~ OO O m v v

——_ OO~ OO0 ———O

(12, 24, 6; 2) code

— OO~ O OO —~——QO —
[
O

N

OO~ O OO~ —~
OO~ — O OO —O — —
O~ — 00O~~~
O~ 00O —O ——O —~
O~ 00O~ OO — —
COCO—~ O —m O — — —
COO0O O~ O —— O
CO—~ 0O —~—O0O~——0 0O
R = = R ===
CO~—O~——0 0O ~

Ot~ O~ — OO0~
]

-
ga

R

(11, 24, 5; 2) code
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1 1 1 1 1 1 1 1 1 1 1
O 1 01 11 0 O O 1 O
0 01 01 11 0 0 O 1
1 0 01 01 1.1 .0 OO
01 0 01 01 1 1 0O
0O 01 0 01 01 1 10
w@»=0 00 1 00 1 0 1 1 1
1 0 0 01 001 O 1 1
1 1. 0 0 01 0 0 1 0 1
1 110 0 01 0 0O 1 O
0 1 1.1 0 0 O 1 0 O 1
1 01110 0 01 0O
(11, 12, 6; 2) code
1 01 1.1.0 0 O 1 O
0O 1 01 1 1 0 O 0 1
-1 0 0 1 0 1 1 1 0 O
"E=60 100101110
0O 010 01 01 11
1 1.1 0 0 01 0 O 1

(10, 6, 6; 2) code

We now analyze the bounds (5.4) and (5.5) for even values of 4. The
(4¢, 8t, 2t; 2) code constructed in the proof of Theorem 5.2 meets the bound (5.5)
provided that a Hadamard matrix of order 4 exists. To construct codes via
Hadamard matrices which meet the bound (5.4) we use the composition technique
and the codes constructed by Theorem 5.2. Let the positive integers d and n be
given such that d is even and d < n < 2d. We would like to construct an optimal
(n, M, d; 2) code such that M = 2[d/(2d — n)]. Define

d
r=lay | @m A ) a1, = dr )

Then, using the notation introduced in the proof of Theorem 5.3, consider the code
C, where:

C= % W & % Wi s if n is even,
C=aq,Wd® % W 4, if n is odd and r is even,
C-= % wE ® a,Ws,,, if n is odd and  is odd.

Then this code is optimal and meets the bound (5.4). Thus the existence of
Hadamard matrices of order 2r (if r even), 2r + 2 (if odd), 4r, 4r + 4 are sufficient
for the existence of an optimal code which meets the bound (5.4).
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ExXAMPLE 54. Let n =27 and d =16. Here r =3, @, =4 and a,=1. To
construct an optimal (27, 6, 16; 2) code we need W3 and W{>. We have already
exhibited a W in Example 5.3. Below is a W constructed by the method of
Theorem 5.3.

1 1.1 1 1 1 1

01 01 0 10

1 0 01 1 0 O

5_0 0 1 1 0 0 1

WélllOOOO'

01 0 01 0 1

1 0 0 0 0 1 1

0 01 01 1O

Thus the required code is C =2W3 @ W =

i1 01110 0 0101 011 10O0O0T1UDO0
o101 1 1000101011100 01
1 o 01 0111001 0O010111O00O0
o110 01 0111001 00101110
o 01 0010 11 1{0 01 O0O0T1UO0T1 11
1 110 0 01 0 0 1{y1 1.1 0 001 0 O0 1
1 1.1 1 1 1 1
01 01 0 1 O
1 0 01 1 0 O
0 01 1 0 O 1
1 1.1 0 0 0 O
01 0 0 1 0 1

Other codes can also be constructed via Hadamard matrices. One such series can
be obtained by allowing the code words to be all the vectors in the linear span of
WS over GF(2). If H,, is a Paley type (Theorem 3.2), then it is known that the
resulting code has dimension 2¢ and its minimum distance d is such that d*—d+
1 > 4¢. For example, if we use the Hadamard matrix H,, of Theorem 3.2, then we
obtain a (23, 4096, 7; 2) code which is essentially the well-known Golay perfect
code. If H,, is not a Paley type then unfortunately nothing is known about the
dimension and the minimum distance of the code. Another series of codes can be
obtained by taking the vectors in the linear span of V = [I,, : W] over GF(2).
But again, nothing is known about these codes.

The practicality of the codes derived from Hadamard matrices was demonstrated
by the use of a (32, 64, 16; 2) code in the Mariner *69 telemetry system; see Posner
(1968).

5.3. Hadamard matrices and Barker sequences. Suppose x,, X,, - * - , X, is any
sequence of complex numbers. Then the (aperiodic) correlation sequence
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Cp €y ¢+, €,y is defined by
G = 27X Xy,

where X denotes the complex conjugate of x and i + j is reduced modulo n when
necessary. (See Turyn (1968) for more details.)

ExampLE 5.5. The sequence 1,7, — 1, — i gives rise to correlation sequence
—3i, —2,i, as
¢ =2 Ky = —i—i—i= -3
€= 2%-1":"7142 =-1-1=-2,
¢ =2l %%, =1

A sequence of elements +1 and —1, whose correlation sequence has small
terms, can be used in digital communications theory to simulate white noise. In
particular a sequence whose every ¢; is *1 or 0 is called a Barker sequence and is
the best possible sequence for this purpose. .

ExaMPLE 5.6. The sequence

+,+,+, —
has correlation sequence
+,0, —
so it is a Barker sequence of length 4. The sequence
+ + + - - + -

has correlation sequence
0,-1,0 —-10 —1
so it is a Barker sequence of length 7.

Barker sequences of lengths 2, 3, 4, 5, 7, 11 and 13 are known. Turyn and Storer
(1961) showed that any Barker sequence of length s longer than 13 can exist if and
only if there is a circulant Hadamard matrix of order s, and in fact the Barker
sequence could serve as the first row of the matrix.

It is clear, from the definition of circulant matrices in Section 3.3, that all
circulant matrices are regular. As we noted in Section 3.2, the order of a regular
Hadamard matrix must be a perfect square, so any later Barker sequences must
have square order.

It has been proven that no further Barker sequence exists of length s < 12,100;
so no circulant Hadamard matrix exists with order < 12,100, except for the order
4. Whether any exist at all is a matter for conjecture. Stanton and Mullin (1976)
have proven the nonexistence of a related type of circulant weighing matrix, so a
solution to the problem of the existence of Barker sequences may not be impossi-
ble.
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5.4. Hadamard matrices and Hadamard transform spectrometry. Hadamard
matrices have recently been found useful in spectrometry and pattern recognition,
in the construction of masks. This is in fact a special application of the weighing
designs which we mentioned in Section 4.4.

A spectrometer normally consists of a light separator, a small entrance slit
through which a narrow beam of light is admitted, and the detecting and process-
ing hardware. The narrowness of the slit means that the ratio of noise to signal can
be high and so errors in observation can be significant.

In Hadamard transform spectrometry the separated light is sent on to a mask.
Various parts of the mask will be clear, allowing the light to pass through;
reflective (sending light to a secondary detector); or opaque. Let us represent clear,
reflective and opaque by + 1, —1 and 0 respectively. Then the configuration of the
mask is represented by a sequence of elements +1, —1andO.

Suppose k measurements are to be made, and suppose it is convenient to
measure the intensity of light at n points of the spectrum. Then the experiment will
involve k masks, which can be thought of as n X k matrix of entries 1, 0 and —1.
The efficiency of the experiment is the same as the efficiency of the matrix as a
weighing design. The best systems of masks are thus derived from Hadamard
matrices.

A discussion of the experimental-design features of Hadamard transform spec-
trometry, including the cases where n cannot be divisible by 4 or where the matrix
can have no entries — 1 (because only one detector is used) is given by Sloane and
Harwit (1976). Discussion of the problems which arose can be found in Tai, Harwit
and Sloane (1975). Decker (1973) gives a nontechnical introduction to the state of
Hadamard transform spectrometry hardware as of the end of 1972. A complete
survey will appear in Harwit and Sloane (1978).

5.5. Hadamard matrices and maximum determinant problems. Suppose A =
(a;)) is a real matrix of order n. Let

h(n) =max det(4) subject to a;;= —1, 1,

foy=" v a=0,
gm= " " " " a=-101,
k(my= " 7 " " 0<a;<1,
=" " " "-1<a;<L

Then it is easy to establish that:

h(n) = g(n) = k(n) = I(n) = 2"~ f(n = 1).
Therefore, the above five maximum determinant problems are equivalent. More-
over, we know that |h(n)| < n™/2, with equality if and only if 4 is a Hadamard
matrix of order n. Thus |h(n)] < n"/? if n ¥0(mod 4). The theory of Hadamard



matrices deals with the above problems in n =0 (mod 4). For other values of n not
much is known in the literature. The interested reader on this and related topics is
referred to Gilman (1931), Bellman (1943), Williamson (1946), Schmidt (1970),
(1973), Payne (1973), Hedayat (1977), and Brenner and Cummings (1972). The last
mentioned paper also contains a bibliography of papers on the case n % O(mod 4).

HADAMARD MATRICES

Here we list the first fourteen values of h(n):

n h(n) n ] h(n)

1 1 8 4,096
2 2 9 14,336
3 4 10 73,728
4 16 11 « 327,680
5 48 12 2,985,984
6 160 13 14,929,920
7 576 14 77,635,584

TABLE 1

Methods of construction of Hadamard matrices, orders up to 200. In each case one method of

construction is shown:

TmYQw >

&

1 -A 48-B 100-C 152-B
2 -A 52-C 104-B 156-E
4 -A 56-AB 108-B 160-AB
8 -A 60-B 112-AB 164-B
12-B 64-A 116-D 168-B
16-A 68-B 120-B 172-D
20-B 72-B 124-C 176-AB
24-B 76-C 128-A 180-B
28-B 80-B 132-B 184-AD
32-A 84-B 136-AB 188-F
36-C 88-AB 140-B 192-B
40-AB 92-D 144-AB 196-C
44-B 96-AB 148-C 200-B

Constructed in Corollary 3.1.

Constructed in Theorem 3.2.

Constructed in Theorem 3.3.

Constructed by Williamson’s method (see also Table 4).

Constructed by Baumert and Hall.

Constructed by Turyn using Baumert-Hall arrays

(see also Table 3).

A product of orders, one constructable by method A
and the other by method B; see Theorem 3.1. Similarly
for AD.




A. HEDAYAT AND W. D. WALLIS

1222

TABLE 2
Examples of small Hadamard matrices

n=8

n

T v 0+ +1
00+ 0+ '
+ 0+ o+ o+ 1
4+ 4+ |
0+ 4+ 0 +
+ + 4+ 1 0 [}
FF 0+ 0+
(F
&+

+ 0+

+ ~+ 1
St

[

+ 4y

/M

+

—

n=16

n=12

R

+

- -4+t
+

.

+

+ + 4+

+

-+ 4+ -

++ -+

+

++ -+

+

+

+

+ +

- + +

+ 4+

+ 4

++ 4+ 4+ttt

+

+

+ +

- 4+ + -

+ 4+ + +

+ 4+ -+

+

+

+ -

y)

+ -+ + ++ -+

-
+

+++++ 4+ttt

+ + 4+

+ + +

n=20

F++++++ttE S

++ + + -+

+ -

+ + +

++ - -+ - -+ +++ -+

+

-+ttt -t

+

-+ttt -t

+

++ + +

+ 4+ + +

-+t +

+ + +

+

+ o+ + 4+

+

++ + + +

+++ 4+ -+

+
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Table 2 continued

I+

+

+

o+

J+ v 4+ 4+ 0+ 0+ 0+ F o+ F ]+
B T T S e S I L i S T T S S L T S T S [ T R
T T T S T T T T T S N RS
L I T T T S S S B S I S L LI i S DR T A T S B
e T T T T R T S I S e R
N T T T T O e T T S R R S T
T T T T TR S Sy U o R S R T
I S T T T R T S S I I T
T T T T T S i R L
T T T T T T S L e S T S E
T T R L R T S i e e R
SO S S I R S T S N T T T R S S L I L T, O S s
O T T T S L T T T TRprUpp AU U
T e T S T T T T S T S N S
T T T S T S T T T (R Sy S U P P
+ 4+ 4+ 0 0+ 4+ 0 0+ 0+ 00+ 4+ A+ 4+ 0+ +
+ 0+ 4+ 0 0+ 4+ 0+ 0+ 0+ + 4+ 4+
T S T S T S O L T T T S U U
P I R T S T R T T T T T T S S e S
B R T O S T TR S S B T S R A N A T B Ut SRR
L L T R T T R T S D T T T B Sy S
R T T I S S L T N L R
B S T T T T e R R
[+ + +# 4+ + + + 4+ 4+ 4+ ++ 4+ 4+ +++++++ 4|+

+

+

+

+ + 4+

+ +

+

+ + +

+

++ -+

+

+ + +

++ + 4+

+ +

+

+

+

++ - -+ + +
+ 4+

+

+ +

+

+ 4+ +

+ 4+ + 4+ -

+
+ + +

+

-+t +

++ + +

+ o+ -+

+

+ -+ 4+ -+

+

++++ - -+ ++

+ +

+

+

++ + 4+

-+ 4+ + -+ 4

++ + +

+ 4+

+

++ - 4+

+

+ t+ +

++++ - -+ ++ -+ +

+ +

+ 4+ + +

+

+

+

+

+ 4+ +

++ -+

+

++ -+

+

- -+ + t

++ + 4+

+ +

+

+

+

24

n

n=28
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Table 2 continued

n=32

—~—

T T T T e T S T T S 0 0 S N

+

-+ 4+ ++ -

++ + +

+

-+ +

+

+ -+ +

+ 4+ -+ - -+ -+ + -+ + -+ + -+
- ++ 4+ 4+ttt -

+
++ 4+ 4+ + ++t

-+ +

+ + -

- + + -

+ 4+ + +

-+ + - -t t+ -
+ +

+

+

++++ 4+t - -

++ -+

+ -

+ -+ 4+ - -+ + -+

+ +

+++++t+HHE A

+ o+ ++ -+

+

+ -+ -+ -+
-+ 4 + + -

+

+

+ -+ -

+

-+ 4

++ - -t + - -+t -

+

++ -+ - -+ -+t -t -+t -+ - -+ttt
++--++++
-+ -+ 4 + +

+

-+ + -+
++ 4+ 4+ ++ 4+

+

+

+

-+ +

- 4+
+++ 4+t + ot

- -+ -+ -+ -t -+ -t -+ -ttt -+ -+ -
-+ + - -+ 4 -+ttt -
+ + + + -

+

+ - 4+

+ + -

-+ 4

-+ +
-+ ¢

+

+

-+t -+ -
kT T

+

++ + +

-+ +
-+ + + 4

-+

+

++ - -+ + -+ +

+

*
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TABLE 3

An example of a Hadamard matrix of order 188; the matrix is:

B
A

A
~B
-C E
-D —F

where A, B, C, D, E, F, G are given

-

e
44

+ + =

- -

>

-
-
- e
-
-

- -

s e
e
-

-
-

[

>

- em
B
E o

[ S
-
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- :
- e

ES.
S
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+
-
R
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»
>
-

»
FO

+
EIE I I I
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-~ em
- e e
ES
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R

-
-~

> =
- e

o B e e

PUNPEENS
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- > =+
ER
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B
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IR O

C D
E F
A G

-G A

in that order on the following pages

ST TRE R 2 O

L
4
{
4

EE I

-
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> 5

<

+ +

SR MY Y TR N TR
DEER I I O

>+ + +

R e

-
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S N wr Y
e e e e e o
oo

4

[ e S S
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e
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I
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> -
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Table 3 continued
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Table 3 continued
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Table 3 continued
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Table 3 continued
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TABLE 4
Hadamard matrices of Williamson type

If A, B, C, and D are the respective matrices obtained by developing the shown rows cyclically modulo

n, then

is a Hadamard matrix of order 4n

n=

n="7:

.
.

n=5
+ 4+ +

3
+

-+

- + 4+ 4+ +
+ +

+ 4+ + +

-+ -+

+ -

-+ 4+ -+

+ o+

+ o+
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+
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.
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