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TESTING A LINEAR CONSTRAINT FOR MULTINOMIAL
CELL FREQUENCIES AND DISEASE SCREENING!

By JeroME H. KroTZ
University of Wisconsin at Madison

For comparing two disease screening procedures with economic costs
assigned to administration, false positives, and false negatives, the problem
of testing a linear cell frequency constraint Y}X , a; p; < 0 arises with the
multinomial (n, (p1, ps, - -+, px)) model. An ad hoc statistic based upon the
estimate of the p; values, ¥, X, a; Xi/n, is compared with the likelihood ratio
statistic —21n 2, the latter having an interesting form. For local (con-
tiguous) alternatives the two statistics have similar large sample properties.
However, the likelihood ratio statistic has greater large deviation efficiency
for fixed alternatives and is recommended. '

1. Introduction and notation. We observe a multinomial (n, p), p =
(P> Py - - > px) random vector X = (X, X,, - - -, Xy),

(1.1) P[X = x] = n! [IE, p&i/x;!

and consider the hypothesis ’

(1.2) H,: 3% a,p, <0 against H;: > X a,p, >0

where a; are known constants ¢, < @, < .-+ < a, and 4, < 0 < a, to avoid
trivialities.

Following Hoeffding (1965)denote Q = {p|p, =2 0, >, p, = 1}, Q = {p|p, > O,
2. p: = 1}, and the Kullback-Leibler information quantities by:
I(v, p) = L v In (v/p))
(1.3) I(A, p) = inf {I(y, p) | ¥ € A}
I(v, A) = inf {I(v, p) | p € A}
I(A4, A) = inf {I(v, p)|[v € 4, p e A}
using the convention 01n 0 = 0.

2. An ad hoc test of H. Replacing the p, in (1.2) by the estimators X;/n, con-
sider the statistic >}7_, a, X;/n which has variance

(2.1) (X a’piqs/n) — (2 Xic; X2 aa;pip;/n) = (2 a’pi/n) — ([ 2 a;p:)’[n)

where ¢, = 1 — p,. On the boundary of H,and H,, };,a,p, = 0 so that (2.1)
reduces to Y}, ap,/n. Thus the statistic defined for nonzero denominator by

(2.2) (n* X5 a; X n) (20, a*X;[n)~E
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will have an asymptotic standard normal distribution on the boundary using
consistency (X;/n—,p,) and the multivariate central limit theorem for the
multinomial.

3. The likelihood ratio statistic. Denote A={p| > p,=1,p,=0, Y a,p, <0}
for Hy; then the likelihood ratio statistic —2In 4 is given by 2n/(X/n, A) using
(1.1) and (1.3). The constrained minimization can be explicity solved using
Kuhn-Tucker nonlinear programming methods (e.g., Mangasarian (1969), page
94). The solution is verified with the derivation avoided in the proof of the
following:

THEOREM 1. Define a,(X) = min (a,|x; > 0), then

(3.1a) IX/n,A) =0, if YaX/mn<0

(3.1b) =2 S +9e), i Tati>0, aX) <0
n n

(3.1¢) = Zi& In((a, — a))/ay), if 2 a i(l >0, a,X)=0
n n

where for case (3.1b) 7(X) is the unique root of the equation
(3.2) L Xif[n(l +7a)] =1, 0 <7 < —1/ay(X).

Proor. For the case (3.1a) p, = x,/n minimizes /(X/n, p). The convexity of
uln u yields

2z Yoo Xe = <Zipi L )ln <ijj—)£i> =0,
n ip; np; np;
using 3, p; = 1, 31, p; X;/(np;) = 1 and noting that the constraint satisfied by p,
gives the value zero.
For the case (3.1b) let pe A and denote ¢, = p,(1 + 7a;), and u, =
X,/[np(1 + 7a;)] where 7 satisfies (3.2). Then

(3.3) s XX s X 4 9a) + T 000w,
nnp; n

Using the convexity of uIn u, setting {; = 6,/3. £, 0,, gives

(3'4) 2 Cunu, = (Zy Cjuj) In (3], Cou)
sothat 33, 0,u;Inu; = (X 0,u;)In 3 6,u, — (3, 0,u,)In (X, 0,) = 0 which fol-
lows using > O,u, =1, 33,0, =14+ 9> a,p, < 1 from pe A and (3.2). Thus
P: = X,/[n(1 4 %a;)] minimizes and satisfies the constraints.

Finally for case (3.1c) again assume pe A. Then

b= 2. Xaf[n(a; — a)], b = X,a,/[n(a, — a;)] i=2,...,K
minimize since a,(X) = 0, a, < 0 gives X; = 0 and
(3.5) £t Sl = B2t (B 4 D b,
n np, n 1
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where 0, = p.(a, — a))ja,, u, = X,a,/[np,(a, — a;)]. Using (3.4) again,
2. 0;u;Inu, >0 by a similar argument since ) u;, =1, ,0,=
2ipia —a)ja,=1— Y a,pja, < 1. Verifying 31,0, = 0,5, =20, X p; =1
completes the proof.

4. Large sample theory for contiguous alternatives. Let p® e Q, satisfy
2::a.p;” = 0 and consider a sequence of nearby or contiguous alternatives
p™ — p® where 3, a;p, = 0 and p,” = p,® + &,n~t. Here >},&, = 0 and
>l:a;6, = 0. Next define
(4.1) Yi(n) — (Xz . npi(n))/(npi(n))i
so that the random vector Y™ = (Y™, Y, ..., Y, ™) —  _4(0, Z)asn — co.
The K X K covariance matrix of rank K — 1 is given by Z = (d,; — (p,p;'")})
where the Kroneker d,; = 1, if i = j, and 0 otherwise, The following theorem
holds:

THEOREM 2. The limiting distribution of the likelihood ratio statistic for the se-
quence of alternatives p'™ is given by

(4.2) 2nl(X/n, A) — _ [max (0, z 4 0)]?
where z: N(0, 1) and 6 = },a,6,°/(33, a,°p; )t
ProoFr. Define
7u(X) = 7.X) if X aX/n>0, a(X)<O0
=0 otherwise.
Similarly define
I = 3 (Xy/m)In (1 + 7,a,) .
We have fore > 0
P[2n], — 20l,| > ] < P[X a,X,/n > 0,a,(X) = 0] -0

as n — oo using the consistency of X/n and p;” > 0, a;, < 0. Thus it remains
to show (4.2) for I,. From (3.2) it follows that

(4.3) T = (L@ Xy/n)[2; 0 X;[/n(1 + 1),a;)
using (1 + 7,4)" = 1 — 9,0, + (7,01 + 7,a)~", 9, > 0. Thus

n¥), = max [0, (n* X, a,X;[n)[ 33 ; a;’X;[n(1 + 7,a;)]
(4.4) - max [0, 3, a,(Y(p. ") + &)/ 2, 4P, ]

= max [0, (z + 9)/(Z a;’p;)*]
where z = 3 a, Y, (p, ) (X a’p; V)t N, 1), Y, — _ Y, i =1, ..., K. Using
a limited expansion for the log,
2nl, = 2n Y, (X;/n)In (1 + %,a,)
N
= 20 X (Xfn) | 7, — (T22) (1 4 0,(1) |

— . [max (0, z + 9)]*.
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For the ad hoc statistic (2.2) the limiting distribution is that of z + d so that
for a < 1 the tests are asymptotically equivalent under contiguous alternatives.

5. Large deviation efficiency comparisons. We consider a fixed alternative
p € Q, — A and contrast the likelihood ratio statistic and the ad hoc statistic by
comparing exponential rates of type I error convergence to zero (lim, n~*In a,,)
while equating type II errors 8, — 8, 0 < g < 1. For the likelihood ratio test
it can be shown that

(5.1) limn*lna, = —Y,pIn(l +7a)= —d <0

where 0 < 7 < —1/a, satisfies 33, p;/(1 + na,) = 1. Similarly for the ad hoc
statistic, we will show

(5.2) limntlna, = —I(A(c), A)
where
(5.3) Alc) = {v| Ziavy = (X av)t, Yv, = 1,v, 2 0}.

The large deviation efficiency is then given by the ratio of (5.2) to (5.1) and is
equivalent to the exact Bahadur efficiency.
To show (5.2) consider the critical region for the ad hoc statistic:

A™(e,) = {x/n| ] a;x;/n = ¢, (3] a’x;/n), 3 x;/n =1, integer x;, = 0}.

For ¢ > 0 and n sufficiently large we have

(5-4) A™(c + ) € A™(c,) C A™(c — ¢)
where the sequence of critical values c, satisfies
(5.5) ¢, — ¢ = 2 ap/(X aip;)t

using consistency, X/n — . p, and 8, — 8, 0 < 8 < 1.
We next show that 4*)(c) is regular relative to A:

(5.6) lim, K(A™(c), A) = I(A(c), A).

Using Lemma 4.5 of Hoeffding (1965) there exists a point »* on the boundary
of the closure of A(c) and a sequence '™ € A™(c) such that p™ — p*,

5.7 I(v*, A) = I(A(c), A) < I(A™(c), A) < I(»™, A).

By Wijsman’s lemma (Hoeffding (1965), Lemma 4.4b), since A is the closure
of a subset of Q, it follows that /(+, A) is continuous. Thus

(5.8) lim, I(»™, A) = I(b*, A) = I(A(c), A).

Regularity holds since (5.6) follows from (5.7) and (5.8). By Theorem 6.1 of
Hoeffding and (5.4) the expression

lim, n~'In @, = lim, sup {n~'In P(A'™(c,)|p)|pe A}
is bounded above and below by — /(4™ (c — ¢), A)and —I(A"™(c + ¢), A). Using
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regularity, these bounds approach —I(A(c — ¢) A) and —I(A(c + ¢), A). Letting
¢ | 0, (5.2) follows using continuity of /(A(c), A) as a function of c.

The limit (5.1) can be similarly established with the constant d obtained by
minimizing the corresponding information quantity. The large deviation ef-
ficiency (also Bahadur efficiency)

(5.9) e(p) = I(A(c), A)/d

where ¢ is given by (5.5), A(c) by (5.3), A by the hypothesis, and d by (5.1)
satisfies e(p) < 1 since ¥ = p € 4(c). With some exceptions (e.g., K = 2 or cases
with only two distinct values of a,) we typically have e(p) < 1 as is expected
from the results of Brown (1971). For an illustration, consider the case of
K =3anda = (—1,0, 1). Then evaluating (5.1) we obtainy = (p, — p,)/(1 — p,)
d = pIn(2p,[(py + P5)) + psIn(2ps/(py + ps))- Evaluating (5.2) gives

I(A(c), Ay =[(1 —c)In(l —¢c) + (1 + ¢)In(l + ¢)]/2

where ¢ = (p; — p)/(p. + ps)t. Table 1 gives efficiencies for variouspe Q, — A
along the line p, = 1 — 2p,, p, < 4. It should be noted that for this example a
UMP unbiased test exists which rejects for large values of X, given X,, X, + X,
and has a null binomial distribution.

TABLE 1
E[ficiency values for selected p,a = (—1,0,1), ps = 1 — 2p,
P 0 1 2 3 i
P2 0 1 2 3 i
P I 8 6 4 1
c 1 .7379 .4472 L1195 0
d In2 .3099 . 1046 .007167 0
K(A(C), M) In2 .3047 .1036 .007160 0
e(p) 1 .9834 .9903 .9990 1

6. An application to disease screening. Consider the problem of comparing
two difterent disease screening procedures such as mammography and a history
questionnaire for breast cancer (Lundgren and Jakobsson (1976)). Table 2

TABLE 2
Mammography vs. history for breast cancer screening

True neg. / History Questionnaire
k = 0 -
( ) True pos. negative positive Total
k=1 (=0 (=1

negative 65 5804
‘- 0) 5739 0

Mammography ositive 168 8
) 29 5 210

Total 5936 78 6014
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summarizes results for 6014 women screened at Sandviken Sweden using both
procedures.

Ignoring the earlier cell order, denote X = (5739, 65, 0, 168, 29, 8, 5) and
the corresponding vector p = (Poo-’ Poros Poars Proos Prors Praos Pul) where Xiik and Pijk
have subscripts i, j, k = 0 or 1 according as the mammography, history, and
true (histologically confirmed) results are negative or positive. Here (.) indicates
summation (py. = Poe + Pon ecause of lack of follow-up when both screenings
are negative).

For purposes of illustration assign costs as follows:

$2: cost of history administration
$25: cost of mammography
$200: cost of follow-up for a false positive (false alarm)
$10,000: cost of a false negative (true cancer not detected).

Then the unit differences in expected costs can be expressed in the form (1.2)
(history minus mammography)

(6.1) (2 + 200p,., + 10000p,.,) — (25 + 200p.,, + 10000p.,,) = ap’

where a = (—23, —223, 9977, 177, —10023, —23, —23). The hypothesis of
preference for mammography (H,: ap’ < 0) is rejected in favor of preference
for the history (H,: ap’ > 0) using both statistics. The ad hoc statistic gives a
value of 2.434 with corresponding significance level @ = .0075 using the normal
approximation. The likelihood ratio statistic gives 2n/(X/n, A) = 8.628 with
significance level @ = .0017 using a normal approximation on (2r/(X/n, A))%.

Different cost assignments can change significance probabilities. For example,
an additional cost for mammography due to an economic assessment of radiation
exposure would result in an even more significant result.
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