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ASYMPTOTIC EFFICIENCIES OF SEQUENTIAL TESTS II

By RoBERT H. BERK!

Rutgers University

An asymptotic expression is given for the log error probability of a
sequential test based on a random walk. This may be used to compute
limiting relative efficiencies of such tests. The results are illustrated for
the one-sided normal testing problem with an asymptotic Bayes test due
to Schwarz. Some numerical comparisons are given for five sequential tests
of a normal mean.

1. Introduction and main results. In a previous paper, Berk (1976), it was
argued that relative efficiencies for sequential tests are ratios of certain efficacies,
the latter being a limiting ratio of a log error to an expécted sample size. (The
discussion there is in the context of testing a normal mean, but applies generally.)
The limit is taken as the stopping time of the sequential test becomes infinite in
a suitable way. We extend the range of applicability of this idea by showing
how to evaluate this limit for a large class of sequential tests based on cumulative
sums with i.i.d. summands. ‘

Let Y, Y,, ... be i.i.d. random variables and letS, = Y, + -.- + Y,. We

consider sequential tests with stopping time of the form
(1.1) N=min{n: S, ¢ (—ag,(n/a), ag,(n/a))} .
Here g, and g, are the boundary curves of the continuation region; a is a pa-
rameter governing the size of the region. In taking limits, we let @ — co. Many
sequential tests for one-parameter models have stopping times of the form (1.1).
These include SPRTs, LMP sequential tests (Berk (1975)) and asymptotically
Bayes sequential tests for one-parameter families (Schwarz (1962), Kiefer and
Sacks (1963)). We consider the one-sided (hypothesis) case, for which the ap-
propriate terminal decision, on stopping, is to reject the null hypothesis iff
Sy = ag,(N/a). We write this as (S, = g) for short. (Implicit in our notation is
that —g, < g,.) Interest then centers on the error probability, which is P(S, = g)
or P(S, < —g) depending on which hypothesis obtains. We work explicitly
with the former probability; it is seen, on replacing ¥ by — Y and interchanging
boundaries, that the results apply to the latter as well. Our considerations apply
to an upper boundary that has an asymptotic shape: Asa — co, g,(x) — g(x)
for x > 0. (In fact, we suppose that g, decreases to g.)

We suppose that under the distribution of interest, EY < 0. We also sup-
pose that Ee!! < oo for some ¢ > 0. Then b(r) = log Ee'* is finite in some
neighborhood of zero. It is well known that b is convex and analytic on the
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interior of the interval (b < o0). Let 8(r) = sup {tr —b(t): t € R}; B is the con-
vex function dual to & (Rockafellar (1970)). Since EY = ’(0) < 0, for r > 0,
B(r) = sup {tr —b(r): t > 0}. Also, let R(x) = g(x)/x. We say ge & if the
following holds: for some 0 < v < oo, 0 < R is strictly decreasing on (0, v) =
(R > 0), lim,_, R(x) = oo and lim,_,, R(x) = 0.

Under certain conditions on the distribution of ¥ and the boundary curves,
we show that as a — oo,

z—0

(1.2) log P(Sy = g) ~ max, log P(S, = ag,(n/a)) .

That is, to first order, the log probability of the sequentially determined event
(Sy = g) is determined by the point of the upper boundary “closest” to the
random walk {S,}; closest in that the probability of crossing there is maximum
(but regardless of the past history of the walk). The following theorem para-
phrases (1.2).

THEOREM. Let R,(x) = g,(x)/x € & and suppose too that as a | co, R,(x) de-
creases to R(x) = g(x)/x e ¥. Suppose also that for each fixed n=1,2, ...,
lim, ag,(nfa) = co. Letting b(t) = log Ee'*, suppose that (b < o) is an open in-
terval containing zero and that EY < 0. Then as a — o,

(1.3) log P(Sy, = 9) ~ —ax,
where
(1.4) & = inf,,, xB(R(x)) = inf,,, inf, x[tR(x) — b(1)] .

PrROOF. We observe first that
P(S, = ag,(n/a)) = P(S, = nR,(n/a))
< P(S, = nR(n/a)) < inf,,, E exp{tS, — ntR(n/a)}
= inf, exp{nb(f) — ntR(n/a)} = exp{—np(R(n/a))} .

Hence
max, P(S, = ag,(n/a)) < max, exp{—np(R(n/a))}
< sup,., exp{—axB(R(x)} = e~ .
Repeating the above argument with R replaced by zero gives
P(S, = ag,(nja)) < P(S, Z 0) < inflye explnb(n)} = e,
where —p = inf, 5(f) < 0. (That inf,,, b(¢r) = inf, b(f) < O follows from the fact
that b'(0) < 0, togeter with the fact that 5(0) = 0.) Letting k = «/p,
(1.5) P(Sy 2 9) < 1w P(S, = ag.(n/a))
< ake ™ + Yl € " = exp{—ar + o(a)}.

For te (b < ), let P, denote the distribution of thei.i.d. sequence Y, Y;,- - -
when they marginally have pdf exp{ry — b(r)} with respect to P. Let p, =
b'(1y = E, Y. That (b < oo) is open insures that y, ranges (continuously and
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strictly monotonically) in (— oo, co) for t € (b < co). Asis well known, the like-
lihood ratio for the sequentially obtained data is

dPY[dPY = exp{tS, — Nb(1)} .

The conditions on g, entail P,(N < co) = 1 when g, > 0 (for a sufficiently large)
and then

(1.6) P(Sy = 9) = Visyzq €Xp{—1tSy + NO(1)}dP,, p, > 0.

Under the assumptions on g, and g,, for g, > 0, P(lim, 1., =1) =1, so
also lim, P,(Sy = g) = 1. Moreover, the inequalities

(1.7) Sy-1/N < R,(Nja — 1/a), (Sy/N)(syzg = R(N)] s, 2,
entail
(1.8) P(lim, Nja = R z)) =1  if >0

as follows: we note that P(lim, N = o) = 1, so that P(lim, Sy/N = p,) = 1.
Thus (1.7) entails

(1.9) lim sup, R(N/a) £ p, < lim inf, R,(Nja — 1/a) [P)],

which in turn implies (1.8). (Since R is strictly decreasing, there is no ambi-
guity in defining R~!. Note that R(N/a) need not tend to g, for P, unless R is
continuous at R~*(g,).)

To finish the proof, we need the following lemma which is proved in Berk
(1976); cf. Lemma 7.3.

LEMMA. Let V, be an indexed set of random variables so that for some con-
stant v, V,ja —p,v as a — co. Let B, be any indexed set of events for which
lim inf, PB, > 0. Then

(1.10) {5, exp{V.}dP = exp‘{av + o(a)}.

We apply the lemma to V, = S, — Nb(f), the exponent in (1.6). It follows
from (1.8) that w.p. 1 for P, V,/a — R~Y(u,)[ty, — b(¢)]- Recall that (r) =
sup, {sr — b(s)}. If r = p,, the derivative of the concave function f(s) = sr — b(s)
vanishes at s = ¢, so that B(g,) = tp, — b(¢). Thus V, ja — B(z,) [P,]- Since
P(Sy = g) — 1 for g, > 0, (1.6) and (1.10) entail
lim inf, a™*log P(Sy = 9) = — R ()B(1e)» #. >0,
hence that
(1.11)  liminf, a"'log P(Sy = g) = sup {—R(u)B(r): > 0}
= —inf,, XB(R(X)) = —« .
Together, (1.5) and (1.11) establish the theorem. []
When EY > 0, the corresponding result is

(1.12) log P(Sy < —§) ~ —ak,
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where
(1.13) £ = inf_,, xB(R(x)) = inf,., sup, x[tR(x) — b()] .
Here b(t) = b(—1) and R is the R-function for the lower boundary.

2. Discussion. The preceding applies to exponential families as follows. Sup-
pose that under P, Y marginally has pdf exp{fy — c(¢)} with respect to some
underlying measure. Then b(f) = ¢(t + 6) — ¢(f) and if 5(r) = sup, [tr —c(¢)]
denotes the function dual to c,

2.1 £ = inf ,,sup, x[tR(x) — c(t 4 0) + ¢(6)]
= inf,, X[p(R(x)) + ¢(0) — OR(x)], EY <O

and

(2.2) & = inf,., x[7(R(x)) + c(8) + 6R(x)], EY>0.
When Y ~ N(8, 1), c(0) = ¢(@) = »(0) = 16* and these become
(2.3) K = inf, o 1x(R(x) — 0, 6 <0

£ = inf, ix(R(x) + 0)*, 6 >0.

In Berk (1976), £ was evaluated by different methods for the continuous-time
normal case. Equation (2.3) shows that those results apply to discrete time as
well. As a complement to the results of Berk (1976), we consider the con-
tinuation region given by g,(x) = g,(x) = (2x)! — pgx. As shown by Schwarz
(1962), this is the asymptotic shape of the Bayes test of H,: § < Ovs H,: 6§ > 0
in the normal case (variance = one) when the prior for # dominates Lebesgue
measure and when (—g, ) is an indifference region. (Schwarz did not show
that the corresponding procedure defined by

(2.4) N = min {n: |S,| = (2an)t — un}
is asymptotically optimal (Bayes), although this follows from the results of

Kiefer and Sacks (1963).) In this case R(x) = R(x) = (2/x)* — p and (2.3)
becomes

(2.5) E=2y, 0<O0<p
= 2% 0> p.

Let ¢(0) denote the probability of error of a sequential test when # obtains.
It is suggested in Berk (1976) that the limits (as @ — oo) of [—log¢(6)]/E, N
and [—log ¢(0)]/E, N are efficacies for judging the relative efficiency of the test.
(As in other cases, the ratio of corresponding efficacies for two tests gives their
relative efficiency. Using E N as a divisor is akin to standardizing tests to
have the same level.) Using (1.8) for N defined by (2.4), we see that under
P,, Nja—2/(¢ + |0])*. Since N/a is bounded, also

EyN ~ 2a/(p + 10]),
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hence (2.5) gives

e(0) = lim, [ —log ¢(0)]/E,N = (¢ + 0)*0*[2p*, =y

(2.6) = 40+ uys 0> 1
e(0) = lim, [—log ¢(0)]/E,N = 16*, =z
= 31, 0] > pe .

As shown in Berk (1976), the limits in (2.6) cannot exceed 26* and 16?, respec-
tively, for symmetric tests. Thus N in (2.4) is optimal for the FE,N-criterion
for |§| < u but is optimal for the E, N-criterion only for |#| = p. This is despite
the fact that N defined by (2.4) has a very strong optimality property: among
all tests 7 of H,;: @ < Ovs H,: 6 > 0 whose error rates (@ | ) satisfy

(2.7) lim inf, log [e(z|7) + e(—p|7)]/loge(p) = 1,
(2.8) lim inf, E,z[E,N = 1 forall 6.
Cf. Lorden (1972) and Berk (1977).

3. Numerical results. We present here some numerical calculations to com-
pare the actual efficacy (ratio of log error to expected sample size) with the
limiting value. Five symmetric sequential tests for the one-sided normal testing
problem were selected: SPRT, TPRT (truncated SPRT), AND (Anderson’s
triangular boundaries), TAPO (truncated APO), and SCHWARZ. The first four
tests are discussed in Berk (1976) and limiting efficacies are given there. The

TPRT
] 0 1 2 3 4 5 6 .7 .8 9 1.0
() 5 .268 Jd12 3.86  1.21  3.83 1.24 4.07 1.34 4.41 1.45
(=2) (=2 (=3) (=3) (-4 (-4 (=5 (-9
E;N 269 253 21.5 17.3 139 11.3 9.6 82 7.3 6.5 5.9
a0  2.58 5.1 102 .188 318 .490 .700 .947 1.23 1.55 1.90
(=2) (—=2)
e® 0 005 .04 135 3% 5% 72k 08k 1.28% 1.62% 2%
(0 2.58 4.90  8.13 121 164 207 249 290 331 373 .44
(=2) (=2) (=2
ed) 0% 005%  .02%  .045% .08 .1 12 14 16 .18 .20
SPRT
0 0 1 2 3 4 5 .6 i .8 9 1.0
e(0) 5 246 9.68  3.39 114 376 1.24 4.07 1.34 4.41 1.45
(=2) (=2) (=2) (=3) (=3) (-4 (-4 (=5 (-9
E;N  31.3 28.3 227 17.6 139 11.3 9.6 82 7.3 6.5 5.9
&0) (2.222 4(.962 103 192 322 492 701 .947 1.23 1.55 1.90
-2) -2)

e(0) 0% 02%  08% 18  .32% 5% 72k 98% 1.28% 1.62% 2*
&o(0) 2.22 4.55 1.57 108 .145 178 .217 .253 .289 .325 .36l

=2 (=2 (=2
0

eo(0) 0* 0 0 0 0 0 0 0 0 0
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TAPO
6 0 1 2 3 4 5 6 g 8 9 1.0
) .5 .25 9.91 3.2 1.12 480 2.35 120 6.20 3.24 1.71
(=2 (=2) (=2 (=3) (=3 (=3 (b (-4 (-9
E;N 36.8 349 297 23.2 17.4 13.1 10.1 82 6.8 58 5.1
e6) 1.8 3.91  7.79  .148 258 408  .597 .822 1.08 1.38 1.71
(=2) (-2 (=2
ed) 0% 005 .02 7.(392) 222 373 567 .804 1.08 1.40 1.77
@) 1.88 3.70  6.28 9.32 122 145 164 .183  .201 .218 .235
(=2) (=2) (=2 (=2)
eold) 0% 005% .02 .045% .08 9.11  .102 .113 123 .134 .144
(=2)
ANDERSON .
6 0 .1 2 3 4 .5 .6 7 .8 9 1.0
«6) .5 267  .107 3.21 7.23 1.27 1.82 246 3.05 3.71 4.49
(=2 (=20 (=3 (= (=5 (=6 (=1 (=8
E;N 28.3 27.1 242 208 17.8 154 13.5 12.0 109 9.9 9.1
o0) 2.45 4.90 9.20  .165 .277  .434  .638  .881 1.17 1.49 1.86
(=2 (=2 (=2 :
e 0 7.(52 4 112 24 42 6 9 12 154 1.9
—2)
e(6) 2.45 4.67 7.8  .122  .174  .236  .304  .375  .449 .523 .598
(=2) (=2) (=2
eold) O .005%  .02%  .045¢ .08 12 .16 .2 24 28 .32
SCHWARZ
) 0 1 2 3 4 .5 6 7 8 .9 1.0
«(0) 5 .288  .135  5.47 211 875 4.6 2.22 1.27 7.63 4.70
(=2 (=2) (=3 (=3) (=3 (=3) (-9 (=9
E;,N 21.5 20.5  18.1 5.1 12.4 102 85 7.2 62 54 4.8
&0) 3.%2 6.07 111 193 312 .466 .645 .848 1.08 1.33 1.6l
(=2) (=2)
ed) 0x  7.81 045 138 .32+ 405 5  .605 .72 .845 .98
(=3
G0 3.2 579  9.29 35 179 220 255  .284 310 .334  .356
=2y =2y (=2
eld)  *0 .005%  .02x  .045« .08 .08 .08 .08 .08 .08 .08

Schwarz test is discussed above. For the Schwarz test, 2 was chosen to be 0.4

and ¢ = 4.0. Thus
Ngog = min {n: |S,| = (8n)} — 0.4n}.

It is easily seen that N < m = 50. The boundaries for the other tests were
chosen so as to circumscribe the Schwarz continuation region. This is because,
asymptotically, any such region has the same log error rate at + p as the Schwarz
procedure and an E,N (= maximum expected sample size) which is, to first
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order, as small as possible; cf. Berk (1977). Thus
Ngppr = min {n: |S,| = 5}

Niprr = Ngprr A 50
Nuyp = min {n: |S,| = 10 — 0.2n} < 50
Npavo = min {13 |S,] = (2.532n + 6.331)}} A 50

The null hypothesis is rejected if S, = 0. For these tests the probability of
error ¢(f) and the expected sample size were computed for # = 0(0.1)1.0. This
was done using successive convolutions, a procedure alluded to by Aroian (1968)
as the “direct method”; see Aroian and Robinson (1969). From these values
we obtain the actual efficacies (ratios of log error to expected sample size), &(6)
and ¢(#), which may be compared with the limiting yalues given in the tables
below. Values of the limiting efficacies that achieve the appropriate bound 26?
or 10* are marked with an asterisk.

The tables indicate a good qualitative agreement between the actual and limit-
ing efficacies and reasonably good quantitative agreement in most cases. The
values for &(0) agree better with their limiting values than those for &,(6). In
part, this can be attributed to the fact that E;N appears to tend to its limiting
value rather slowly. In all of the above tests E;N ~ m, the common trunca-
tion value, but the actual E,N is substantially less in all cases. Nevertheless,
the agreement is good enough to warrant guarded optimism that the limiting
efficacies do represent the actual characteristics of the test.

Acknowledgment. The author wishes to thank Letita Chow Lai and Gary
Myers for assistance with the calculations. He is also indebted to Richard
Monahan for providing the program used.
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