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BAYESIAN CONFIDENCE BANDS FOR
A DISTRIBUTION FUNCTION

By M. BRETH
Victoria, Australia

A set of recurrences is developed for computing the probability content
of any prior or posterior confidence bands for a distribution function as-
suming the parameter of the prior Dirichlet process known. When the
prior parameter is unknown and is estimated from the sample, nonpar-
ametric estimates of the probability content of the posterior bands are
obtained.

1. The Dirichlet process and Béyesian estimation. Let F(f) be a random
distribution function on the real line. For A(co) =a+ 1> 0, let A(f) be
defined so that A(f)/A4(c0) is a distribution function. F(r) is a Dirichlet process
with parameter A(r) (see Ferguson (1973), for example) if for every m = 1,
2,..-and —c0o =1, < 1, < -+ < 1, < t,,, = oo the distribution of (F(t,),
F(t), ---, F(t,)) is, in the notation of Wilks (1962 page 182), of the ordered

Dirichlet type with parameter (a,, a,, - - -, a,; a,,,) where for j = 1,2, ..., m,

(1.1) a; = A(t;) — A(t;-,) -

Suppose that in a Bayesian estimation situation, a distribution function F(?)
has as a prior distribution the Dirichlet process with parameter A(t). Let F,(¢)
denote the empirical distribution function corresponding to a random sample
of size n from F. Ferguson (1973) has shown that the posterior distribution of
F is a Dirichlet process with parameter A(f) + nF,(t).

To aid in the selection of a suitable prior parameter it is useful to quantify
how the choice of a particular parameter affects the prior variability in F at
various points in its domain simultaneously.

Similarly, when posterior estimates of F are to used in practice, it is desirable
to quantify simultaneous posterior variability in F. In this paper, general prob-
abilistic statements on such variability are derived. We commence by explicitly
defining these statements.

2. Bayesian confidence bands. Let m be a fixed positive integer and for i =

1,2, ..., mdefine 4, and v, so that u, < v, for all i and
2.1) 0=t Su St < - <, < 1
0< =S - SV S Vpn=1.
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Further, define
(2.2)  Ix)y=1 x=0
=0 x < 0

and J(x) to be the function which equals one when x > 0 and zero otherwise.
Letr, <t,< ... < t,, and finally define

(2.3) S(x) = X (e — ui)l(x — 1)
and '
(2.4) CB(x) =0, 4 T (Vi — v (x — 1)

DEFINITION. Suppose the F() has a Dirichlet process as its prior distribution.
Let S(¢) and B(¢) be defined by (2.3) and (2.4) respectively. Then if

(2.5) PS(t) < F(t) < B(t) forall 1} =L

- and P is a prior (posterior) probability, the functions S(r) and B(r) constitute
the boundaries of a fixed region within which the random distribution function
lies with prior (posterior) probability L. S() and B(r) are defined to be a pair
of Bayesian confidence bands for the random distribution function, F(f), with
prior (posterior) probability content L.

It is to be emphasised that in the Bayesian context it is the distribution function
which is random whilst the, Bayesian confidence bands are fixed and known
quantities. These bands are to be contrasted with the Neyman-Pearson type
random confidence bands for a fixed, but unknown, distribution function which
are discussed in Steck (1971).

There are many possible pairs of Bayesian confidence bands for F with prob-
ability content L. In practice, a particular pair of these bands must be chosen
to express quantitative confidence in F. This situation has its parallel in the
Neyman-Pearson theory (see Steck (1971)). In (2.5) the choice of the ¢, is open
and applied statisticians, when describing simultaneous posterior variability in
F, may choose the ¢; to correspond to the ith order statistic of the sample. In
this case, it is to be borne in mind that repetition of observations may occur
due to the discrete nature of the Dirichlet process. A detailed discussion of this
case is given in Section 5.

Since F(t) in (2.5) is a random distribution function it is clear that

(2:6)  P{S(t) < F(r) < B(r) forall 1} = Plu; < F(1;) < v, forall j}.

It then follows from Section 1 that to be able to calculate probabilities of the
type (2.6), it suffices to be able to calculate general rectangle probabilities over
the ordered Dirichlet distribution. A method for such calculation is presented
in the following section,

3. Ordered Dirichlet rectangle probabilities. For m a positive integer, sup-
pose that the joint distribution of Y;,i = 1, 2, . . ., m, is of the ordered Dirichlet
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type with parameter (a,, a,, - - -, a,; a,,,,). Lets, =a, + a, + --- + a, and for
i=1,2, ..., m, let G(x)denote the marginal distribution function of Y, which,
in the notation of Wilks (1962, page 174), is beta with parameter (s;, s,,,, — 5;).
For integers i and j such that 1 <i < j< m, let G, ,(x, y) denote the joint
marginal distribution function of Y; and Y, which is bivariate ordered Dirichlet
with parameter (s;, s, — $;5 5,1, — 5;). When a; = 1 for all i, Y, has the same
distribution as the jth order statistic of a random sample of size m from the
uniform distribution on the unit interval. Define the random step function
H,(x) by
mH,(x) = X7, I(x — Y;)

where /(x) is given by (2.2). When a, = 1 for all i, H,(x) is just the empirical
distribution function of the uniform random sample.

Let U(x) and ¥(x) be strictly increasing and continuous functions satisfying
U(0) > 0 > ¥(0) and U(1) > 1 > V(1). The restrictions that U(x) and V(x) be
continuous and strictly increasing may be relaxed (see Steck (1971) for example)
but this is really tangential to our discussion. Denoting by [y] the integral part
of y, let p = [mU(0)] + 1 and ¢ = [mV(1)]. Define

u; =0, i=1,2,--.,p—1
mUu) =1, i=p,p+1,---,m
mV(w,)=j—1, Jj=12,--.,9+1
v; =1, J=9+2,q9+3,--m

and assume that U(x) and F(x) obey the additional restrictions that u, < v, for
alli. Let
3.1 1 — g = P{U(x) > H,(x) > V(x) forall xe[0,1]}.

Then since, for all x, mH,(x)€{0, 1, .-, m} it is evident that 1 — g = Plu, <
Y, < v, for all i}. This is a probability of the type (2.6). In the special case
when a; = 1 for all i, the probability 1 — g has been calculated by Steck (1971),
Durbin (1971) and others.

Define for 0 < x < y< 1,i < jand i, je{0, 1, ---, m} the following prob-
abilities:

Pix) = P{mH,(x) = i} '
(32) g% y) = PmH,(x) = i, mH,(y) = j}
Pij(%, y) = PlmH,(x) = i|mH,(y) = J} = q:,1(x; y)[ps(y) -

Observe that
(3.3) Pdx) = PlY; < x, Yoy > x} = Gy(x) — Giyy(x)
whilst using a similar argument

(3.4) 9:,1(%: ¥) = G (%, p) + Giyy jia(%, y) — Gy ju(%, y) — A; i(x, y)
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where A, ,(x, y) is the function which equals G;(x) wheni=j— 1 and G,,, ,(x, y)
otherwise. If a, = 1 for all i, use of integration by parts in conjunction with
(3.2) yields the simple expressions:

(3.5 plx) = b(ism, %) and  py(x, ) = b33 j, ¥y)

where b(r; n, p) is the probability of r successes in n independent Bernoulli trials
when the probability of success is p.

We are now in a position to obtain a set of recurrences for computing g from
(3.1). The argument used is not a new one. Illustrations of its use are given
in Feller (1948) and Dempster (1959). To obtain the desired recurrences for g,
it is to be noted from (3.1) that g is the probability that H,(x) crosses either,
or both, of U(x) and V(x). For i =p,p+ 1, ..., m let E; denote the point
(4, ifm) and for j = 0, 1, - .., g let F, denote the point (v,,,, j/m). These m +
g + 2 — p points will be called critical points in the path of H,(x); for H,(x)
crosses either, or both, of U(x) and ¥(x) if and only if it passes through at least
one of these critical points.

Let e; denote the probability that conditional on H,(x) passing through E;,
E; is the first critical point it passes through. Similarly, let f; denote the prob-
ability that conditional on H,(x) passing through F;, F, is the first critical point
it passes through. Then taking probabilities,

(3.6) 9= Zr,epdu) + DieofiPi(Vim) -

Since p,(x) is given by (3.3) it suffices to calculate recurrences for e; and f;.
Conditional on H,,(x) passing through E,, the first critical point it passes through
could be any one of E;,, i =p,p+1,---,k, or F;,j=0,1, ..., r(k), where
r(k) = max{j: v;,, < #,}. On taking probabilities one arrives at, for k = p,
P+ 1, ..., m:

(3'7) 1l =¢, + Zf;;l; eipi,k(ui’ u,) + Z;g%fjpj,k(vjﬂ’ ) -

Similarly, by considering the path of H,(x) conditional on it passing through
F,, it follows that for k =0, 1, .-+, ¢:

(3.8) L=f, + Xt epii(to Viwr) + 250555 a(Visns Viewr) -

The probability p; ,(x, y) is obtained from (3.2), (3.3) and (3.4). Then (3.6),
(3.7) and (3.8) constitute a set of recurrences for calculating g. In the special
case when a;, = 1 for all i, the probabilities in (3.5) are to be used in the recur-
rences. In this case, the recurrences are equivalent to those given by Durbin
(1971), which he had obtained by considerations based on the Poisson process.
The basic probabilistic simplicity of the technique employed in this section shows
that, for the finite case at least, there is no basic need to involve the Poisson
process.

4. Kolmogorov Bayesian confidence bands. The results of the previous section
when used in conjunction with (2.6) enable the construction of any prior or
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posterior confidence bands for the distribution function F. In this section a
numerical example of the theory is considered.

Suppose that A(r), the parameter of the Dirichlet process is continuous and
chosen so as to make a = A(c0) — 1 a positive integer. It is then possible to
define #; by (1.1) so as to make a; = 1 for all j = 1,2, ..., a. For such q;
and ¢,, statistical tables are available which give the probability (2.6) for the
Kolmogorov bands which are defined, for e > 0, by

4.1) u, =0, i=1,2,...,a—h—1
a(u;, +e) =1, i=a—ha—h+1,...,a
and v, = 1 — u,_,, for all i, where 2 = [a(1l — e)]. Such tables are given in

Miller (1956). For afixed probability content, a, the e defining these Kolmogorov
bands is the solution to

(4.2) P{sup, |H,(t) — t| < €} = a

where H (t) is the empirical distribution function of Section 3.

We shall now consider an application of this theory. Suppose that the prior
parameter of the Dirichlet process is given by A(f) = 100(f) where () is the
standard normal distribution function. Further suppose that a random sample of
size five taken from this prior distribution resulted in the observations { —1.281,
—0.524, 0.000, 0.253, 0.842}. It is desired to construct prior and posterior con-
fidence bands of probability content 0.95 for the random distribution function.

The Kolmogorov prior bands are most easily calculated for this example.
From the tables of Miller (1956) it is found that for a = 9, e = 0.430 is the
solution to (4.2) in the case when & = 0.95. A substitution of these values in
(4.1) yields the required bands. These bands are displayed in Table 1. On
inspecting the data, it is seen that jumps in the Kolmogorov prior bands occur
at all the data points. It is thus possible to construct the Kolmogorov posterior
bands for this example. Proceeding as before it is found that for a = 14, e =
0.349 is the solution to (4.2) in the case when a = 0.95. A substitution of these

TABLE 1
95% prior bands for the Dirichlet process with random
distribution function F(t) having parameter
A = 100(z)

i ti u; Vi

1 —1.281 ~0.000 0.430
2 —0.842 0,000 0.541
3 --0.524 0.000 0.652
4 —0.253 0.014 0.763
5 0.000 0.126 0.874
6 0.253 0.237 0.986
7 0.524 0.348 1.000
8 0.842 0.459 - 1.000
9 1.281 0.570 1.000
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TABLE 2
959 posterior bands for the Dirichlet process with random
distribution function F(t) based on the sample {—1.281,
—0.524, 0.000, 0.253, 0.842} and prior
parameter A(t) = 100(¢)

i ti ui Vi
1 —1.281— 0.000 0.349
2 —1.281 0.000 0.420
3 —0.842 0.000 0.492
4 —0.524— 0.000 0.563
5 —0.524 0.008 0.635
6 —0.253 0.080 0.706
7 0.000— 0.151 0.778
8 0.000 0.222 0.849
9 0.253— 0.294 0.920
10 0.253 0.365 0.992
11 0.524 0.437 1.000
12 0.842— 0.508 1.000
13 0.842 0.580 1.000
14 1.281 0.651 1.000

values in (4.1) gives the required posterior bands which are displayed in Table 2.
An entry in column 2 of Table 2 of the form y- is to be regarded as a number
imperceptibly smaller than y.

5. Posterior nonparametric estimates. When applied statisticians construct
posterior bands, they may prefer to choose the ¢, for the bands (2.3) and (2.4)
to correspond to the ith order statistic of the sample. Further, they may not
be prepared to stipulate a prior parameter for the Dirichlet process. In this case
A(t) must be estimated from the sample.

In a random sample of size n from the Dirichlet process with continuous
parameter A(r), suppose that there are m distinct observations and denote them
by x, < x, < -+ < x,. Let n; denote the number of members of the sample
which assume the value x;,. Korwar and Hollander (1973) give an estimate of
A(t) as

A1) = L It — x;)/log n
where I(x) is given by (2.2). This estimate necessitates the structure of ties
which the Dirichlet process forces. Further, the parameter 4(f) must be con-
tinuous. Then the joint posterior distribution of F(x;) fori =1,2,...,m — 1

is estimated to be ordered Dirichlet with parameter (q;, g, - -+, §,n_y; ¢,,) Where
forj=1,2,..-,m

(5.1) q; = n; + (1/logn)

and F(x,,) is estimated to be one. The theory of Sections 2 and 3 may then be
applied to this estimated distribution. A major advantage of this technique is
that regardless of what the prior parameter is, an estimate of the probability
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content of the posterior bands may be obtained. This procedure is thus non-
parametric, though only approximate.

There are two problems with the preceding approximations. The first is that
F(x,) is always estimated to equal one; the second is that the recurrences (3.6),
(3.7) and (3.8) are difficult to use in practice because the ¢,, j = 1,2, --.,m,
are not all integers. These problems may both be overcome by taking the esti-
mate of the prior parameter, A,(r), to equal I(t — x,,.,) if ¢(m) = 0 and to equal

I(t - xm+1) + Zi(:l) I(t - xj(k))
otherwise, where x,,,, is chosen so that x,,, > x,, ¢(j) = [j/logn] for j =1,
2, ..., m,and j(k) = min {i: ¢(i) = k}fork = 1,2, ..., ¢(m). To see how well
A,(t) approximates 4,(¢) note that [4,(c0)] = ¢(m) = A,(c0) — 1 and when ¢(m) >
0, [4,(x;4))] = k = Ay(x;4) for k = 1,2, .-, c(m).

Taking A,(t) as the estimate of A(f), the joint posterior distribution of F(x,),
i=1,2, ..., m, is estimated to be ordered Dirichlet with parameter (4, &,, - - -,
h,; 1) where b, = n, + s;. If ¢(m) = 0, then s, = 0 for all i whilst if ¢(m) > 0,
s, equals one for ie{j(k): k = 1,2, ---, ¢(m)} and equals zero otherwise. Let
w, = 0 whilstfori = 1,2, ..., mletw, =h, + --- + h;. Definew,,, =w, +
1. As all the &, are integers, so too are all the w,. Then from Section 3, F(x;)
is equivalent to the w;th order statistic from a uniform random sample of size
w,. It the follows from Steck (1971) that, under restrictions (2.1),

(5.2) P{u, < F(x;) < v, forall i} = w,!det (k)

where for i, j=1,2, ---,w,, (j —i+ 1) k;; equals (P, — L;)’"**' when j —
i+ 1>0and P, > L,, whilst it equals zero otherwise. For j=0,1, ..., m,
L;equalsu;, when i =w,w;, + 1, ..., w,,, — 1. Similarly, for j=0,1, ...,
m — 1, P, equals v;,,, when i =w, 4+ 1, w, + 2, ..., w,,,. Applying (5.2) to
(2.6) completes the posterior probability content estimate.

Practitioners may feel uneasy about using the above estimates because the
weights of the posterior measures used exceed the sample size. A suitable
readjustment would alleviate this source of concern. Some statisticians may
also be reluctant to accept that observations which are used to estimate the
prior parameter can be employed again to update it. This problem, as well as
the previous one, may be overcome by dividing the data into two groups; the
first group being used to estimate the prior parameter whilst members of the
second group are treated as the observations.

Suppose that such a data allocation results in N observations belonging to the
first group. Let D, = 1 if x; appears in the first group and zero otherwise. Let
N, denote the number of times x; appears in the second group. Then the posterior
parameter is estimated to equal

7, (D; + N;log N)I(t — x;)/log N

so that the joint posterior distribution of F(x;) for i =1,2,...,m — 1 is
estimated to be ordered Dirichlet with parameter (Q,, - - -, Q,._,; @,,) Where for
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j=1,.-:,m Q; =N, + (D;/log N). This result is the split sample analogue
to (5.1). Further analysis along the lines followed for the estimate (5.1) is easy
to pursue.

The relative sizes of the groups, as well as the method chosen to allocate data
to a group, will affect the eventual nonparametric estimate obtained. However,
a study of the advantages and disadvantages of the various estimates proposed
in this section is felt to lie beyond the scope of this paper. The purpose of the
discussion has been to point out that the construction of such nonparametric
estimates is feasible.

6. Simulation: an alternative. A requirement of the above theory is the
ability to calculate general ordered Dirichlet rectangle probabilites. Recur-
rences in Section 3 were developed for this purpose. In situations where
electronic computers are available it is perhaps simpler to approach the problem
via simulation; that is, the generation of random samples from any ordered
Dirichlet distribution.

Let Z,i=1,2,..-,m+ 1 be independent gamma random variables with
parameters a; respectively. It follows from Wilks (1962, page 179) that the joint
distribution of Y, = (£, + --- + Z)/(Z, + -+ + Z,, ) fori=1,2,...,m is
ordered Dirichlet with parameter (a,, - - -, a,; a,.,). This transformation facili-
tates the required data generation. To estimate the probability, L, in (2.5)
through its form (2.6), one simply computes the proportion, L, of m-dimensional
observations generated that satisfy the event on the right-hand side of (2.6). Let
n denote the number of m-dimensional observations generated. Then if n is
sufficiently large, L is approximately normally distributed with mean L and
variance ¢ = L(1 — L)/n. This variance may be estimated from the sample by
3* = L(1 — L)/n. In practice the simulated sample size, n, will be determined
by the accuracy required of L. When this technique is employed in practice,
it is advisable to obtain simulation estimates for bands of known probability
content. These estimates may then be compared with the actual figures to ensure
that the programme is operational. The Kolmogorov bands (4.1) are suitable
for this check. In the case when m = 5, an actual data generation was carried
out for n = 100 and the results of the simulation are shown in Table 3.

TABLE 3
Simulated Kolmogorov region probability
content (m = 5, n = 100)

A

L L ’ g é
0.80 0.79 0.040 0.041
0.90 0.90 0.030 0.030
0.95 0.94 0.022 0.024
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