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REPEATED MEASUREMENTS DESIGNS, II'

By A. HEDAYAT AND K. AFSARINEJAD
University of Illinois and Free University of Iran

Repeated measurements designs are concerned with scientific experi-
ments in which each experimental unit is assigned more than orce to a
treatment, either different or identical. It is shown that a family of bal-
anced repeated measurements designs which are very popular among ex-
perimenters are universally optimal in a relatively large class of competing
designs.

1. Introduction and the need for repeated measurements. Experimenters in
many fields of research perform experiments designed in such a way that each
experimental unit (subject) is assigned more than once to a treatment (test),
either different or identical. These designs are given several names in the liter-
ature of statistical designs: repeated measurements designs (briefly RM designs),
crossover or changeover designs, (multiple) time series designs, and before-after
designs. An extreme form of an RM design is the one in which the entire ex-
periment is planned on a single experimental unit. Details on latter designs can
be found in Williams (1952), Finney and Outhwaite (1956), and Kiefer (1960).
A brief history of the subject with a bibliography containing 136 directly related
references is given in Hedayat and Afsarinejad (1975).

The use of RM designs rather than the classical designs, for which the number
of experimental units is the same as the number of observations, can be justified
in many settings such as when:

(i) One of the objectives of the experiment is to determine the effect ot
different sequences of treatment applications as in drug, nutrition or learning
experiments.

(ii) The experimenters might be interested in discovering whether or not a
trend can be traced among the responses obtained by successive applications of
several treatments on a single experimental unit. For example, if one wants to
measure the degree of adaptation to darkness over time, the most efficient use
of subjects requires that each subject be tested at all times of interest.

(iii) Experimental units are scarce and have to be used repeatedly. This is
often the case in small clinics or in the development of large military systems,
such as aerospace vehicles, airplanes, radar, computers, etc.

(iv) The nature of the experiment is such that it calls for special training over
along period of time. Therefore, to minimize cost and time, the experimenter
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should take advantage of the trained experimental units for repeated measure-
ments.

To this point, RM designs have been used on the grounds of balance and
simplicity of computations. While such criteria may still be attractive in some
cases, they cannot be justified on statistical grounds. This paper shows that
some families of RM designs which are very popular among experimenters are
“universally optimal” in a relatively large class of competing designs (Section
3.1). Existence and nonexistence of such designs are discussed in Section 3.2.

2. Preliminaries and universal optimality. The search for an optimum de-
sign involves the determination, in a specified class of competing designs, of the
design which is best according to some well defined criteria under a given model
for observations. In this paper we are concerned exclusively with the following
setup: f treatments are to be tested and studied via n experimental units. Each
experimental unit is used in p periods resulting in , = 1 observations for the ith
treatment, r, 4+ r, + --- + r, = np. Clearly there are numerous ways of per-
forming the experiment. Let D denote the set of all such arrangements, to
which we shall refer as designs. If d is a design in D, then let d(i, j) denote the
treatment assigned by d in the ith period to the jth experimental unit. Throughout
this paper the following model is assumed for the response obtained under d(i, j):

(2.1) Yi;=p+ a;+ B; + Taup + Oauriy T €5
i=1,2,"',P; j=1,2,"'9n; Pd(o,j)EO for all j,

where the unknown constants g, &;, §;, 74, and p,;_, ; are respectively called
the overall mean, the effect of the ith period, the effect of the jth experimental
unit, the direct effect of treatment d(i, j) and the first order residual effect (or
carryover effect) of treatment d(i — 1, j). We assume that ¢;;’s are homoscedastic
with means zero.

We are interested in specifying a design d in D which is connected with respect
to all contrasts in direct and residual effects and is “universally optimal” in a

specified class of competing designs.

2.1. Universal optimality. In vector notation the np responses under Model
(2.1) can be written as
Yy = X0, + X0,
where 0, consists of parameters of interest for study. In our case, §, consists of
direct treatment effects or residual effects or both. Let

Cy(0,) = X1 Xig — Xig Xpa(X3a Xag) ™ X34 Xig
and
Qu(0,) = X1Y, — Xig Xpo( X350 Xoa) ™ X30 Y,

then C,(8,) is the information matrix associated with @, since it is well known
that a linear parametric function £ = '¢, is estimable under 4 if I’ is in the row
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space of C,, and the best linear unbiased estimator of £ is given by
- E=1r(C)-Q, with Var(é) = I(C,)lo*.

In this case we say d is connected for §. Now suppose d is connected for a set
of t — 1 independent orthonormal contrasts 4’6,. Then by the above argument
the covariance of the best linear unbiased estimator of 4’9, is given by

Vyof = A'C;~Ag* = (A'C; A)~e* .

This leads to consideration of an optimality functional ¢ on (t — 1) X (t — 1)
matrices and to determination of a design d which minimizes ¢(¥,). Some com-
monly used optimality criteria are: ‘

D-optimality: ¢(V,) = det V;;
A-optimality: ¢(V,;) = tr Vy;
E-optimality: ¢(V,;) = maximum eigenvalue of V.

The relationship between these optimality criteria is well known and may be
found in Kiefer (1958, 1959, 1975). In some settings it is possible to introduce
an optimality criterion which includes D-, 4- and E-optimality as special cases.
One such setting together with a sufficient condition under which a design is
optimal is given by Kiefer (1975) and will be utilized throughout this paper.

A major difficulty is the computation of (4'C,; A)~* for each competing design
d. Since in our case, as will be seen later, each row (hence each column) of C,
adds up to zero, we can utilize the recent result of Kiefer (1975) on universal
optimality and avoid the computation of (4'C,A4)~* for each d. We shall now
briefly review the concept of universal optimality. Suppose that R, consists of
t X t nonnegative definite matrices. Let R, consist of those elements of R,, all
of whose row and column sums are zero. Let Q be the set of all functions w
from R, to (— oo, 4 oo] with properties:

(i) o(+) is convex;
(2.2) (il) ®(bR) is nonincreasing in the scalar 6 >0, ReR,;
(iii) @(+) is invariant under each simultaneous permutation of rows
and columns of ReR,.

In our setting C, € R,. ,
A very useful concept of optimality in this setting is:

DEFINITION 2.1. A design d* is universally optimal in the class of competing
designs under consideration if w(C,*) < w(C,) for each w € Q.

If d* is universally optimal, then it is D-, 4-, and E-optimal. In some situ-
ations it is ‘possible to identify the universally optimal design without actually
computing »(C;) for each d. One such situation has been identified by Kiefer
(1975), and is formally stated here. First we need the following definition.

DEFINITION 2.2." A design d is said to be completely symmetric with respect to
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6, if its corresponding C, is of the form al, + bJ,, where a and b are scalars, /,
is the identity matrix of order ¢ and J, is the matrix of order ¢ whose entries are
all ones.

THEOREM 2.1. If the class of competing designs contains a design d* such that
(i) d* is completely symmetric;
(ii) tr C;* = tr C,, forallde R,

then d* is universally optimal.

In the following sections we have characterized universally optimal designs
in some classes of competing designs which we know are connected for the pa-
rameters under consideration.

3. Universally optimal repeated measurements designs. In this section we
shall search for a universally optimal design (if it exists) in a class of uniform RM
designs. The existence and nonexistence of such optimal designs are studied in
the final part of this section. First we need some notation and definitions. An
arbitrary RM design based on np observations resulting from the application of
t treatments to n experimental units during p periods is denoted by RM (¢, n, p).
The set of all such arbitrary RM designs is designated by Z_#(t, n, p). Our
study here is limited to the case where p = ¢ and n = At, 1 a positive integer.

DEFINITION 3.1. A design d in G2 # (t, n, p) is said to be uniform on the ex-
perimental units if d(i, j) = d(¥', j), i + i’ for all j.

DEFINITION 3.2. A design din GZ_#(t, n, p) is said to be uniform on the periods
if, in each period, d assigns the same number of experimental units to each treat-
ment.

DEerFINITION 3.3. A design d in G2 _# (t, n, p) is said to be uniform if it is uni-
form on both the experimental units and periods.

The subset of all uniform designs in ZZ_#(t,n = 2, t) is denoted by
U B (1, AL, t).

3.1. Search for a universal optimal design in Z/ Z.# (t, At, t). Our interest
here mainly lies in unbiased estimation of linear parametric functions of direct
treatment effects and residual effects under Model 2.1. So, under the notation
of Section 2.1, the parametric vector §, consists of either all direct effects or
all first order residual effects. The information matrix associated with the entire
set of parameters of Model 2.1, rewrittén as

Yii = Taa,iy + Paci—1, ‘|' a,+ B;+ 1+ e
for an arbitrary d in ZZ/Z_# (t, n = At, 1) is given by

nl M, A, T, nl,

M, 2t—1DIE, N 2¢t— D1, |~
3.1 (X X)o ™2 =| A/ E; nl U, nl, g2

Jy N,/ Jot t1,

nly At — D)1/ nl 1) nt
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where

is the identity matrix of order ¢;
is the incidence matrix of direct effects and first order residual effects
under d;

LY

J, is a square matrix of order ¢ with all entries ones;

J, isat X nmatrix with all entries ones;

1, isanr x 1 vector of ones;

E, is the incidence matrix of first order residual effects and period effects

under d;
N, is the incidence matrix of first order residual effects and experimental
unit effects under 4.

LemMA 3.1. The information matrix of the joint direct treatment effects and first
order residual effects is given by

nl — A, M, =1,
(3.2) Cy(z, p)o? = t o,

RS VA PR

Proor. If we write X,'X, as partitioned in (3.1) in the following way

X,'X, = [Z;fzzm Z;dZMjl ,
ZyZy ZyZy
then
(3.3) Cir,0) =212y — 24 Z0)(Z34Z03) Z34 214 »
where
1 1 —1
—I+=-J, —J, 0
nl J, nl]" n + nt ' mt
(ZwZw)y = Iy a1, = —1 K 1 I 0
nl, 1, nt nt t
0 0 0

After some algebra (3.3) reduces to (3.2).

THEOREM 3.1. A design d* in Z/ FB.#(t, A, t) is universally optimal for the
estimation of direct treatment effects if My* = A(J, — I).

Proor. Utilizing the joint information matrix of the vector of direct treat-
ment effects and residual effects as given in (3.2), one can derive the information
matrix of the vector of direct effects as

t A2 — 1)
Y MMy 4+ M2
A(r—r—1) ¢ R

It can be argued that for any d in ZZZ_# (1, it, t)
MyJ, = I M,/ = 2t — 1)J;

(3.4 Cy(t) = nl — Jy.
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and therefore
Cy()1, =0,

meaning that the sum of the entries in each row and column of C,(z) is zero.
Therefore, by Theorem 2.1, a design d* in ZZZ_# (t, At, t) is universally opti-
mal if C,(7) is completely symmetric and tr Cyu(r) = tr Cy(z) for any other d
in the class. Clearly C.(r) is completely symmetric if d* is such that M,* =
A(J, — I). From the expression for C,(z) it is obvious that tr C,(r) is maximum
if and only if tr M; M, is minimum. But since the sum of each row of M, is
At — 1), tr My M,/ is minimum if and only if M, = A(J, — I).

THEOREM 3.2. A design d* in ZZ . # (t, At, t) is universally optimal for the es-
timation of first order residual effects if M,* = A(J, — I).

Since the information matrix of the first order residual effects, C,(o), from
(3.2), is
2 __ 4 2 _
(3'5) Cd(p) = 2 <t—tt——l> I — '_’11— Mde, + ig‘?—l‘)-ll ’
the proof is analogous to the proof of Theorem 3.1.

The problem of the existence and nonexistence of a universally optimal de-
sign in ZZ#Z_# (t, it, t) will now be studied.

3.2. Existence and nonexistence of a universally optimal designin 7/ 7Z_# (t, 2, t).
First we shall give a combinatorial interpretation of the structure of a design
in ZZZ_A# (t, At, t) whose incidence matrix of direct treatment effects and first
order residual effects, M,, is of the form A(J;, — I). Then we shall investigate
the existence and nonexistence of such designs. First we need the following
definition.

DEFrINITION 3.4. A design d in ZZ. . (t, 2t, 1) is said to be balanced with
respect to the set of direct treatment effects and first order residual effects if in
the order of application each treatment is preceded 2 times by each other treat-
ment, i.e., the collection of ordered pairs (d(i, j),d(i + 1,j)), 1 i<t —1;
1 < j < 4t contains each ordered pair of distinct treatments precisely 2 times.

If d satisfies the above requirement we shall simply say that d is balanced.

ExaMmpLE 3.1. Let#t = 3 and A = 4. Then the following design is balanced.

Experimental Units

|1 2 3 4 5 6 7 8 9 10 11 12

ry1r 2 3 2 3 1 1 2 3 2 3 1

Perijods 23 1 2 3 1 2 3 1 2 3 1 2
3j2 3 1 1 2 3 2 3 1 1 2 3

LEMMA 3.2. M, is of the form A(J, — I) if and only if d is balanced, i.e., d is
universally optimal if it is balanced.
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The proof follows directly from the definition of first order residuals effect
in Model 2.1 and the fact that under the stated condition the diagonal entries
of M, are zeros and off diagonal entries are A.

If d; is a balanced RM (¢, 4;¢, t) design, i = 1, 2, then by patching d, and d,
side by side we shall obtain a balanced RM (¢, it, ) design with 2 = 2, + 2,.
Therefore to construct a balanced RM (¢, t, ) design it is sufficient to study
the existence of a balanced RM (1, ¢, 1) design. But it should be clear that if a
balanced RM (¢, ¢, f) design does not exist then we cannot conclude the non-
existence of balanced RM (7, 4¢, 7) designs with 2 > 1, as we shall see shortly.

Several authors have studied the existence and nonexistence of balanced
RM (t, t, f) designs either directly in the context of experimental design or in
algebraic systems equivalent to such designs. For an extensive bibliography
on the subject the reader is referred to Hedayat and Afsarinejad (1975). Here
we shall update the information on balanced designs given in Hedayat and
Afsarinejad (1975).

Family one. t =2m, 2= 1. It is known that balanced RM (¢, ¢, #) designs
exist for all values of m. For example, if we number the experimental units
and periods by 1, 2, - - -, ¢, then d is balanced if d assigns treatment d(i, j) in the
ith period to the jth experimental unit in the following way:

di, j) = <2t2_ i) +j mod2m if i iseven

=<i;1>+j mod 2m if i isodd.

Family two. t =2m + 1, 2= 1. It is known that no balanced RM (z, ¢, ¢)
design exists if = 3, 5, or 7. According to E. Sonnemann’® the following de-
sign for + = 9 was found via an electronic computer by K. B. Mertz.

Experimental Units

1 23 456 789
1/1 2 3 456 7 8 9
2197 86 4512 3
317 8 9231 456
46 4 53 1 2 9 7 8

Periods 5/4 5 6 9 7 8 2 3 1
618 9 712 3 6 45
715 6 4 89 7 3 1 2
83 12 7 8 95 6 4
912 31 56 4 8 9 7

E. Sonnemann has found the following design for ¢ = 15 by mimicking the
pattern of the design discovered by Mertz.

2 Personal communication to A. Hedayat.
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An example of balanced RM (21, 21, 21) is given in Hedayat and Afsarinejad
(1975). An example of balanced RM (27, 27, 27) is given above. The group
theoretic equivalent structure of the last design was first discovered by Keedwell
(1974).

In an abstract, Wang (1973) has claimed the existence of a certain pattern
in nonabelian groups of orders 39, 55 and 57 which when translated to our
setup implies the existence of balanced RM (z, ¢, f) designs with t+ = 39, 55 and
57. But we have not seen the announced results. No other published or an-
nounced results are known to us.

The story of balanced RM (1, ¢, ) design with # odd is somewhat discouraging
but, as we shall see shortly, such designs exist for all 7 if 2 = 2.

Family three. t =2m + 1, 2 =2. In this case n = At = 2(2m + 1) experi-
mental units. Partition the experimental units into two groups each of size
2m+1. Number the periods and experimental units in each groupby 1,2, - .-, z.
Then d is balanced if d assigns treatment d(i, j) in the ith period to the jth experi-
mental unit in the following way:

In the first group:

a’(i,j):<2t2_i>+j mod2m + 1  if i iseven,

=<i_21>+j mod2m + 1 if i isodd.

In the second group:

d@i, j) = <t_—21+l-> +j mod2m + 1 if i iseven,

=<t;i>+j mod 2m + 1 if i isodd.
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