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ESTIMATION IN THE FIRST ORDER MOVING AVERAGE
MODEL BASED ON SAMPLE AUTOCORRELATIONS!

By RAUL PEDRO MENTZ
University of Tucumdn

For the first order moving average we consider a proposal by Walker
(Biometrika, 1961) to use k sample autocorrelations (1 < k < T, T sample
size), to estimate the first autocorrelation of the model, and hence its basic

" parameter. When k = k7 — o as T — oo, the estimator is proved con-
sistent and asymptotically normal and efficient, the latter provided kr
dominates log T and is dominated by T*. An alternative form of the
estimator facilitates the calculations and the analysis of the role of £,
without changing the asymptotic properties.

1. Introduction. We consider the moving average time series model
(1.1) Yy = €& + ag,_;, t=..-,—-1,0,1, ...,

where the ¢, are i.i.d. (independent identically distributed) normal (0, ¢%), 0 <
0’ < oo. Then (1.1) defines a stationary stochastic process with covariance
sequence o, = ¢*(1 + a?), 0, = 0_, = d’a, 0; = 0, |j| > 1, and autocorrelation
sequence p = p, = p_; = a/(l + a?), p, = 0, |j| > 1. We further assume that
|@| < 1, which makes |p| < 4. Only |a| # 1 is important, since for |a*| > 1
the parameters 1/a* and ¢*/a** provide an equivalent parameterization. See, for
example, Anderson (1971), Chapter 7.

To estimate a or p, we consider a sample y,, -- -, y, from (1.1). Consistent
estimators of the ¢, and p; are, respectively, the sample autocovariances c; =
T 3175 y.y.45» and the sample autocorrelations r; = ¢;/c,, (r, = r). Since we
are interested in convergence in probability and in distribution, and r — p in
probability as T — oo, we shall take |r| < i throughout. In fact r — p a.s. as
T — oo (see, for example, Hannan (1970), Chapter IV), but we do not use this
result here.

The moment estimator obtained by solving for @ the equation r = &@/(1 + &%),
namely & = [1 — (1 — 4r%*]/(2r), is consistent for & but Whittle (1953) proved
itis inefficient compared with the maximum likelihood estimator. Its inefficiency
can be ascribed to that of r as an estimator of p, and Walker (1961) proposed
to improve the asymptotic efficiency by correcting it in terms of r,, -- -, r,, for
some k sufficiently large.

Let W(p) be the k X k covariance matrix of the limiting normal distribution
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of T¥r — p), where r = (r, -+, 1), P = (01, -+ 0,) = (0,0, ---,0), and
let W(r) be the same with p; replaced by r,. If we partition r = (r, r®), and

(12) W(l' — <W11 wi2 ) ,
) wlz W22

thenw, =1 — 3r* + 4rt, w, = 2r(1 — ¥, r%, 0, - .-, 0)’, and W,, has 1 + 2%,
2r and r? as components with indices i, j for |i — j| = 0, 1, 2, respectively, and

0 elsewhere.
Walker’s estimator of p for model (1.1) is

(13) ﬁ Zf-;?) m(j)rj+1 =r+ Zl;;i m(j)rj+1 =r— wizw‘z_zlrm

=r —2r(1 — r*)y 2k whir,, — P 2w,

where wi/ are the components of the inverse matrix W3'. Note that the m(j)
are random variables, functions of r.

Walker (1961) developed the asymptotic theory for his proposal when k is
treated as fixed. In the following sections we present the corresponding theory
when k = k;, a function of the series length T, such that lim,__ k, = co. It
was conjectured by Walker [(1961), page 353] that such a theory could be
developed, essentially by means of the tools we use below, except that the w%
will be evaluated explicitly.

Proofs will be simplified below; for full details see Mentz (1975). General
comments are collected in Section 5.

2. The components in two rows of W;'. From Mentz (1976) we have that
21w =[G0) + GO + [GO) + i hj=12,..-,T,
where x = [—1 + (1 — 4r*?*]/(2r), and for rows i = 1, 2,

(2.2) G(1) = azz/A + Op(xzk) ’ G(l) = —azl/A + Op(xzk) ’
G(2) = _al2/A + Op(xzk) ’ C2(2) = au/A + Op(xzk) ’
while C,(f) = O,(x*) for all other s and ¢, where a,, = (r/2)[(1 — 4r*)} — 3],

a, = —(r/2)[(1 —4r)t + 1}, a, = —1* a,, = 0, A = h + O, (x*), h, = a,,a, —
apa, + 0. Note that |x| < 1 for |r| < §.

3. Consistency. We now consider the following.

THEOREM 1. Let {y,} satisfy equation (1.1), where |a| < 1 and the ¢, are i.i.d.
normal, £e, = 0, £e,* = 0*(0 < ¢® < oo0) for all t. Suppose that a set of obser-
vations of {y,} at times't = 1,2, ..., T is available, and that k = k; is a function
of T (T z k + 1) satisfying lim,_ k., = co. Then if p is defined by (1.3),
plimy_, p = p.

Proor. Substituting (2.1) in (1.3) we delete terms having x* as a factor.
Hence to prove that }*Zim(j)r;,, —, 0, we replace the m(j) by —{2r(1 —
AIC(1) + jCy(1)] 4+ r[Cy(2) + jCy(2)]}x?. . From (2.2) it suffices to prove that
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Skixir;, —p0as T — co. Now

G0 PIZE ] > ) S Tia Pl > o2+ P> op2)
In the second term |x| —, |a| < 1, and by proper choice of n (independently
of k and T) the term can be made arbitrarily small. The first term tends
to 0 since r; —,0 for j=2,...,n. A similar argument can be used with
255X 4

4. Asymptotic normality. We now prove the following.

THEOREM 2. Let the conditions of Theorem 1 hold together with
(4.1) lim,_, k;~'logT =0, limy_, T%*=0.

Then as T — co, THp — p) has a limiting normal distribution with parameters 0 and
(1 — a®(1 4 a)*.
Proor. The proof is done in three parts.

Part 1. (Replacement of r; by c; and simplification.)

(4.2) p—p=Tham(j—r;—p

= Yk om(j — 1)(c; — &) — T¢y oy,

where we introduced m(—1) = —o,7'0;, = —p = —a/(l + a®). Since ¢, — g,
and T*T-'¢c,"'o, — 0 in probability as T'— oo, we see that T#(p — p) has the
same limiting distribution as Ttg,~* 2 }%_, m(j — 1)(c; — &c;).

From the argument in Section 2 we have that m(j) = m(j) + x*my(j), j = 1,
2, ...,k — 1, for some 0 < 2 < 2 and functions m; and m,. Hence

(4.3) p—p =0, (Dhom(j — D)(c; — &c)
+ xt Tk my(j — 1)(c; — &e;) — xFmy(—1)(¢, — &)

where my(—1) = m,(—1). The first two terms have sums of the same nature,
and it will be shown below that the first term normalized by T* has a limiting
normal distribution. Since the second term has a factor x** — 0 in probability,
this part will be completed if we show that T#x|** —,0. But log T/k, — 0
assumed in (4.1) implies this result.

Hence the limiting distribution is unchanged if m(j) is replaced by m(j),
where

(4.4) m(—1) = —a/(1 + ), m(j) = *[1 + j(1 — 4r)}],
j=0,---,k—1.

Part 2. (Substituting parameters for rv in the m,(j).) We now prove that if
w(j) denotes m,(j) with r replaced by p, then

(4.5) plimy_ T# 3521 [my(j) — ()€ =0,
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where we used that &c; = 0 for j > 1. Let X = x(0) = —a. Then

my(j) — m(j) = X1+ j(1 — 4r)i] — %1 + j(1 — 40%)}]
(4.6) = [(1 = 4r)t — (1 — 4p?)}]jx’
+ [T+ j(1 = 4r)t](x' — %)),

so that the rv in (4.5) will be taken to be formed by the corresponding two
terms.

The sum on j of the first term in (4.6) gives a contribution of the form con-
sidered below, that is T* 3, %;c; ;. Since ¥ = (—a)’ is summable (ja| < 1),
such term converges in distribution to a normal rv with 0 expected value and
finite variance. Further (1 — 4r%) — (1 — 4p%?} in probability as T — oo, sO
that the contribution due to the first term of (4.6) converges stochastically
to 0.

In the second term we are led to deal with 7% 3 %21 (x; — X;)c;,,, or a similar
expression with weights j(x;, — %;). Using the same technique as in (3.1), to-
gether with the facts that x —, X and T* (c,, - - -, ¢,) is asymptotically normally
distributed with 0 expectations and finite variances, this expression is shown to
converge to 0 in probability as T — oo.

Part 3. (The asymptotic distribution.) The conclusion of the preceding argu-
ment is that we have to find the limiting distribution of

4.7) Q=T Tinom( — D(e; — &) =T R W,

where g(j) = 0;%(— @)1 + j(l — @)/(1 + @)}, j= 0,1, -+, k — 1, 6, =}
for j = —1 and 1 otherwise, and we take W, = 3%_ o= u1,(j — D)(ys Yeu; —
Y yipi)s t =1, .-, T. Fort =T — k + 1, ..., T the sums should range only
up to 7 — ¢, but the simplification means adding a total of k%2 extra terms
which is negligible compared with the existing Tk terms, because k*/T — 0 as
T — co. Taken as a stochastic process {W,} is stationary, finitely dependent of
order k + 1, and finitely correlated of order 1.

We now proceed as in Anderson [(1971), pages 538-539]. Let {N} be a
sequence of integers such that k/N— 0 as T — oo, and let M = [T/N]. Then
(4.7) has the same limiting distribution as M~ 1% (Z; + Y,) + T-*R, where

Z; =N Y Wiiwee Y, =Nt 2 v s Wiimowsi
j = 1, Tty M )

and R= Wy, + -+ + W, (R=0 if NM = T). This random variable has
the same limiting distribution as

(4.8) Q= M-t Y%, 7.,

which is proved by showing that the other terms converge to 0 in mean square.
Next we have

(4.9) EZp = NY(N— EW? + (N — k — 1)2EW,W,},



1254 RAUL PEDRO MENTZ

and let us write

Z;,  _
(4.10) Q* = (Z2 11, (1\4‘%527)7 =E&EZ)Xr 2.
Then & ) z; =0, & Y z;» = 1. To use Liapounov’s central limit theorem

[Loéve (1963), Chapter VI] it suffices to prove that for some 4 > 0,
lim,__, > & |z;]*** = 0. We choose 6 = 2. Then it suffices to prove that

M 4 __ M < ‘Zj4 j— ng4

@11 DI ®rt = T gl = g

convergesto0as T — co, where £Z* = N2 3V« LW W, W W,. Proceeding
as in Anderson [(1971), page 539] or Berk [(1974), page 498], we conclude that
we only need to show that those terms with v = ¢, [t — 5| <k + 1, |s — ¢g| £
k 4+ 1, t < 5 < g provide contributions that tend to 0 as 7 — oco. There are at
most 4(N — k)(k + 1)? such terms, and the total contribution to (4.11) is bounded
by a constant times 46%(N — k)(k + 1))M-YEZ*) X%, m(j — 1)}*. This com-
pletes the proof because this tends to 0 as T'— oo, by (4.1), and means that
T#(p — p) is asymptotically normal with expectation 0 and variance

(4.12) lim, ., &Z2 = lim,_ (EW? + 25W,W,).

It remains to prove that (4.12) equals (1 — a??®/(1 + a®* This is done by
direct but rather laborious calculation, and the details are omitted here.

CoROLLARY 1. Under the conditions of Theorem 2, let &' be the moment estimator
with r replaced by p. Then T &' — «a) has a limiting normal distribution with par-
ameters 0 and 1 — o?.

5. Comments. We here collect several comments about Walker’s proposal
and our findings.

a. The estimator (1.3) can be interpreted as an improvement in the asymp-
totic efficiency of r, a consistent estimator of p, by approximating the maximum
likelihood estimator by means of a linear combination of r, r,, -, r,, with
random coefficients. Since T*(r — p) tends in distribution to a normal with
variance 1 — 3p? + 4p* = (1 — a?)’(1 + a®)~* + {4a® + a*(1 4+ a®)}(1 + a®)~*, the
improvement achieved by g is the second term, the first term being also the
asymptotic variance of the maximum likelihood estimator of p. In terms of a,
comparing the moment estimator withthe same with r replaced by g, the vari-
ance of the limiting distribution of the former is [cf. Whittle (1953)] (1 + a* +
4ot + a® + a®)(1 — a¥) P =1 — a® + a*{4 + a*(1 + a?)?}(1 — a?)~?% where 1 —
a® is also the asymptotic variance of the maximum likelihood estimator of a.

Walker’s approach to derive (1.3) is to work with the limiting normal distri-
bution of T#r — p) and use maximum likelihood ideas. Since some approxi-
mations are introduced, the final estimator comes closer to approximating the
least-squares estimator, the Jacobian being omitted. These approximations have
no relevance for the asymptotic theory we developed, but may be important in
small samples.
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b. The estimator (1.3) is consistent and asymptotically efficient, proved biased
for small samples and “‘a priori” appears as robust to departures from normality
in the distribution of the ¢,, for moderate sample sizes.

The conclusions for large samples follow from the studies by Walker (1961)
[see also Anderson, (1971), Section 5.7.2] and the present paper. Small sample
studies by Monte Carlo trials were made by Walker (1961) and more extensively
by McClave (1974).

In the small-sample studies (7 = 100), (1.3) showed considerable efficiency
(i.e., agreement with the large-sample variances), but also rather important
biases. Walker (1961) proposed a correction for bias that has not been studied
empirically in detail.

The robustness argument arises because only the limiting normal distribution
of T#(r — p) enters in the derivation of (1.3), and it is well known that the
same limiting distribution holds for a wide class of distributions of the e,.
Unfortunately no empirical results for small samples are available in this con-
nection.

c. If in a practical situation &y, were unknown, it would be estimated from
the data. Then ¢; would be replaced by ¢;* = T-* 3755 (y, — P)Yer1ss — P)s
where § = T-' 317_, y,; see, for example, Anderson (1971), for this and other
types of mean corrections. It is easily proved that our results hold for the
modified version of the estimators, since, for example T* >%_ {m(j — 1)(c; —
&e;) — m*(j — 1)(e;* — &Ec;*)} —p0as T — oo, where m*(j — 1) is m(j — 1)
with ¢; replaced by c;*.

d. Our analysis has been restricted to the first-order moving average model.
Extension of the approach to a model of order ¢ > 1 seems quite feasible. The
components of the W matrix in (1.2) are known for all g. W,, will be a Toeplitz
matrix with equal elements along its central diagonals, and zeroes elsewhere;
the components of the inverses of such matrices are given as functions of the
roots of the associated polynomial equation in Mentz (1976). W,, is positive
definite and can therefore be taken as the covariance matrix of a stationary
moving average process; by the argument in Anderson [(1971), pages 224-225]
half of the roots are larger and half are less than one in absolute value, as was
the case in Section 2.

6. A modification to simplify the co'mputations. From the argument in the
proof of Theorem 2, it follows that

(6.1) p* = X m()riia s
where m,(j) was defined in (4.4), has the same large-sample properties of (1.3).
It discards parts having x* as dominating factor, and hence differs only slightly
from p if k is moderately large.

From a practical point of view (6.1) makes easy the choice of k, guided by
the degree of numerical approximation that is desired. Consider Table 1 where
for r negative the values of m,(j) are those in the table all taken with positive
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signs. Once the numerical value of r is available, the table can be used to see
how many sample autocorrelations r;, 2 < j < k to include in (6.1).

Using data generated in a computer, Walker (1961) studied in detail a set of
T = 100 observations from (1.1) with « = 0.5 (o = 0.4). He estimated r =
0.35005, r, = —0.06174, r;, = —0.08007, r, = —0.14116 and r, = —0.15629.
Then his estimates for 1 < k < 5 are compared in Table 2 with g*. Only r;
up to j = 5 are provided by Walker. From Table 1 for » = 0.35 it is apparent
that a larger k will be called for. However the behavior of p* seems comparable
to that of .

TABLE 1
Values of mi(j) for selected values of r
j .05 .15 .25 .35 .45
1 — . 1000000 — .3000000 — .5000000 — 7000000 — .9000000
2 .0075125 .0685482 .1961524 .4049504 .7353557
3 —.0005018 —.0139772 —.0692193 —.2140023 —.5682477
4 .0000314 .0026761 .0230114 .1072520 .4234471
5 —.0000018 —.0004922 —.0073620 —.0519085 —.3075804
6 .0000001 .0000880 .0022931 .0245097 .2192185
7 0.0000000 —.0000154 —.0007003 —.0113615 —.1539701
8 0.0000000 .0000026 .0002106 .0051919 .1068903
9 0.0000000 — 0000004 — 0000626 —.0023457 —.0735060
10 0.0000000 0.0000000 .0000184 .0010500 .0501521
11 0.0000000 0.0000000 —.0000053 —.0004664 —.0339916
12 0.0000000 0.0000000 .0000015 .0002058 .0229082
13 0.0000000 0.0000000 —.0000004 — 0000903 —.0153631
14 0.0000000 0.0000000 .0000001 .0000394 .0102590
15 0.0000000 0.0000000 0.0000000 —.0000171 —.0068249
TABLE 2
Estimates of p, T = 100, Walker’s data
k b o+
2 0.38051 0.39327
3 0.36879 0.36084
4 0.38498 0.39106
5 0.37934 0.37429

To compute (1.3) exactly, Walker (1961) proposed an iterative procedure;
(6.1) is of course much simpler. In fact (2.2) could be written in detail to give
the exact form of (1.3), and a table similar to Table 1 prepared for that case,
but we omit these details here.
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