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TIED-DOWN WIENER PROCESS APPROXIMATIONS
FOR ALIGNED RANK ORDER PROCESSES AND
SOME APPLICATIONS'

By PraNnaB KUMAR SEN
University of North Carolina, Chapel Hill

For independent random variables distributed symmetrically around an
unknown location parameter, aligned rank order statistics are constructed
by using an estimator of the location parameter based on suitable rank
statistics. The sequence of these aligned rank order statistics is then in-
corporated in the construction of suitable stochastic processes which con-
verge weakly to some Gaussian functions, and, in particular, to tied-down
Wiener processes in the most typical cases. The results are extended for
contiguous alternatives and then applied in two specific problems in non-
parametric inference. First, the problem of testing for shift at an unknown
time point is treated, and then, some sequential type asymptotic nonpa-
rametric tests for symmetry around an unknown origin are considered.

1. Introduction. Let {X;, i = 1} be a sequence of independent and identically

distributed random variables (i.i.d. rv) with a continuous distribution function
(df) F(x), x € (— o0, o). For every n (= 1), consider the signed rank statistic

(1.1) T,=T,X, -, X,) = 2i.c;sgnX;a,(R})

where {c,, i = 1} is a sequence of known (real) constants, R;; is the rank of |X]
among |X,|, ---, |X,|, i=1, ---, n, a,l), -- -, a,(n) are defined by

(1.2) a,(i) = E¢*(U,) , i=1,...,n,

U.< -+ <U,, are the ordered rv’s of a sample of size n from the rectangular
[0, 1] df and the score function $*(u), 0 < u < 1isassumed to be square integrable
inside (0, 1). Conventionally, we define T, = 0, and let

(1.3) A2 =n1 3 ak(i) and Clrl=nr,c?, nz=1 and
Al =C2=0.
Note that by (1.2) and the square integrability of ¢+, for every n > 1,

(L4) Al =0 S, BgHU)) — 7 S (B U — (B*(U,)]
<t Do B U)Y = SH{e*@)Pdu = 4, say,
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1108 PRANAB KUMAR SEN

while by Theorem b (on page 158) of Hajek and Sidak (1967),
(1.5) Ar— A%, as n-—oo.

For every n(= 1), consider a stochastic process W, = {W, (1), te I}, I = [0, 1],
by introducing a sequence of integer-valued, nondecreasing and right continuous
functions {k,(t), t € I} where

(1.6) k,(t) = max {k: 4>2C,* < t4,*C,*}, tel,
and then letting

arn - W) = (4,C)'T, o tel.
When F is symmetric about 0, ¢+ is square integrable (as has been assumed) and
(1.8) max, g, ¢,2/C,2— 0 as n— oo,

then, on defining W = {W(r), te I} as a standard Wiener process on /, we have
(1.9) W,—., W, intheJ-topology on D[0,1],

where D[0, 1] is the space of real functions on / with no discontinuities of the
second kind and is endowed with the Skorokhod J,-topology (see Billingsley
(1968)). The proof of our Theorem 3.1 (to follow) insures (1.9) under the mini-
mal conditions stated above; under more stringent regularity conditions and
under a slightly different construction (using the C[O0, 1] space instead of the
D[0, 1] space), the same result was proved in [15]. We prefer to use the current
construction as it leads to relatively simpler expressions for some statistics based
on such processes, as will be considered in Section 4.
We are concerned here with the model

(1.10) F(x) = Fy(x — ), 6 unknown and Fy(x) 4 Fy(—x) =1
for all x = 0. Since ¢ is unknown, we use the aligned rank order statistics
(1.11) Ton=TuX,~ 0, -, X, —0,), 1<k<mT,, =0,

where 0, is the estimator of @ based on a suitable signed rank statistic T,° (see
Section 2) and the T, are defined as in (1.1). On replacing T,byT,,,0<k<n
in (1.7), we define the stochastic process W, ={W,(), te I}, for n = 1; note
that the observations X, — 6, , X, — 0, are no longer independent so that
the standard result on W, does not readlly apply to that on W,.. Weare prlmarlly
concerned in showing that under suitable regularity conditions, as n — oo, W,
converges weakly to an appropriate Gaussian function on D[0, 1]. In particular,
when the ¢, i > 1 are all equal, W, weakly converges to a tied-down Wiener
process W, = {W(1) = W(t) — tW(l), teI}. The preliminary notions and the
basic regularity conditions are introduced in Section 2. The main weak con-
vergence results are presented in Section 3. In this context, asymptotic linearity
of signed rank statistics (in the shift parameter) is extended to appropriate
stochastic processes constructed from these statistics. The last section deals with
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two important problems of nonparametric statistical inference where such aligned
rank order processes are useful. Specifically, the problem of testing for a shift
of location at an unknown point of time and the problem of testing symmetry
about an unknown origin are treated and in both cases asymptotic nonparametric
tests are developed.

2. Preliminary notions. We make the following assumptions: (i) the df F
admits of an absolutely continuous probability density function (pdf) f with a
finite Fisher information

21) AN =12 AS0f()) dF(x)  where  f(x) = (d[dx)f(x) ,

(ii) ¢*(u) = #(3(1 + u)), 0 < u < 1 where the score function ¢(u) is square
integrable inside 7 and ¢(u) + ¢(1 — u) = constant, forall0 < u < 1. Without
any loss of generality, we may let ¢() = 0, so that
(2.2) A = 3o (u)Pdu = {1 ¢u)du < oo .

Concerning the ¢;,, we assume that (a) (1.8) holds and (b) there exist two real
numbers ¢, and C, (> 0) such that

(2.3) lim, .+t > 2 ¢, = ¢ and lim,_ nC,? = C;® both exist;
we let
2.4) c* = ¢,/Cy? and c** = (c/Cy)? .

Also, for some nondecreasing score function gz§+(u), 0 < u < 1, satisfying assump-
tion (ii) (made on ¢+*), we define as in (1.1),

(2.5) T,=T05X, - -+, X,) = Xr,sgnX,a,(R}) (notehere ¢, =1,i>1)
where a,(i) is defined as in (1.2) with ¢* being replaced by ¢*. Let then
(2.6) Tn"(a) = T'n"()(l —a, -, X, —a) for —co<a< ;
by assumption, 7',%(a) is nonincreasing in a, and we define
(2.7) 6, =sup{a: T)%a) >0}, 6,” =inf{a: T,%a) < O};
5n — %(énm + 9n(2)) .
Then, 5n is a robust, translation-invariant and consistent estimator of & (viz.,
[7]) and in (1.11), we use 4, for our alignment process.

3. Weak convergence of Wn. First, we consider the following result which
will be required in the sequel. Let us introduce

(3.1) H,: (1.10) holds with 6 =10 and
K,*: (1.10) holds with 6 = C,%,
where b is real and finite. Also, let
(3.2) v($, ¢) = §o p(u)(u) du
where ¢(u) = —f'(F~u))/f(F-'x)), 0 < u < 1.
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THEOREM 3.1. Suppose that (A) the c, satisfy the conditions (a) and (b) of Sec-
tion 2, (B) the df F satisfies the condition (i) and (C) ¢+ is nondegenerate and satisfies
condition (ii) of Section 2. Then, on defining W, by (1.6)—(1.7) and W as before
by (1.9), we have under {K,™} in (3.1),

(3.3) W, = (W(t) + c* 47 b1(p, @), tel}, as n— oo .

Under H, in (3.1), (3.3) holds (with b = 0) for any continuous F, when (C) and (1.8)
hold.

Proor. First, consider the null hypothesis case when b = 0. Define
(3.4) S, = Tk, cosgn X, d(Fy(|X))) k>1;8=0.
Then, note that under H,, S, has mean 0 and variance A*C.:n = 1. Also, let
%, be the sigma-field generated by (R}, ---, R},) and (sgn X,, - - -, sgn X ).
Then, a little examination reveals that 7, = E(S, | <Z,, H,) and for every k: 1 <
k <n, 4,7°C,E(T, — S,)'| Hy} = 4,7°C,*C,}(4* — 4.). Note that by (1.3)
and (1.8), C,*is " in n and it goes to oo as n — oo, and we can always choose
asequence {m,} of positive integers such that as n — co, m, — oo but o, /Gt —0.
Then, by (1.4) and (1.5),
max, ..., C,7?4,7%(A* — 4,5)C,?
Ck2(A2 _ AkZ) Ck2(A2 — AkZ)
C,A4.2 C,24,*
< max {(44,)C,CL , A, max, .., (4 — 4D} -0

(3.5) = max {maxkémn s Mmax, .o,

as n — oo. Thus,
(3.6) max, <, E(T, — S,)'| H})4,2C,' -0  as n-— oo .
Also, note that by (1.5) and (1.8),
(3.7)  max,g,g, E{(S, — S,_))"| Hp}/A4,'C,*
= max, g, (¢,}/C,(4%4,) — 0 as n— oo.

Hence, if in (1.6)—(1.7), we replace the T, by S, (0 < k < n) and denote the
corresponding process by W *, then the finite dimensional distributions (f.d.d.)
of W, and W * are asymptotically the same. On the other hand, under (3.7),
the special central limit theorem (on page 153) of Hajek and Sidak (1967) applies
to ﬁnitely many S,, and hence, the f.d.d.’s of W,* can easily be shown to be
asymptotically the same as those of W. Thus, to prove (3.3) in this case, we
need to show only that W, is tighr. For this note that by (3.6) and (3.7),
(3.8) max,ge, E(T, — T\ )| HYACP—0  as n— oco.
Let us define
(3.9) 0, (W,) =sup{|W, () = W,(5)]: 0 <s<t<s+d< 1},

for 0<do< 1.
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Then, by using inequality (14.9) (on page 110) and Theorem 15.2 (on page 125)
of Billingsley (1968) and noting that here W,(0) = 0, with probability 1, it suf-
fices to show that for every ¢ > 0 and 7 > 0, there exist a : 0 < d < 1 and an
integer, n,, such that

(3.10) Plo,(W,)>e} <7, Vnzn,.

Further, as in Section 3 of Sen and Ghosh (1973), under H,, whenever ¢+ is
integrable inside /, {T,, &%,; n = 1} is a martingale (insuring the applicability of
Lemma 4 of Brown (1971)). By virtue of (3.8), the convergence of the f.d.d.’s
of {W,} to those of W and the martingale property of {T,}, we may virtually
repeat the proof of Theorem 3 (viz., (25)—(26)) of Brown (1971); for intended
brevity, the details are omitted. This completes the proof of (3.3) for the null
hypothesis case; note that here (C) and (1.8) suffice.

Next, let the joint distribution of (X}, - - ., X,) under K,* be denoted by P, ,,
so that P, , relates to the null case. By reference to Hajek and Sidak (1967,
Chapter VI) (see also van Eeden (1972, page 797)), under the hypothesis of the
theorem, {P, ,} is contiguous to {P, ,}. Hence, if we define B, = [w,(W,) > ¢],
we have from (3.10) and the contiguity of P, , to P, , that

(3.11) lim,_, {lim sup,_.. P(B," | K, ™)} = 0.

Also, by definition, W (0) = 0, with probability 1, for every n > 1. Hence,
(3.11) along with Theorem 15.2 of Billingsley (1968, page 125) insures that W,
remains tight under K, as well. Thus, to prove (3.3), all we need to show is
that the f.d.d.’s of {W,} converge to those of {W(r) + c¢*A~'br(¢, ¢), t € I} when
{K,”}holds. By (3.6) (insuring the asymptotic equivalence in probability, under
H,) and the contiguity of {P, ,} to {P, ,}, we claim that for every (fixed) m (= 1)
and ¢, ---, ¢, (alle ), as n — oo,

(3.12)  max {|W, (1) — W,5t;)|: 1 £j < m}—,0, under (K,*}.

On the other hand, under K,'”, S, involves a triangular array of independent
rv’s, so that under the assumptions (A, B, C) of the theorem, the classical central

limit theorem yields that (W, *(t), - - -, W, *(¢,)) is asymptotically multinormal
with mean vector

(3.13) A7 c*by(P, P)(ty, -5 t,,)

and dispersion matrix

(3.14) (BN ) im1m where a A b = min (a, b) .

Therefore, the proof of the theorem is complete. []

REMARK. (3.3) is an extension of a theorem in Hajek and Sidak (1967, page
220) where it is shown that under K,”, W (1) —_ W(l) + A~'c*by(¢, ¢).
Towards the end of this section we shall comment on the case where the scores
may not be defined by (1.2).
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Because of the translation-invariance of 8, (viz., [7]), in the sequel, without
any loss of generality, we let § = 0 in the model (1.10). For every real b, let
us define
(3.15) T, .(b) = T(X, — b/C,, -+, X, — b/C,), 1<k § ; T,.(6) =0,

b

where the T, are defined by (1.1). On replacing the T, by T, ,, 1 <k<nin
(1.7), we denote the corresponding stochastic process by W, , = {W, (1), te I},
so that W, , = W,. Then, we prove the following.

THEOREM 3.2. Under the assumptions (A, B, C) of Theorem 3.1, when H, in (3.1)
holds, for every real and finite b,

(3.16) (W, (1) + A7 btv(g, ¢), tel}— W, as n— oo .

Proor. Let [],, be the distribution of W, , (under H, in (3.1)), defined for
Borel subsets <2 of D[0, 1] (relative to the Skorokhod metric), so that

(3.17) 1., (D)= P{W,,eD|H,}, for every De .

Also, let 5 , be the distribution of W, in D[0, 1] when K,* in (3.1) holds, i.e.,
(3.18) v (D)y=PW,=W,,eD|K, "}, for every De <.

If R},(b) be the rank of |X, — b/C,| among |X, — b/C,|, -- -, |X, — b/C,|, i =
1, -, n, R,¥b) = (Rf(b), ---, R, (b)) and Q,(b) = (sgn (X, — b/C,), -

sgn (X, — b/C,)), then obviously, the process W ,» is a mapping of (R, *(d), Qn(b))
into the space D[0, 1], and similarly, W, = W, , is a mapping of (R,*(0), Q,(0))

into the D[0, 1] space. Also,
(3.19)  [R,*(b), Q,(b)), under H,] =_ [(R,*(0), Q,(0)), under K ("],
where = _ stands for the identity of distributions. Thus, for every D in &,
there exists a E, in E*, the n-dimensional Euclidean space, such that by (3.19),
Il.. (D) = P(W,, e D|H}

(3-20) = P{A,7C, [T, (), - -+, T, ()] € E, | Hy}

= P{A,7'C, T[T, (0), - -+, T, (0)] € E, | K"}

= P Wmo eD|K, "V} = 115 - (D) .
Consequently,
(3.21)  {W,,, under H} =_{W,, under K,(~"}, for every n>1,
and hence, the rest of the proof follows from Theorem 3.1. []

For b belonging to a bounded interval, the asymptotic linearity (in probability)

of C,XT, .(b) — T, ,(0)) has been studied by van Eeden (1972) along the lines

of Jureckova (1969). By using our Theorem 3.2, we are able to present the
following result strengthening the linearity to that of the process W W

THEOREM 3.3. Suppose that in addition to the conditions stated in Theorem 3.2,
dt(u)is /' inu: 0 < u < 1 and the c; are all nonnegative. Then, under H,in (3.1)
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and for every (fixed) K: 0 < K < oo,
(3.22) sup {| W, ,(t) — W, (1) + c*A~bu($, $)t|: |b| < K, te I} —, 0,
as n— oo .

Proor. For a given K and ¢ > 0, one can always select a set of m = m(K, ¢)
points, such that

(323)  —K=b > - <b,=K; (b — b)c* A, §) < ¢/2,
l<j<m.

Since, by assumption, the ¢, are nonnegative and T, ,(b) is nonincreasing in b
for every k (< n), proceeding as in van Eeden (1972, page 799), we obtain by
a few standard steps that
(3.24)  sup ([, ,(1) — W,(1) + e*A=bis(g, ¢)|: te ], |b| < K}

= max,;c,, {SUpP.e;, ]Wn’,,j(t) — Wa(8) 4 c*A7b; tu(h, @)} + ¢/2.
Also, for eachj (1 < j < m), if one considers the points (0 )1, < -+ < 1,(Z 1),
g(= 1) fixed, then, along the lines of van Eeden (1972), it can be shown that
the joint distribution of ({W, , (1) — W, «(t,) + ¢* A7 t,0(¢, $)}, s = 1, - - -, q)
(under H, in (3.1)) is asymptotically a degenerate multinormal with null mean
vector and null dispersion matrix. On the other hand, defining w,(x) as in (3.9),

and noting that w,(x — y) < ,(x) + ,(y), we obtain by using Theorem 3.2
that for each j (1 < j < m),
Plo,([W.,, (8) — W, o) + c*A7b;10(9, ¢), te I]) > e | H,}
(3-25) S Ploy([Was (1) + c*A7b;10(9, ¢), te 1]) > e | Hy)
+ P{wﬁ([Wn,O(t)’ tel]) > ge| Hy}
<7, for every n = nye, 7'),

when d (> 0) is chosen sufficiently small. From the above, we conclude that
for every (fixed) j (1 < j < m), as n — oo,
(3.26) sup {]Wn,,,j(t) — W, ot) + c*A7b;tu(p, ¢)|: te I} —,0.
Since, for given K and ¢, m is fixed, (3.22) follows from (3.24) and (3.26). []

REMARK. The condition that ¢+ is nondecreasing can be replaced by the
condition that ¢*(u) is the difference of two nondecreasing functions ¢,*+(x) and
#,*(u), 0 < u < 1. Inthat case, W, , — _n’o can also be expressed as a difference
of two such processes where, in each case, the score function is nondecreasing;
and hence the proof sketched before stands valid.

We are now in a position to formulate the main results of this section. Let

us define ¢ and ¢ as in Section 2, 4?as in (2.2) and 4* by the same equation
with ¢ replaced by ¢. Let then

(3:27) L(p, §) = (§i p(0)p(u) du)/(AA) ,
(3.28) 1 =10 $: ¢) = A4, 9) (s )] »



1114 PRANAB KUMAR SEN

and, finally, let Y = {Y(f), te I} be a Gaussian function on the C[0, 1] space
with
(3.29) EY =0 and

EY(5)Y(f) = s N t — c**st{2yL(p, @) — 7%}, s, tel
where ¢** is defined by (2.4), and is bounded from above by 1.

THEOREM 3.4. Under (1.10) and assumptions (i), (ii) and (a, b, ¢) of Section 2,
as n— oo,

(3.30) W,—_Y, inthe Skorokhod J,-topology on D0, 1].

PROOF. As before, we let § = 0 and consider the estimator §,, defined by
(2.7). Then, it is known (viz., [7]) that nif,, is asymptotically normal with mean
0 and variance 4*/»$, ¢), and by (2.3), n~*C, — C, as n — oo. Thus, C,lh,) =
0,(1). Thus, writing b = C,0, and noting that W, , = W,, we obtain from
Theorem 3.3 that

(3.31)  sup{|W,(1) — W, (1) + A7,/ Conil, 1x(9, )| : 1€ 1}, 0,
as n— oo .

Parallel to (1.6), let us define
(3.32) k(1) = max{k: k4 < md?}, tel,

and let W,° = (W,%(1) = n‘%/fn'lT,gn(t), t e I}, where the T,° are defined by (2.5).
Then, using (2.7) and (3.31) (for this particular case), we obtain that as n — co,

(3.33) nf,u(¢, o) = AW,2(1) + o,(1) .
Hence, from (3.28), (3.31) and (3.33), we obtain that as n — oo,
(3.34) sup {|W,(1) — W.,(0) + 71,/ CHW, (1) 1€ 1} —,0.

Note that by (3.32), n=k,(7) - in‘ﬁ;n(,) <t < ik, (n) + )4, 4%, ., and
hence, using (1.5) (for the score function ¢), we obtain that
(3.35) lim, , n-%k, () =t  for every tel.
Similarly, by (1.6), (1.5), (1.8) and (2.3),
(3.36) lim, ., C,7*C} ,, = lim,_ n7%, (1) =1, for every rel.
Further, forany 1 < k, ¢ < n, letting‘k* = k A ¢, we have under H, in (3.1),
E([4,71C,7" Dticosgn X, g(Fy(|X)I[A "0 Di, sgn X, G(Fy(| X)) | Ho}
(3:37) = An“Cn“lzf,.‘ln‘* i e E{ (R XD)P(Fo(| Xi])) | Ho)
= (A, PA) (A, Ay C,k*e, L(, B)
~ (cof Co)(n™H(k A @) L($ $)(EisfCo) »
so that, by (3.35), (3.36), (3.37) and the definitions of W, and W,°, we have

(3.38) lim, o, E{W ()W, 1) | Ho} = (¢ C)(s A H)L($, $) .
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Finally, by using (3.35)—(3.38), we may consider a bivariate extension of the
proof of the first part of Theorem 3.1, and show that under H, in (3.1), the
bivariate process {(W,(t), W,%(t))', t € I} converges weakly to a bivariate Gaussian
function {(W(t), W(t), t € I}, where marginally each of W and W° is a standard
Wiener process and E{W(1)W°(s)} = (c,/C,)(s A t)L($, @), for every s, t € I. Hence,
(W(1) — 1(co/C)tW, (1) te I} — . Y, and the proof of the theorem follows
from (3.34).

COROLLARY 3.4.1. Under the hypothesis of Theorem 3.4, if c** = 1 and ¢ = ¢,
then W, converges weakly to a standard tied-down Wiener process W,.

REMARKS. (i) Consider the case where the ¢, are not necessarily nonnegative,
and let

(3.39) ¢;* = max {c,, 0} and ¢,- = max {0, —c;}, for i=1.

Note that in Theorems 3.1 and 3.2, we do not need the ¢, to be all = 0; however,
we need the assumption in Theorems 3.3 and 3.4 where the monotonicity of
T, .(b) in b rests on this condition. By using (3.39), it is possible to express
T, .(b) (and hence, W, ,) as a difference of two similar quantities where in each
case the coefficients are all nonnegative. As such, if each of the two sequences
{c,* i = 1}and {¢,~, i = 1} satisfies the conditions (a) and (b) of Section 2, then
the conclusions of Theorems 3.3 and 3.4 remain valid.

(ii) So far, we have specialized ourselves to scores in (1.2). Often, scores
aretakenas @¢(i/(n + 1)),i =1, ..., n, or in some other forms. For such scores,
the martingale property, mentioned after (3.10), may not hold; and hence, the
tightness of W, (under H, in (3.1)) may require a different proof. Towards this,
we note that if the actual scores are denoted by a,*(i), i =1, ---, n and the
a,(i) are defined by (1.2), then letting b,(/) = a,*(i) — a,(i),i=1, ---, n, B’ =
n=' 3r_, b,’(i), we obtain on using (3.4) of Sen and Ghosh (1973) that for the
special case of ¢, = 1, i > 1,

Py{max, .., |2, sgn X, b,(R};)| > ent}
(3.40) < 2 N [inf, {exp(—ner + $1%B,2))]
= 2 k= {exp(—4(n/k)e’[B,)} -

Now, by Theorem b (page 158) and Lemmas a, b (pages 164-165) of Hajek and
Sidak (1967), under assumption (ii) of Section 2, B,*— 0 for a,*(i) = ¢(i/(n + 1))
or some related scores. We assume that for some r > 1,
(3.41) B,! < K(logn)~,

for all n = n, where K is a positive (finite) constant.
Under (3.41), it is easy to show that the right-hand side of (3.40) converges to
0 as n — oo, so that the tightness of W, based on the scores in (1.2), implies

the same for the scores a,*(i). Now, it follows from Hoeffding (1973) that (3.41)
holds whenever the square integrability assumption of ¢ in Section 2 is replaced
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by
(3.42) 5 P*(w){log (1 + |p(w))} du < oo forsome r>1,

and, in this sense, (3.41) is not very restrictive. When the c, are not equal, the
inequality (3.40) is difficult to extend in this full generality. However, on noting
that by the Schwarz inequality

(3.43) A, C o maxX g, | 2082 ¢ sgn X by (R}
< A,7{max,gq, (C/C,)k B},

we claim that lim,_, nB,* = 0 implies that the tightness of W, for scores in (1.2)
implies the tightness for the scores a,*(7). Such a condition on B,, of course,
demands much more than (3.42) or (2.2). However, under the usual Chernofi-
Savage condition on the score function, it holds (cf. Section 10.5 of [12]).

(iii) As in van Eeden (1972), one may also be interested in replacing in (1.1)
{c;} by a double sequence {c, ;,, i < n; n = 1}. Here also, if ¢, = ¢;/C, for all
i < n(= 1), then the results go through easily. On the other hand, for arbitrary
¢, in the absence of any martingale or related properties of the T, ,, k < n,
it may be considerably difficult to establish the tightness property of W,. This,
in turn, introduces difficulties in the proof of the other theorems of this section.

(iv) In all the four theorems, the stochastic processes considered belong to
the D[0, 1] space. We could have constructed (by linear interpolation) parallel
processes belonging to the C[0, 1] space; in view of inequality (14.9) of Billingsley
(1968, page 110), the same proofs will be applicable for such processes too. On
the other hand, the current construction, besides being more general, leads to
some simplifications of the expressions for certain functionals of these processes,
as will be considered in Section 4. At this stage, we may refer to McLeish (1974)
for certain invariance principles for dependent rv’s which include the results of
Brown (1971) as special cases.

4- Some asymptotically distribution-free tests based on the weak convergence
of aligned rank order processes. We consider the following problems where the
tests are based on appropriate stochastic processes constructed from suitable
aligned rank order statistics. We shall incorporate the results of Section 3 to
study the properties of these tests; some allied new results will also be deduced
in this context.

4.1. Some nonparametric tests for shift dt an unknown time point. Let {X,,i = 1}
be independent random variables with continuous df’s {F,(x), x € E;i = 1}, where

“4.1) Fxy=F(x—0—28,),

i=1,...,n; F symmetric, ¢ unknown
and 8, - - -, B, are also unknown. Our null hypothesisis H,: 8, = --- = §, =10
and we are interested in the alternative K = |J%2 K,,, where

‘8m+1:--~:ﬂ":‘8¢0 for m=1,.---,n—1.
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Thus, K relates to a shift at an unknown point of time. Bhattacharyya and
Johnson (1968) have considered some simple nonparametric tests for this problem
along with a review of available parametric tests. By reference to the criterion
of best average power (where averaging is taken over arbitrary weighings), they
obtained locally most powerful invariant rank tests; by nature, these tests are
Bayesian in structure. Without any appeal to this criterion of best average power,
we may consider some alternative tests as follows.

Under H,, the common location § may be estimated by 4, in (2.7), assuming
that F is symmetric about 0. Also, we construct the T,‘j,n asin (1.1) with ¢, = 1,
i = 1. If H,is not true, §, will estimate some intermediate point between # and
6 + B, so that the T,‘jy% will be consistently deflected for k¥ < m; while for &k > m,
this deflection will be gradually drifted. As such, suitable functionals of W, may
be used to test for H, against K. Since 4,> — A4*(viz., (1.4)), in (1.5), one could
have defined k(1) = max [k: C> < tC,?*}, te Jand asin thiscase, ¢, = 1,Vi = 1,
we can take k,(f) = max{k: k/n < 1}, t e I. With this modification in the defini-
tion of W, and W,, we propose the following test statistics:

(4'3) Dn+ = suptel Wn(t) = n_%An—l{maXlékén Tl(c),n} ’
(4.4) D, = sup,.; |W,(1)| = n~tA4, {max ., |72},
(4.5) D* = (3 WXty dt = n=24,{ Tz (T2 )% -

D,* is suitable for one-sided alternative (8 < 0), while D, and D,* are for two-
sided ones. Now, in (2.5), we use the same score function ¢, so that a,(i) =
a,(i), i=1,...,n. Also, here all the ¢, are equal to 1, so that we are in a
position to use Corollary 3.4.1 when the null hypothesis holds. Thus, under
H,, D,* and D, have respectively the same asymptotic distributions as that of
the one-sided and two-sided Kolmogorov-Smirnov statistics for the classical
goodness of fit problem (for the latter, see pages 199-200 of Hajek and Sidak
(1967)). Also, under H,, D,* has the same asymptotic distribution as that of
the classical Cramér-von Mises goodness of fit statistic [cf. page 192 of Hajek
and Sidak (1967)]. Thus, large sample tests based on D,*, D, and D,* can be
carried out by appeal to the critical values of the classical goodness of fit tests
for the one sample problem.

Next, we consider the asymptotic nonnull distributions of D,*, D, and D, *
for contiguous alternatives {K,*}, where'

(4.6) K,*: (4.2) holds for some m =m, and f=n"t, §+0,
with n7'm, 5 y:0<y <1 and (7,d) isfixed.

We note that under K, *, X, ~~~,an are i.i.d. rv’s with df F(x — 6) and
X, 41 -5 X, are i.i.d. rv’s with df F(x — 6 — n~19), while the assumptions (i)
and (ii) of Section 2 insure contiguity under (4.6). As such, proceeding as in
the proof of Theorem 3.1 and noting that here ¢, = 1, i > 1, we obtain that,
under assumptions (2.1)—(2.3) of Section 2, (4.1) and (4.6) and for # = 0, as



1118 PRANAB KUMAR SEN

n— oo,
@7)  Wao (W(0,0 < (< 13 W) + (1 = D)0, A, 7 < 1< 1,

where W = {W(1), t € I} is a standard Wiener process. Secondly, by using The-
orems 4.4.3 and 6.2.3 of Puri and Sen (1971), it follows by some standard steps
that under (4.6) with = 0 and with ¢ = ¢ in (2.5),

(4.8) nf, ~ A1 — 1)d, AX$, ) ,

and hence, nt|6,| = O,(1). Thirdly, (3.22) is also valid in this case with the
further simplification that ¢* = 1, and as a result,

(4.9) W,(1) = nt0,u(¢, ¢)J4 + 0,(1) as n—oo;
(4.10) SUp, e, |[Wo(t) — W, (t) + tW,(1)] »,0 as n—oo.

From (4.7) through (4.10), we obtain that under the assumptions (1.7) and
(2.1)—(2.3), (4.1) and (4.6), as n — oo,

(4.11) W, = Wit) — (1 — 1)ou(g, §)/A, 0 <
S W) — 11 — )ou(@, $)A, 7<=,

where W, = {Wy(t) = {W(t) — tW(l), teI}} is a standard tied-down Wiener
process.

Now, (4.11) is the key result for the study of the asymptotic power functions
of the tests based on D,*, D, and D, *. For example, if D,* be the upper 100a9%,
point of the limiting null distribution of D,* (actually, equal to (—% log a)t),
then

a

(4.12) lim,_, P{D,* = D,*|K,*} = P{W(t) — A(t) = D,*, forsome tel},

where (1) = #(1 — 7)ou(¢, ¢)]4 for 0 < ¢t <y and = y(1 — 0)ov(9, ¢)/A4 for
7y £t £ 1. Further, on introducing the process §(f) = (¢ + L)W (¢/(t + 1)),
0 < t < oo, the right-hand side of (4.12) can be expressed as

(4.13) P{&() = (t + 1)D,* + 2%(t) for some te[0, o)},

where & = {£(¢), t € I} is a standard Wiener process on [0, co) and

(4.14) (1) = (1 — 1)ou(é, §)JA for <7/l —7) and
= 109, ¢)/4 for 1> /(1 —7).

Note that (¢t 4+ 1)D,* + 2*(f), t€ [0, co) represents two straight lines with a
common intercept at t = y/(1 — 7). For simple linear boundaries, Anderson
(1960, Section 4) has obtained explicit expressions for the boundary-crossing
probabilities for standard Wiener processes, and, in his Section 6, he has indicated
that the results can be extended to segmented straight lines, as is the case in our
problem. However, in general, this is quite complicated to write down explicitly.
The case of D, follows similarly where instead of the hitting probability for one
boundary, we will have to deal with the case of two parallel or trapezoidal
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boundaries. The case of D, * is more complicated. However, for general con-
tiguous alternatives, asymptotic power of the Cramér-von Mises test has recently
been studied by Neuhaus (1976) and his results can perhaps be adapted in our
problem too.

4.2. Test for symmetry: location unknown. For the model (1.9) the problem
is to test for the symmetry of F, about 0 where @ is regarded as a nuisance
parameter. Gupta (1967) considered an asymptotically nonparametric test based
on a special case of Wn(l) where he took ¢, =1, i=1, ..., n, ¢(u) = u and
@(u) = sgn (u — }), ue I. We are basically interested in a general class of as-
ymptotic sequential tests for this problem.

We define here {T,} by (1.1) with ¢, = 1 for all i and let

(4.15) T,=TyX,— 04 -, X, — 6,), k=1,

where the 6, are defined by (2.7) and are based on the score function §. Let
T, . be the smallest positive number such that for some given (0 < @ < 1),
P{T,| £ T\l Hyin (3.1)} = 1 — a, and let

4.16)  6,,=inf{a: Ta) < T\.}, 0., =supfa: Ta) = —T,.};

(4.17) 9u@s @) = 2Ty ofk(Ory — 0. 1)

where A-%k~*T, , — 7,5, the 50a% point of the standard normal df. Then,
5,(#, ¢) is a consistent estimator of v(¢, ¢) (see Chapter 6 of [12] and [17]).
Similarly, replacing the function ¢ by ¢, we define the estimator 2,(¢, ¢), and
we let

(4.18) Uy = A_l*‘f[Dk(SZS, P)[5u(Ps Nl k=1.

The tests to be considered now are suitable when all the n observations are
not available at the same time. For example, in clinical trials, patients undergo-
ing a specified treatment enter into the clinic at different points of time. Since
the observations are available in a sequential plan, it may be profitable to stop
the experiment at an early stage (i.e., prior to attaining the target sample size n)
when the accumulated statistical evidence at that stage leads to a clear decision
in favor of the alternative hypothesis. Thus, as one progresses with experimen-
tation, at each stage a test statistic is constructed and used to test the null hy-
pothesis; by nature, these statistics basec'l on the partial sequence of sample sizes
are correlated; and hence, this repeated test of significance calls for extra care
in handling the allied distribution theory. On the other hand, if the experiment
is curtailed at an intermediate stage, savings of time and cost of experimentation
may be quite important. With that idea, starting with an initial sample of size
n, (at least moderately large), we continue drawing observations one by one so
long as Z, = T(1 — 2v,L($, ¢) + v,2)"* (or |Z,]), k = n, lies below a constant
(o (or &, ) where L(¢, ¢) is defined by (3.27). If, for the first time, for k =
NEn), Zyis = (F, (or |Zy] is =, ,), we stop sampling along with the rejec-
tion of the null hypothesis; if no such N (< n) exists, we stop at the nth stage
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and accept the null hypothesis. Thus, basically, our test statistics are
(4.19) L,* = max, c<n Z, and L, = max, <<, |Z,] -
We consider first the following theorem.

THEOREM 4.1. Under (1.2), (1.10) and assumptions (i) and (ii) of Section 2, when
ng=1[nel +1,e>0,as n— oo,
(4.20) n=t4,7L,* —  sup,.,«; W(2) and

n~t4,7L, — ., SUP.gi<i [W(1)| 5

where W, = [(W(1), e < t < 1} is a standard Wiener process on [e, 1].

OUTLINE OF THE PROOF. Let us choose K, = K/¢, 0 < K < oco. Then, by
(4.16),

P, , < 0 — n*K, for some k:n, < k < n}
= P{Tk(Xl + n_iKp MR ) Xk + n_bKe) é Tk,a
(4.21) for some k:n, < k< n|Hy}
= P, k(1) — A7K 10(h, @) < AT .0 — 47K 18, 9)s
for some t:e <t < 1|Hg}

where W, _x, and k,(f) are defined as in Theorem 3.2 (but for the special
case of ¢, =1, for all i> 1 and ¢ = ¢). As has been noted after (4.17),
AT, ) o 1Te, (S Tap), While, for every refe, 1], A-K, (@, ¢) =
A-Ku($, )(t/e) = A-'Ku($, ¢). Hence, by using (3.16) and the fact that
sup {|W(9)|: te[e, 1]} = 0,(1), for every > 0, we can choose K appropriately
large, so that the right-hand side of (4.21) is < /2 when n is large. A similar
case holds for P{ék,U > 0 + n*K,, for some k: n, < k < n}. Hence, for every
¢ > 0and 5 > 0, there exist a K*(< oo) and an integer n*, such that for n, = ne
and n = n*,
(422) Pl —nikx<0,,<0,,<0+ntK*np<k<nx=1—79.
A similar probability statement holds for the partial sequence {ék,L, 9“,; n, <
k < n}. As such, by Theorem 3.3, (4.17), (4.18) and some routine computa-
tions, we obtain that

(4.23) max {|jv,y — 1|:n, < k <n}—,0, as n— oo,
where 7 is defined by (3.28). Let us now define k,(f) = max {k: kjn <1}, ¢ <
t <1, and let ‘
(4.24) W, = (V) = A, T (L = 2L §) + 1) h e s 1=
(4.25) W, = (W0 = ni4,7T, (1 — 0, L(6, §) + vy h e <1< 1}
Then, we have

sup {|W,(t) — W,(H)|: e =t < 1}
(4.26) < [sup {IWo(n)|: ¢ < ¢ < 1l[max,qusa {(1 — 277'L(5: )

+ 779/ = 20, L($, §) + v} — 1]
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Thus, if we show that as n — co,
(4.27) W,.—, W,, intheJ,-topology on Dle, 1]

(insuring that sup {|W,(f)]: ¢ < t £ 1} = 0,(1)), then, by (4.23) and (4.27), the
rlght-hand side of (4.26) converges in probability to 0 as n — oo; and hence,
W,, . and W” . being asymptotically convergent equivalent, each satisfies (4.27).

To prove (4.27), we note that by virtue of (4.15), (4.22) and the fact that
ﬂk <0, < 0k v» for every k = 1, we are in a position to use Theorem 3.4
(under the assumptions made in the theorem and the simplification due to the
fact that ¢, = 1 foralli = 1), and obtain by a few standard steps that as n — oo,

(4.28)  sup{|W, (1) — (1 — 27™*L($, §) + 7~ W, () — 1 W,()]|:
e<t=<1}—-,0,

where W, is defined by (1.6)—(1.7) and W, () = n=34~'T, ., e <t < 1,andin
both cases, k() is defined as it was before (4.24). Finally, along the lines of
the proof of the later part of Theorem 3.4, it follows that under (1.10) with
0 =0,W,, — ‘W, convergesinlaw to (1 — 2y7L(¢, §) + 7~ *)}W,, as n— oo,
and (4.27) then follows from (4.24), (4.28) and the above convergence. We
complete the proof of the theorem by noting that, by definition, the two statistics
in (4.20) are sup {W,(r): ¢ < t < 1} and sup {[Wﬂ(t)| e < t £ 1}, so that (4.27)
and the asymptotic equivalence of W, , and W, , imply (4.20). []

Note that forevery 4 >0and 0 < e < 1,
Pisup{|[W(1)|: 0t < 1} > A} = Plsup{|W(r)|: et = 1} > 4}
(4.23) > Plsup (W()|: 0< 1< 1) > 2)

— P{sup {|W(#)|: 0 < t < ¢} > 4},
and a similar case holds for sup {W(f): ¢ < t < 1}. Itis well known (cf. Section
11 of [3]) that for every 2 > 0,

(4.24)  Plup{W(): 0 <1< 1)> )

=1— 20— (=DHO((2k + 1)2) — D((2k — 1)A)},
(4.25) Plsup ([W(1)]: 0 < 1 < &) > 7} < 4{1 — (/et)} ,
where ®(x) is the standard normal df. Since, for every (fixed) 2 > 0, 2/et — oo
as ¢ — 0, (4.25) can be made arbitrarily small by choosing ¢ small. Hence, the
central term in (4.23) converges to (4.24) as ¢ — 0; a similar case holds for the
one-sided case. Hence, from (4.20), we conclude that whenever n, goes to co
with n but n//n — 0 as n — oo, the limiting null distributions of n=%4,'L,* and
n~t4,7'L, converge to those of D,* and D,, respectively. As such, large sample
tests can be based on these statistics with the critical values derived from the
distributions of D,* and D,.

Note that here the alternative hypothesis relates to asymmetry of F,, and it
may be quite arbitrary in nature, excluding the case of symmetry of F, around
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some point different from 0. For any such F,, we may show according to the
criterion of Bahadur efficiency (cf. [12, page 122]) that the relative efficiency
of the proposed sequential tests with respect to the fixed sample procedures based
on Z, or |Z,| is equal to one. On the other hand, the average sample sizes of
the proposed sequential procedures are less than n, indicating a saving in cost
of the experimentation through lesser amount of sampling. Finally, in the tests
proposed, we need to assume that either L¢, ) < 1 or y # 1, and this can
always be made by proper choice of ¢ and §. Specifically, we choose ¢ in such
a way that the estimators 6, are efficient and ¢ such that the T, in (1.1) are
sensitive to some specific type of asymmetry, which we might have in mind.

REMARK. In the context of sequential estimation of 0, Sen and Ghosh (1971)
studied the almost sure convergence of 9,(¢, ¢) in (4.17) under more restrictive
regularity conditions on the score function ¢. It appears that in their case as
well as in many others, all we need is the convergence of the type in (4.22) and
for this, the basic assumptions of Section 2 suffice and are much less restrictive
in nature.
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