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ON THE ASYMPTOTIC EQUIVALENCE OF TWO
RANKING METHODS FOR K-SAMPLE
LINEAR RANK STATISTICS

By JAMES A. KozioL' AND NANCY REID
University of British Columbia and Stanford University

Two methods of ranking K samples for rank tests comparing K popu-
lations are considered. The first method ranks the K samples jointly; the
second ranks the K samples pairwise. These procedures were first suggested
by Dunn (1964), and Steel (1960), respectively. It is shown that both rank-
ing procedures are asymptotically equivalent for rank-sum tests satisfying
certain nonrestrictive conditions. The problem is formulated in terms of
multiple comparisons, but is applicable to other nonparametric procedures
based on K-sample rank statistics.

1. Introduction. Rank tests for comparing K populations have been general-
ized from the corresponding two-sample linear rank statistics for both location
and scale alternatives. The tests usually involve ranking the K samples jointly
and examining some linear function of the ranks of the jth sample (j =1, ---,
K). These K-sample tests are described most generally in Hajek and Sidak
(1967, Section II1.4.1).

The question of ranking procedures for these K-sample tests will be formulated
in the framework of the multiple comparisons problem. In many situations, it
is of less importance to know whether the K samples are identically distributed
than to determine which of the K samples differ on an individual basis. In these
cases a multiple comparisons procedure is preferable to a single test. Two
methods of ranking for multiple comparisons will be considered in this note.
For the first method the K samples are combined, and populations =, and =, are
compared by their respective rank scores in the joint ranking scheme. For the
second method, samples are ranked in pairs: populations z, and r,, are compared
by their relevant two-sample statistic in the joint ranking of samples i and /.

The first method of ranking was suggested by Dunn (1964) and the second by
Steel (1960), for effecting multiple comparisons among K populations using the
Wilcoxon test. In this context, Sherman (1965) showed that the two methods
have the same asymptotic Pitman efficiency. A similar statement can be found
in Mehra and Puri (1967). It is proved in this note that the two methods of
ranking are asymptotically equivalent for rank-sum statistics satisfying certain
nonrestrictive conditions. Implications of this result extend beyond the multiple
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comparisons problem, to other nonparametric procedures formally reliant upon
one or the other of the two ranking techniques.

2. Methods of multiple comparisons. For each i, 1 <i <K, let X;;, 1 <
j < N, be a random sample from a population r, with an absolutely continuous
cumulative distribution function F, and associated density f;. The null hypothe-
sis is

Hy: fi(e) = -+ = fx(+) = fil+) »

where f, is unknown. The alternative hypotheses to be considered are location
alternatives:

Hyy: fi(x) = folx — 4,) j=1,..,K,

and scale alternatives:

Hyy: fi(x) = exp(—A;)f(x exp(—A4;)) j=1,.-,K,

with A; arbitrary. If A, = A,,, populations =, and r,, differ by a location shift
under H,, and a scale shift under H,,.

From Hajek and Sidak (1967, Theorem I1.4.4), the locally most powerful
rank test of H, against two samples differing in location is the test with critical

region Y. ;c.ampies @x(R;> f) = k, where R; is the rank of the jth observation in
the combined sample, and

(2.1) ay(is f) = E¢(Uy™, [)

are the scores corresponding to the underlying density f. The scores are defined
by the score gererating function

"(F~ (1))
o, ) = —LE@) O<u<l.
SF(u))
If f(.) is the logistic density, (2.1) defines the Wilcoxon test, whereas if f{-) is
the normal density, (2.1) defines the normal scores test.
The same result holds for scale alternatives (Hajek and éidék, 1967, Theorem
I1.4.5), with the scores and score generating function defined by

(2'2) alN(u’ f) = E¢1(UN‘“, f)

o e 1 Fo LEPW)

p:(u ) )
For f(v) = e*, (2.2) gives the exponential ordered scores test of Savage. (In
definitions (2.1) and (2.2) U, is the ith observation of an ordered sample of
size N from the uniform distribution.)

K-sample versions of the above test are described in Hajek and Sidak (1967,
Section II.4). The question of ranking procedures for these K-sample tests will
be approached through the problem of multiple comparisons among the K un-
derlying populations. One nonparametric method of multiple comparisons is
based on the following joint ranking techenique. Denote by R,; the rank of X;
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in the joint ranking of the K samples; that is,
Ry = Z¥o i u(Xy; — Xujo) s
where u(x) = 1 if x = 0, 0 otherwise. Let
Si = Litiay(Ry), (N= 2L N),

where a,(i) are some given scores converging in quadratic mean to a square-
integrable function ¢(u):

o limy . T {ay(l 4 [WN]) — g@)fdu =0,
and assume ¢ has a bounded second derivative.

From Hajek and Sidak (1967, Theorem I1.3.1.c), E(S;|H,) = N,d,, and
Var (S;| H)) = ,*°N(1 — N,/N), where

ay = N3V au(j) = (b d(u)du = ¢
oyt = (N — D)7 B (ay()) — ay)' = Wi (b(u) — §)"du..

Following Dunn (1964), who proposed a similar technique for comparing lo-
cation parameters in K populations using Wilcoxon rank sums, populations z,
and 7, may be compared with the statistic [S; — E(S, | Hy)] — [S., — E(S; | Hy)]-
Suppose all K(K — 1)/2 pairwise comparisons among the individual populations
are desired. Define the K(K — 1)/2 X 1 vector

S = (SIZ’ Sla’ tt SIK’ Sz3v R} SzK’ R} SK—I,K),
by
S = NS — E(S;| Hy)] — No'[Se — E(Sy/ | Hy)] -

THEOREM 2.1. Under H,, for min (N, ---, Ny) — oo, NJN — 42,0 < 4, < 1,

(Nt/a,)S is asymptotically normally distributed with mean 0 and covariances given by:

(NJo E(S,; S;5 | Hy) = 1[4 + 1[4, i=j, '=j,;

= 1/2;2 itj, "=j,
(2.3) i=j, 1]
= —1/2 ix=j, =7,
i=j, P

=0 otherwise.

Proor. From Hajek and Sidak (1967), Theorem V.1.6.a,
e <S.7 _ deN>
’ (N;)iay
is asymptotically N(0, 1 — 4,%). Then Theorem V.2.2 proves the asymptotic
normality of the vector (&, ---, &)

Consider the sequence of local alternatives { H,,} and define A = N- 31X N,A,,
the mean location change, and

I(f)) = V2o [/ () [fu(X))folx) dx

the Fisher information for f;.
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THEOREM 2.2. [fmin(N,,- .-, Ny) > o0, N/N— 22 0< 2, <1, max ;.. (A,—
Ay — 0, and I(f,) 25, N(A, — B! > ¢, 0 < ¢ < oo, then under {H,,}, (N*/,)S
is asymptotically normally distributed with covariances (2.3) but with limiting means

(2.4) (N}oy)E(Sy | Hiy) = NHA, — By) §§ g(u)p(us fo) du .

Proor. From Hajek and Sidak (1967), Theorem VI.3.1, the &, of Theorem
2.1 have expected value

E(§; [ Hiy) = N;7INy(B; — B) 5 @) (us fo) duf{ s (p(u) — ¢)* du}}
= N;H(8; — 8) 5 d(w)d(u, fo) dufa .
Hence 0,/(N;)}; has expected value (A; — D) {} ¢(u)é(u, f,) du, under {H,y}.
Noting that S,;, = (a,/(N,)})E; — (04/(N;)})E,, gives the desired mean. The co-
variances and asymptotic normality also follow from Theorem VI1.3.1 of Hajek
and Sidak (1967).

REMARK 2.1. Theorem 2.2 is also true for scale alternatives {H,,}, with

o(u, fo) and I( f;) replaced by ¢,(u, f,) and I,( f;);

L) = §2 =1 = O ey
Jo(x)

Theorem VII.1.4 of Hajek and Sidék (1967), together with an application of
the argument used in Lehmann (1963), yields the fact that the asymptotic Pitman
efficiency of the multiple comparisons procedure based on (N#/s,)S compared
with that based.on the maximin most powerful test is o, where

p = o p@)p(u, fo) duf[$o $*(u, fo) dul,

for location alternatives, and

o = Yo $)bi(u, fo) du[[§5 ¢.%(u, fo) dul?,

for scale alternatives. The proof of this assertion is outlined in Appendix A.
A second nonparametric method of multiple comparisons is suggested by a
technique due to Steel (1960). Let S* = (8§, S, - -+, Sy, - -+, Si_, z)', where

13

1 1 , ¥ -
S = (ﬁ + N > [254 aNi+Ni/(R:j) - NiaNi+Ni/] :

7 7

In this formula, R}; denotes the rank of X;; in the joint ranking of sample i and
i’ only; hence S}, corresponds to a two-sample rank statistic for testing equality
of F; and F,,. Under this pairwise ranking scheme, populations =, and =, are
compared by a pairwise ranking of their respective samples.

THEOREM 2.3. Under Hy, as min (N, -+, Ny) — oo, N;JN — 42 0 < 1, < 1,
the random variates (N*[o, . )S}, are marginally asymptotically normal with mean
0 and variance (1/4;* + 1/2%).

Proor. Follows trivially from Héjek and Sidak (1967) Theorem V.1.6.a.
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It remains to show that the vector S*, suitably normalized, is asymptotically
normally distributed. To this end, the projection method of Hajek (1968) will
be used.

Define
(2:3) Zi; = N7 [u(x — Xyg) — Fy(x)]9"(Fi(x)) dFy(x) -
From Theorem 4.2 of Hajek (1968), — %1, Z,; + >z Z,,; is asymptotically

equivalent to S%,. Asymptotically then, since the Z;; are 1ndependent, and for
fixed i identically distributed random variates with mean O,
(N/oy* Cov (S, Sf)

= (N/”Nz) Cov (_Z?il Zij + Z}yi'l Zi'j’ “Z}El Zij + Z}Vi'l Zl’j)
= (N/UNz) Z}yil Var Zij

NZ 7 E[§ [u(x — Xij) — Fy(x)]¢"(Fy(x)) dF(x)]
X [§ [u(y — Xi;) — Fo()]9"(Fy(y)) dFy(y)]}
= (Njoy’) % E{§ [u(x — X)) — Fo(0)][u(y — X.;) — Fo(p)]

X @' (Fo(x))p"(Fo(y)) dF(x) dFy(y)
= (Njoy’) % §§ {Fo[min (x, y)] — Fy()Fo(y)}¢"(Fo(x)¢"(Fo()) dFo(x) dFy(y)

i

= 1/2%0,* § §s [min (x, y) — xy]¢'(x)¢'(y) dx dy

= 1/, (s (p(u) — @) du = 122,
(The details of the last step are outlined in Appendix B.) Similarly,
(NJo?) Cov (Sk,, Sf,) = —1/4,. Hence(N/s,*)!S* has the same asymptotic co-
variance matrix as (N/o,?)?*S, is summarized in (2.3).

= (Njay

THEOREM 2.4. Under H,, the vector (N*|s,)S* is asymptotically normally dis-
tributed.

Proor. It is sufficient to prove that (Nt/e,) > /5 325, 1 S% is asympto-
tically normal for any choice of {r,,,}. Without loss of generality, assume that
(NJay¥) Var [ 33 7, Sk] > 0 (using the asymptotic covariance formulas (2.3));
if this is not the case, covariance to the degenerate normal is assured. Define
z,; as in (2.5), but replace ¢(x) with its polynomial approximation ¢(u), where
¢(u) satisfies the regularity conditions of Lemma 5.1 of Hajek (1968). Asympto-
tically, (N¥/oy) 2315 25 1175 1s equivalent to

(Ntfay) 05 X ra(—= D00 2 + D78 205
= (Mo {205 ( DibciaTa) D 2y 4+ D (D5 70) 258 Zug)
= (Mo N[ —ZEosra] iz + DI D0 10 — Dlcin 1] 2058 25
+ [2F21 TKz] ijl Zgi}-
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This latter term may be shown to be asymptotically normally distributed by ap-
plying the Lindeberg central limit theorem, as in Theorem 2.1 of Hajek (1968).

This establishes that (NVt/s,)S* has the same asymptotic distibution as (N*/s,)S
under the null hypothesis. Furthermore, under the sequences of local alterna-
tives {H,,} and {H,,} considered previously, the (N!/s,)S}, are jointly asympto-
tically normal with the same covariance structure as under H,, and with means
as in (2.4). Thus, since (N*/s,)S and (Nt/o,)S* have the identical asymptotic
distribution under location and scale alternatives, it follows that they are equiva-
lent in terms of asymptotic Pitman efficiency.

3. Discussion. It has been shown that the joint and pairwise ranking schemes
for multiple comparisons have the same asymptotic Pitman efficiency. Since the
two methods of ranking described herein yield procedures that are asymptotically
equivalent for the problem of comparing all pairs of populations, practical con-
siderations might dictate choice of methods for the user. The joint ranking
technique is more convenient computationally if all pairwise combinations are
desired. However, the theory in the previous section could instead have been
developed in terms of an arbitrary set of prespecified contrasts. The pairwise
ranking technique could be computationally advantageous in such situations.

If some approximate scores a,(i) for a particular test have an associated ¢(u)
that does not have bounded second derivative, it may still be possible to show
the asymptotic equivalence of the two ranking methods. Such is the case, for
example, with the Savage test, in which ¢(u) = —log (1 — u). By considering
an appropriately linearized version of ¢ near # = 1, it can be shown that Theo-
rem 2.4 continues to hold. Alternatively, if ¢ is absolutely continuous, then
Theorem 2.4 can be proved by a method analogous to that of Theorem 2.3 of
Hajek (1968).

For various other aspects of distribution-free methods of multiple comparisons
the reader is directed to Sherman (1965), Miller (1966), and Lehmann (1975).

It should be noted that the theoretical results of Section 2 are not only appli-
cable to multiple comparisons. For example, consider the problem of testing
the equality of K continuous distributions against the alternative that they are
stochastically ordered in a particular manner. A nonparametric test of this hy-
pothesis, proposed independently by Terpstra (1952) and Jonckheere (1954), is
based on the statistic 3},.; W,,;,, where W,,, is the Mann-Whitney rank sum for
comparing samples i and /. Generalized versions of this statistic which include
arbitrary rank scores have been investigated by Puri (1965) and Tryon and
Hettmansperger (197.3). Note that, in the notation of Section 2, these statistics
are of the form a’S*. Furthermore, it is clear that asymptotically equivalent
versions of these test statistics may be formed by jointly ranking the K samples
and taking the appropriate linear combinations, a’S of the K marginal rank
scores. The coefficients of a are in fact proportional to the values of the first
(linear) orthogonal polynomials of degree K. That is, the Terpstra-Jonckheere
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statistic tests for a linear trend in S by considering the linear contrast defined by
the appropriate orthogonal polynomial. This suggests that higher order trends
could be tested by contrasts defined by the higher order orthogonal polynomials
of degree K. The asymptotic distributions follow directly.

APPENDIX A

The argument of Sherman (1965) and Lehmann (1963) yields the fact that the
asymptotic efficiency of the multiple comparisons procedure equals that of the
test of H, based on (S,, - - -, S;)’, namely

0 = (N — DT (a,0) — a1 T, (PNl )’

N,

It remains to show that the asymptotic efficiency of the Q-test equals p?. In this
regard, Theorem VII.1.4 of Hajek and Sidak (1967) can be applied directly for
location alternatives

g9 = JI%, H?]Qfo(Xij - Az) .

For scale alternatives

g = L [T exp(—A)f(X; exp(—A4,))
the proof is easily modified by replacing /(f;) and a,(R,,, f,) with I,(f;) and
a,y(Rys, fo)- In addition, p,; must be redefined as on page 245 of Hajek and
Sidak (1967):

pii = exp(—N,A,) [T fi(x; exp(—4,)) -
Now Theorem VII.2.2 can be applied to give the desired result.

APPENDIX B
It is required to show that

§6 §o [min (x, y) — xy)]¢"(x)$'(y) dy dx = §§ (p(u) — ¢)* du .
First consider the integral over y:
§o [min (x, y) — xy]¢’(x)¢’(y) dy
= 5 (1 = x)¢'()¢'(x) dy + §. x(1 — y)$'(y)¢'(x) dy
= (1 = )" (N)[xg(x) — §§ $(») dy] + x¢'(X)[—(1 — x)p(x) + § $(y) D]
= (=1 = x)¢'(x) §§ $(y) dy + x¢'(x) {% $(y) dy
= x¢'(x) §o p(y) dy — ¢'(x) §§ p(y) dy -
Now integrating this last expression over x:
§o x¢'(x)g dx — §3¢'(x) §§ () dy = (1) — ¢* — [pg(1) — §; $*(x) dx]
= §5(#(x) — ¢%) dx = [{[$(x) — $]*dx .
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