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DO ROBUST ESTIMATORS WORK WITH REAL DATA?

By STEPHEN M. STIGLER

University of Wisconsin at Madison

Most studies of robust estimators of location parameters have relied
upon mathematical theory, computer simulated data, or a combination of
these. This paper presents a comparison of the performances of eleven
estimators using real data sets. Twenty sets of data from 1761 determina-
tions of the parallax of the sun, from 1798 measurements of the mean density
of the earth, and from circa 1880 measurements of the speed of light, are
employed in the study, with the current values of these physical constants
being compared with the estimators’ realized values. We find that light
trimming provides some improvement over the sample mean, but that the
sample mean itself compares favorably with many recent proposals. The
bias and nonnormality of the data sets is considered, and the data sets are
presented and discussed in an appendix.

1. Introduction. Phoney real data (or, if you prefer, genuine phoney data)
has played an important role in the development of statistical theory and practice
for some time. Well before the first time an electronic computer spewed forth
a thousand pseudo-random numbers in a simulation study, tables of “random”
numbers compiled by L. H. C. Tippett and by H. Wold had been used by math-
ematical statisticians for the study of sampling distributions in situations too
complex for analytical treatment [26, 27]. As the costs of computation have
declined in recent years, the use of the computer for the production of pseudo-
random numbers has increased, to the point where the volume of synthetic data
produced in universities and research laboratories may even surpass the Census
Bureau’s production of the real thing.

The advantages of the use of simulation, particularly in robustness studies,
have been clear for over 40 years, ever since E. S. Pearson pioneered its use in
aseries of papers in Biometrika about 1930. By suitable transformation of pseudo-
random numbers, an investigator can mimic a sample from any mathematically
definable probability distribution; he is not constrained by problems of analytic
tractability. He therefore has great flexibility in the specification of distributions
(and can choose some which may serve as suggestive of distributions of *‘real”
data), and he has the advantage of knowing exactly what mechanism produced
his ““data’ and hence can easily evaluate the performance of statistical procedures
for these “‘data.” If an estimator is designed to estimate the mean of a popula-
tion, and its value is calculated for simulated samples known to have come from
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a Student’s ¢ distribution with 5 df, symmetric about zero, then the performance
of the estimator can be judged on the basis of how distant the numbers it gives
are from zero.

The principal disadvantage of such simulation is that no matter how clever
the investigator is in his choice of specifications for sampling distributions, there
is no guarantee that the pseudo-samples he generates are actually representative
of real data. Indeed, most simulation studies of the robustness of statistical
procedures have concentrated on a rather narrow range of alternatives to nor-
mality: independent, identically distributed samples from long-tailed symmetric
continuous distributions. But why should real data not be expected to be cor-
related, biased, asymmetric, heterogeneous and exhibiting some discreteness (or
granularity)? The formidable difficulties to be encountered by any attempt to
deal adequately with these possibilities in a study using simulated data suggest
that an alternative be tried: why not evaluate the performance of statistical
procedures with real data? It is the aim of this paper to do just this for a variety
of robust estimates of location.

Real data have appeared before in papers on robustness, but only for purposes
of illustration. For example, Hampel [10] evaluates a variety of robust estimators
for the Cushny and Peebles 1904 data [25] on the effect of soporific drugs, but
without specific information on the actual effects of the drugs the comparison
is indeterminate: we do not know whether excluding (or discounting) the outlier
helps or harms the accuracy of the estimate. In the present study we have taken
an approach using historical data sets which largely overcomes this difficulty,
and permits the use of real data for an objective comparison of robust estimators.

2. The present study. As already mentioned, real data can exhibit many
characteristics not allowed for in most simulation-based robustness studies. An
unforeseen bias may be present. Despite attempts at independent replications
in collecting the data, a serial correlation or a time trend may exist. Tied values
are likely, a denial of continuity. The distribution may be asymmetric, and this
asymmetry may be related to the bias in a perverse manner which suggests that
elimination of outliers is not beneficial.

In order to attempt a study in which these various factors were allowed to
enter in a mix appropriate to the real world, data sets were sought from a variety
of sources which could satisfy the following three requirements: (1) The in-
tegrity of the data set must be above suspicion: the values must be reported as
they occurred, and recorded in their entirety—not after a prior screening to
eliminate values not in accord with the experimenter’s prejudices. That is, the
actual data set as it was encountered by the experimenter must be available.
(2) The data must be measurements of a well-defined physical quantity which,
while possibly not well determined at the time the measurements were made,
can be assumed to be known today to a degree of accuracy that corresponds to
certain knowledge in comparison with the accuracy of the older measurements.
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Furthermore, the definition of the quantity today must be the same as the defi-
nition of the quantity at the time the measurements were made, otherwise
the notion of bias becomes ambiguous. (3) The experiment must have been
conducted as an honest attempt to learn about nature from a standpoint of rela-
tive ignorance about the quantity measured. If not, the experimental procedure
might itself be affected by preconceptions or biases not present in anticipated
applications.

A collection of data sets satisfying these conditions would permita comparative
study of robust estimators that would have the advantages of a simulation study
without the drawbacks. The data would be real data from real experiments,
and not just illustrative of some investigator’s often very narrow view of what
real data should be like. But, as in a simulation study, the most important
aspect of the mechanism which generates the data, the ‘“parameter of interest,”
can now be assumed known, and estimators can be evaluated by their actual,
not hypothetical, performance. In addition, by an examination of the data sets
some indication of the characteristics of real data (bias, nonnormality, etc.) can
be obtained.

Unfortunately, and this is the major drawback of the present approach, satis-
factory data sets are rare. Several potentially useful sources have been ruled
out by the requirements. Contemporary laboratory experiments could hardly
be characterized as having been carried out in ignorance of the quantity meas-
ured, at least in cases where the true value of the quantity is known with relative
certainty in comparison with the accuracy of the measurements. Another source,
subsampling from large data sets to estimate the mean of the data set, is really
a variation on ordinary simulation, one whose freedom from bias is artificial
even if the values sampled are genuine ‘“real data.” Rather, our aims seem to
be well served by the use of historical data from the early years of quantitative
experimentation, and completely documented data sets of the type sought are
not common.

The present study is based on data from 18th century attempts to determine
the distance from the earth to the sun and the density of the earth, and 19th
century attempts to determine the speed of light. It would have been desirable
to include a much broader spectrum of real data, and attempts were made to
do this. Early experiments to determine the atomic weights of elements were
investigated, but it was found that then '(as now) chemists were highly selective
in their decision as to which measurements to report. Other possibilities which
have not yielded useful data include experiments to determine the speed of sound,
and early work of Maxwell and Boltzmann on the kinetic theory of gases. I
hope that others will find acceptable sources of data in other fields, but the
present collection of 20 data sets of size approximately 20 each, and 4 larger
sets, seems sufficient to advance some preliminary and tentative conclusions
which are somewhat at variance with those reached in simulation studies, in-
cluding the Princeton study [2].
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The data sets we employ in this study are all taken from famous experiments,
and all seem to satisfy the criteria presented above. In addition, they present
us with an interesting chance to assess the role of statistics in science: all of the
experiments considered were designed to answer important questions; would the
scientists involved have fared better with the sole additional advantage of a
statistical technique from one or two centuries later? Of the twenty basic sets,
eight {Table 4) come from James Short’s analysis of observations made in 1761
of the transit of Venus, an event which furnished the first reliable estimate of
the mean distance from earth to sun. Nine (in Tables 5, 6, 7) come from the
first experiments which succeeded in determining the speed of light with preci-
sion, experiments performed in 1879-1882 by A. Michelson and by S. Newcomb.
And three (Table 8) are based on Cavendish’s 1798 investigation of the mean
density of the earth. These sets and the manner in which they were handled
are discussed in detail in an appendix.

In all cases, it was felt that the data sets could be trusted to be a complete
record of the investigator’s measurements. The investigators would frequently
discard or discount outlying values, but these were duly reported. In all cases,
a serious attempt was made to deal with the data sets as the original investigator
would have, given the modern estimation procedures. The order of the values
was not disturbed, and, for example, where Michelson had converted recorded
times to velocities before averaging and Newcomb had averaged times before
converting to velocities, we also have dealt with Michelson’s data as velocities
and Newcomb’s as times. In the case of the speed of light data, the original
investigators’ own correction factors have been employed to convert the present
value for the speed of light in vacuum (299,792.5 km/sec) to “true values” for
the speed of light in air. The only “tampering” done has been to divide four
large data sets into smaller sets of approximately 20 measurements each, to permit
a more direct comparison with the results of the large simulation study [2] which
focused on sample size 20. The original data sets, however, have been included
as Data Sets 21-24 and analyzed separately as ‘“‘large samples.” The division
into smaller sets was accomplished at natural breaking points or at intervals of
twenty measurements if no natural break existed.

3. The estimators considered in the study. The choice of which estimators
to include in a study of this type is a difficult one. It would seem desirable to
include all candidates that have proved themselves worthy of consideration in
other contests, together with such new proposals as are thought likely challengers
to the older winners of the “Most Robust Estimator” title. Yet if no more ex-
acting standard is imposed, there is the risk that the field of entrants will grow
beyond reasonable bounds.

For two reasons, it was decided to keep the number of entrants in this study
as small as possible, consistent with the desire to provide a fair representation
of the most important types of estimators. The first reason for this limitation
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was economy. Without a large team of workers and an even larger government
grant, it would be impossible to rival the complete coverage the 1971 Princeton
study gave to the list of estimators then available. Rather, it was hoped that
an informative study could be carried out on a shoestring budget, a study that
at least in principle could be completed by one individual on a hand calculator.
(Actually, to simplify calculations and to take advantage of the programs in [2],
a computer was used for most of the study. The total cost for machine com-
putation was under $10.)

A second reason for limiting the size of the study was to attempt to reduce
the size of the selection effect. Any such study, whether it used simulated data
or real data, must base its comparisons upon a finite number of situations, and
if excessive flexibility is allowed in the class of estimators there is a real (and
perhaps unquantifiable) danger that an estimator selected as “best” for the given
situations would perform miserably in others. For example, most of the sample
size 20 comparisons in the Princeton study were based on less than 20 population
distributions (all symmetric and heavy tailed), and involved consideration of 65
basic estimators (which provided information for up to 10, 465 estimators, see
[2, page 28]). The limitation to 65 estimators was based on the specification of
a large number of parameters, scale factors, weights and “constants” whose
values were sometimes chosen after preliminary trials with some of the same
population distributions (or even the same samples) used in the study. The ex-
traordinarily large number of estimators considered would seem to at least raise
the possibility that some of that study’s conclusions might have been distorted
by a selection effect, and that the excellent performances of the best estimators
in that study would not be duplicated in another study with different (but quali-
tatively similar) distributions.

As the principal conclusions of this present study are based on only 20 data
sets, and these data sets are not all independent (in fact three of them overlap
considerably), our study is particularly vulnerable to charges that good perform-
ance is due to a selection effect rather than true merit. While this possibility
cannot be denied, the following points should be considered: 1. Attention was
limited to only 11 estimators, selected before the study was performed. 2. The
estimators did not require the specification of parameters based on the same
data sets used in the study. 3. No study can be entirely free of this effect.

Eleven estimators were selected for inclusion in the study. Ten were selected
as among the best of the types of estimators being most prominently considered
by current researchers (M-estimators, linear functions of order statistics, adaptive
estimators), and one (the “cutmean”) was selected as an estimator that would
perform poorly for long-tailed distributions, with respect to which the perform-
ance of the others could be gauged. The eleven estimators included in the study
were (letting X; < ... < X, denote the ordered measurements):

1., 2. The mean X and the median X, two ancient and popular favorites with-
out which no study would be complete.
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3.,4.,5. The 10%, 159%, and 259, trimmed means. The 100a?%, trimmed
mean was taken as defined by

X — (p{)([nm—rl] + Xﬂ—[an]} + Z?;[[g:-:—;]] Xz) ,
* n(l — 2a)

as in [2, page 7], where p = 1 + [an] — an.

6., 7., 8. Huber’s P15, Andrews’ AMT, and Tukey’s Biweight. These are all
versions of what have come to be known as M-estimators, and are found as a
solution (T') to the equation

(1) me(H L) =o0,

where s is an estimate of spread (here a multiple of the median absolute residual
about the median, or about an earlier value of the estimator if this equation is
solved by iteration), and ¢ is a function to be specified.

Huber P15 (see [2, page 13]) is a “one-step” M-estimator, where ¢(u) =
min (k, max (—k, u)), k = 1.5, sis the median absolute residual about the median
and only one step in the iteration is performed.

Andrews’ AMT (or SINE) (see [1, page 524], or [2, page 15]) is an M-estimator
where

é(u) = sin (u/2.1) |u| < 2.1z
=0 otherwise,

and s is the median absolute deviation about a previous value of T (starting at
the median), revised every third iteration.

Tukey’s Biweight (see [4, page 15]) is an M-estimator where ¢(u) = uw(u),
wu) = (1 —w)y =<1
=0 ju] > 1.

It was calculated by the iteration

X, — T,
ij( JcS‘ )Xj

Ti+1 = X —T.
R P
L w( ¢S, )

performed six times starting at the niedian, with ¢ = 6.0, and S, = median
{1X; — T}

The latter two of these estimators were suggested for inclusion in the present
study by D. F. Andrews and J. W. Tukey, before they were informed of the
nature of the study. Huber P15 was selected for inclusion on the basis of its
generally good performance in [2].

9. Edgeworth is a weighted average of the lower quartile, the median, and
the upper quartile, with weights in proportions 5: 6 : 5 (see [24], where the
weights are mistakenly described as being in proportions 5: 7: 5). This estimator



ROBUST ESTIMATORS 1061

was proposed by Edgeworth [9] in 1893, and is similar to estimators studied
more recently by Mosteller, Tukey, and Gastwirth (see [2]). The version used
here took the quartiles as defined in [2, page 18], i.e., the “hinges,” and was
calculated as a modification of the trimean [2, page 8].
10. Outmean, or X¢,, is essentially the average of those measurements dis-
carded in the computation of X ,. It may be taken as defined by
Xe,, =2X — X .

11. Hogg’s T, is an adaptive estimator proposed in [11] and suggested for in-
clusion in the present study by R. V. Hogg before he was informed of the nature
of the study. It is defined by

T, = X¢,, if 0<2.0
if 20<0=<26
316 if 26 < Q<32
= X, if 3.2<Q
where Q is a measure of the “weight in the tail” of the sample given by
_ U(.05) — L(.05)
U(.5) — L(.5) ’

I
L b b

Q

where L(a) and U(a) are averages of the lower and upper 100a9; of the X;’s,
respectively.

Where possible, the estimates were calculated by use of the programs given
in an appendix to [2] or minor modifications of these programs.

4. Comparisons. The values of each of the eleven estimators were calculated
for each of the 24 data sets. The choice of a method for comparison of the rela-
tive performance of the estimators is akin to the specification of a loss function
in a multiple decision problem. The choice is made difficult by the unimportance
of analytic tractability (we are not automatically led to squared error) and by
the diversity of the problems considered: is an error of a half-second of a degree
in a determination of the sun’s parallax (which might make a 5,000,000 mile
difference in the estimated distance from earth to sun) more or less serious than
an error of 200 km/sec in an estimate of the speed of light?

We have followed most other studies (but not [5]) in treating the problem as
a contest or tournament between rival estimators, and except for changes of
scale, treating all situations identically. To this end, to allow each data set an
equal opportunity to influence the outcome, it is desirable that whatever measure
of performance is adopted should be invariant with respect to changes in the
origin and scale of the unit of measurement. Thus the conclusions of the study
will not be affected by Short’s use of seconds of a degree (rather than decimal
fractions of a degree) as a unit of angular measurement, Cavendish’s use of water
as a standard for the measurement of density, or the possibility that Michelson
might have coded his data by subtracting 299,000 km/sec (as we have done).
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While a number of different indices of performance have been considered,
only two have been selected for presentation. One of the two indices was selected
as indicative of the average (across data sets) magnitude of the error of estima-
tion for the estimator, the other as reflective of the rank of the estimator’s per-
formance among the eleven considered. Comparisons were made separately for
small samples (data sets 1-20, ranging in size from 17 to 29 with all but three

being between 17 and 23) and large samples (data sets 21-24, ranging in size
from 53 to 100).

The index of relative error. This index was designed to measure the absolute
magnitude of an estimator’s error relative to the sizes of the errors achieved by
other estimators for the same data set. For each data set (say data set j) the
quantity

(4.1) s; =+ DL 0., — 04

was computed, where ¢, denotes the ““true value” for the jth data set, and 671]., cee,
0., ; are the values of the eleven estimators for the jth data set. Thus s, is the
average absolute error realized for the jth data set. The performance of estimator

i for data set j was then measured by its relative error,

(4.2) e =10, — 0,\Js; -

vy
The computed values of e;; are given in Table 9. A value of e;; less than (greater
than) one means that for data set j, estimator ; made a smaller (larger) error
than the average error for the eleven estimators. The “index of relative error”
RE(i) for estimator i was then computed by averaging across data sets:

(4.3) RE(i) = n' T7_, e, .

TABLE 1
The indices of relative error and of relative rank RE(i) (4.3) and RR(i) (4.5), computed
separately for small and large data sets (together with measures of spread SE(i)
(4.4) and SR(i) (4.6) between data sets, in parentheses). Small values of
RE and RR connote good performance

Relative Error (RE) Relative Rank (RR)

Small Samples Large Samples Small Samples Large Samples
Mean 931 (.20) 924 .(.19) 4.9 (3.2) 6.0 (4.6)
Median 1.149 (.28) 1.152 (.18) 7.1 @.1) 8.1 (3.8)
Edgeworth 1.018 (.08) 945 (.07) 6.4 (3.2) 3.9 (1.5)
Outmean 1.038 (.58) .774  (.50) 5.1 (4.8) 6.0 (5.8)
10% Trim 916 (.20) .944  (.06) 4.6 (2.2) 4.5 (2.4
15% Trim .983 (.10) .991  (.04) 6.0 (1.7) 5.5 (0.6)
259 Trim 1.039 (.08) 1.073 (.12) 6.8 (3.0) 6.1 (3.5)
Huber P15 .922  (.20) .985 (.05) 5.3 (2.8) 5.5 (1.7)
Andrews AMT 966 (.14)  1.032 (.13) 6.2 (2.5) 6.0 (3.4)
Tukey Biweight 1.023 (.13) 1.097 (.17) 6.6 (3.1) 7.0 (3.9

Hogg T1

—

014 (.07) 1.084 (.13) 6.8 (2.5 7.4 (2.5)
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Table 1 gives the values of RE(i) separately for small and large data sets; the
s, are given in Table 9.

(In data sets 3 and 5 the mean and outmean fell on the opposite side of the
“true value” from the other estimates, otherwise all estimates fell on the same
side of the “true value.” Thus the actual errors éij — 0,, though not given here,
can be easily recovered from Table 9.)

The numbers in parentheses are descriptive measures of the spread of the ¢;,’s:

4.4 SE(i) = {(n — )7* X"_, (e;; — RE(i))*}*.
A large value of SE(i) (such as that for the outmean) represents considerable

variation in the estimator’s performance from data set to data set, a small value
reflects consistent performance.

The index of relative rank. The second index selected ignored the actual errors
of estimation and considered only their ranks for each data set. For each data
set j the rank r,; of estimator i was found (r,; = 1 for the estimator with smallest

error |f,; — 0, for data set j, r,; = 11 for the estimator with largest error
|f,; — 6, for data set j). Tied estimators were given the average of the ranks
tied for. The index was then computed by averaging across data sets:

4.5) RR(i)) =nt )% 1

j=1Tij -
These are given in Table 1. Again, the numbers in parentheses are descriptive
measures of the spread of the r ,’s across data sets:

(4.6) SR(i) ={(n — 1)~ Z;?:l (rij — RR(i))z}é .
TABLE 2
Qualitative groupings of eleven estimators based upon the indices of relative error (4.3)
and relative rank (4.5)
Small Samples Large Samples
Relative Error Relative Rank Relative Error Relative Rank
Best 10% Trim 10% Trim Outmean Edgeworth
Huber P15 Mean Mean 109 Trim
Mean 10% Trim
Edgeworth
Good Andrews AMT  Outmean Huber P15 1595 Trim
15% Trim Huber P15 15% Trim Huber P15
Average Hogg T1 159 Trim Andrews AMT Mean
Edgeworth Andrews AMT 259% Trim Outmean
Tukey Biweight Edgeworth Hogg T1 Andrews AMT
Outmean Tukey Biweight Tukey Biweight  25% Trim
259% Trim 25% Trim
Hogg T1
Poor Median Median Median Tukey Biweight

Hogg Tl
Median
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The results of these calculations lend themselves to a rough but revealing
grouping, which is presented in Table 2. This grouping suggests three possibly
surprising conclusions. First, regardless of the index considered or the size of
the samples, the simple 109; trimmed mean—the average of the 809, of the
sample remaining after trimming 109, on either end—emerges as one of the best
of the estimators considered, with the sample mean itself a close competitor.
The second surprise is the generally weak performance of another old favorite,
the sample median, an estimator often considered only slightly inefficient but
highly robust and usually selected as a starting point for the calculation of the
more complicated iteratively determined estimators. The third surprise is the
generally mediocre performance of the estimators selected from among the best
modern proposals for dealing with real data in a robust but efficient manner, a
suggestion that the alternatives to an independent identically normally distributed
sample that have been considered by modern workers (e.g. [2]) are too restricted
or too exaggerated to reflect accurately “real” data. We shall comment further
on this in Section 6.

These three generalizations—that a slightly trimmed mean is best, that the
median is inefficient, and that modern estimators are not worth the time neces-
sary to compute them—are open to contest even within the restricted confines
of the present study. Two modern estimators (Huber P15 and Andrews AMT)
do show some promise as estimators of location for real data. Huber P15 does
particularly well: for normal distributions its performance is asymptotically
equivalent to that of a 6.79, trimmed mean, and indeed its performance index
behaves similarly to that of the 109, trimmed mean. Also, Edgeworth’s simple
estimator does quite well for the 4 large data sets, although its performance is
only average for the smaller sets. The outmean, which usually comes at one
extreme or another of the set of values of the estimates for a given data set, is
highly variable in its performance (and even best in one category) and could not
be considered as a reliable estimator. It is the only estimator whose index values
are significantly affected (for the worse) if a measure such as Y7 e}, or 3 r}, is
adopted which emphasizes large errors as disasters. The best that one can say
for the poor median is that there are three data sets (15, 16, and 19) for which
it is best.

Readers interested in trying other estimators on these data sets can do so using
the values of s, in Table 9. The differénces between the calculated estimates
and the true values, divided by the given s,, will give a quick evaluation of the
relative errors; the fact that the new estimator did not contribute to the s, should
make little difference. An index of relative error for the Hodges-Lehmann es-
timator med,; (X; + X)/2 [see 2, page 25] was calculated in this manner and
found to be .95 for the small data sets, only slightly larger than that of the
sample mean.

It is interesting to evaluate the original scientists’ determinations by this
method. A comparison for the small data sets was not attempted, since the
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scientists did not break some of the larger sets up as we have done, and no
“experimenter’s mean” is available in many cases. For the large data sets 21-24,
however, the scientists did make determinations, involving informal outlier rejec-
tion, trimming and subjectively weighted averages. Using the values of s, from
Table 9, I find an index of relative error of .99 for these ad hoc procedures,
about the same as the 159, trimmed mean. The largest error arose from Short’s
estimate of 8.55 for data set 22, where the ‘“true value” is 8.798. Had Short
used a mean (8.63) or 109 trimmed mean (8.57), he could have reduced his
error from 2,500,000 miles to about 1,700,000 miles or 2,300,000 miles, looking
at the problem as one of determining the distance from earth to sun.

5. The effect of bias. Readers of an early draft of this study have expressed
reservations about a number of points, but comments have most frequently been
focused on the possibility of bias in the choice of data sets, and the existence of
systematic bias in the measurements themselves. On the one hand, it has been
remarked that the data considered are high quality physical science data, col-
lected by famous scientists, and likely to admit fewer abnormalities and irregu-
larities than do data sets encountered in routine experimentation or in the social
sciences. On the other hand, many of the experiments show evidence of sys-
tematic biases which may lead to difficulties in interpreting the results. To a
degree these comments are inconsistent (how can data be of abnormally high
quality and atypically biased?), but both points speak to important issues.

That the data sets are “high quality” cannot be denied. As we remarked in
Section 2, the objectives of the study seem to require well-documented data
collected by excellent scientists, but it does not follow necessarily that the data
given here are more ‘“‘gentle” —more normal or regular—than “average quality”
data collected by “the average scientist.”” In fact, there are some reasons for
suspecting the contrary to be true. In the cases of Cavendish, Michelson and
Newcomb, the scientist was dealing with an experimental apparatus that was
novel in its construction, and not familiar in its idiosyncrasies. A contemporary
scientist, however, engaged in routine analyses and interested in a robust estimate,
has likely been carefully instructed in the use of an experimental apparatus
whose characteristics are well known. It is true that a routine analysis will be
less carefully attended to than a pioneering one, but how these factors influence
results on balance is a question we cannot answer with the evidence at hand.
In the next section we shall consider the normality of our data sets in more
detail, but the question as to whether or not these data are representative of
data sets where one might actually wish to use a robust estimator, must be de-
ferred to other investigations.

The other issue that has been consistently raised is the existence of systematic
bias in the measurements. It is well known that measurements of physical con-
stants are susceptible to systematic as well as random error; see Youden [29]
for one discussion of this. These data sets also show evidence of this bias.
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TABLE 3
The values of the coefficients of skewness (B1)t and kurtosis ($2), of Hogg's Q, and of a
coefficient of bias (X — 0)/s) for 24 data sets. The corresponding population
values of (1)}, B2, and Q for a normal population are 0, 3, and 2.58

Data Size Data Size

Set n (Aot B2 o Bias Set n (Bt B2 o Bias
1 18 0.53 3.20 2.90 —0.23 13 20 0.34 1.97 1.96 1.99
2 17 —-1.22 6.38 4.07 —0.48 14 20 -—1.28 4.87 3.57 1.40
3 18 1.38 4.84 3.06 0.05 15 20 —-0.04 1.90 1.98 1.45
4 21 . 0.82 2.99 2.62 —0.29 16 20 0.64 2.97 2.66 1.79
5 21 1.17 3.61 2.70 0.12 17 23 0.37 4.03 3.02 0.43
6 21 0.84 3.25 2.75 —-0.37 18 23 0.14 2.31 2.31 —-0.18
7 21 0.32 3.67 3.22 —1.72 19 29 —-0.44 3.10 2.57 —-0.31
8 21 0.39 4.06 3.49 —0.84 20 29 0.03 2.44 2.36 —0.17
9 20 -—2.82 11.00 4.69 —0.64 21 53 -0.39 6.40 3.52 -0.24
10 20 0.15 2.08 2.10 —-0.87 22 63 0.66 3.22 2.78 —0.21
11 26 0.11 4.05 3.20 —1.13 23 66 —4.49 29.40 4.34 —0.63
12 20 —-0.89 3.15 2.66 1.66 24 100 -—0.02 3.26 2.66 1.49

——

Table 3 presents calculated values of a coefficient of bias, the difference be-
tween the sample mean and the “true value” divided by the sample standard
deviation. We see that the bias is most pronounced in Michelson’s speed of
light experiments (sets 12-16, 24), and that in 509, of the data sets X differs
from 6 by less than half an estimated standard deviation of a single measure-
ment. (If n = 20 and the data are distributed N(0, ¢*) then P(|X — 6|/s = .5) =
P(j#(19 df)| = 5% = .04). Thus the existence of biases in these sets averaging
about half the standard deviation of a single measurement is plausible. That
these systematic biases lead to misleading confidence statements has long been
known; indeed Newcomb’s own analysis of set 23 included a three-fold increase
in his estimate of the probable error (= .640) to allow for possible “constant
errors” [16, page 201-2].

The questions we must face are, what is the effect of this bias on our com-
parisons, and can or should an attempt be made to eliminate this bias? The
exact effect of the bias is hard to quantify, but at least qualitatively one can see
that the predominate effect is to dilute the comparisons. The error of estimation
which enters into the index RE(i) has two components, random and systematic
error. If the populations sampled were all symmetric, then since all estimators
considered are translation invariant, symmetric functions of the data, the sys-
tematic component for each data set would be the same for all estimators. If
squared error (rather than the more robust absolute error) had been employed,
one would then find (via the familiar “mean-square-error = variance + bias-
squared”) that the bias had added equally to the expected values of both numera-
tor and denominator of e,;, and severe bias would render all estimators equally
inaccurate, biasing e,; toward 1.0. The same should be at least approximately
true for the measure actually used, and indeed, in Table 9 we see that the more
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biased sets tend to produce relative errors near 1.0 for all estimates. The index
RE(i) was in fact recomputed for the small samples without the more biased
speed-of-light sets 12-16, and the results were as predicted: the differences already
noted were actually increased, with no change in order other than the inter-
change of the positions of Edgeworth and Tukey Biweight. A similar effect on
the index RR(i) would be expected.

If the populations sampled are not symmetric, the situation is not so simple.
In this case the estimators may have different expected values, and thus different
biases. If the ratio of the largest bias to the smallest bias is small, the effect
would be qualitatively the same as the symmetric case, but in some situations
this may not be true. It is even possible that a systematic error would tend to
be related to the asymmetry in such a manner as to penalize overly harsh
trimming.

One example of how the heavy tail could be in the “right” direction and
counterbalance systematic error, is the observation of transits of Venus. In this
case, a major source of error was the “black drop” effect. As Venus passed into
the disc of the sun an optical illusion not anticipated by the observers was seen:
Venus seemed to pull a “black drop” of space with it into the sun’s interior, and
by the time Venus actually was seen to break contact with space and be isolated
in the sun’s interior, it had in fact passed some distance beyond the real contact
point, where the two discs were tangent. The magnitude of this effect differed
at different observation posts, and observers dealt with it individually as best
they could, often guessing at the point of tangency. These guesses could easily
produce a “heavy tail” that would counterbalance the black drop bias, and in
some data sets this may have occurred. Seven of Data Sets 1-8 are positively
skewed; six are negatively biased.

This example points up one of the hazards of attempting to sharpen the com-
parisons of estimators by reducing systematic error through the introduction of
current corrections for factors overlooked (or dealt with incorrectly) by the early
scientists. If the data sets are as samples from symmetric populations, and a
_ careful reading of the experimental procedure by a present day expert indicates
a systematic error that can be eliminated, then the differences between estimators
could in principle be magnified without unfairly changing the ranking of per-
formance. The actual ranking may change due to the small number of data sets
employed, but the expected ranking would not be affected. But with even slight
asymmetry this would not be true, and the introduction of corrections not known
to the original investigator might have a major effect on both actual and expected
performance; different present day experts might make different, equally defen-
sible, corrections and arrive at totally different results.

Another hazard in attempting to eliminate systematic errors through hindsight
is that we may be misled as to the actual difference in performance between
estimators. One of the lessons of this study is that even the greatest scientists,
exercising every ounce of their ingenuity, are unable to eliminate all bias. As
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we have seen, a systematic error of about half the standard deviation of a single
measurement remains. An attempt to eliminate this bias, even if successful,
may give a quite misleading view of the estimators’ relative efficiencies for real
data sets.

For these reasons, and because we lacked an unambiguous scheme for proceed-
ing otherwise, no attempt has been made to impose anachronistic scientific ex-
pertise on these early data sets. Rather, the point of view adopted has been one
of treating the data as the original scientist might have, given the robust estimator
(but no additional twentieth century knowledge). The estimators may have been
designed to determine efficiently the center of a symmetric distribution, but they
will be employed in less than ideal situations. Even when these estimators are
used for purposes other than the determination of objectively defined parameters,
say for comparative studies, asymmetries and unknown (and unknowable) biases
will be present. There can be no guarantee that the situations studied here are
representative of current applications, but that is not adequate reason for basing
our assessments on unrealistically idealistic assumptions.

6. Are real data normal? An often quoted remark which Poincaré [19, page
171] attributed to “Lippmann” (probably the French physicist Gabriel Lippmann)
can be roughly translated as follows: “Everyone believes in the normal law,
the experimenters because they imagine it a mathematical theorem, and the
mathematicians because they think it an experimental fact.” The past few dec-
ades of statistical research have seen a near reversal of these sentiments. Some
experimenters believe that the assumption of normality should be dispensed with
because of the development of techniques (including nonparametric techniques)
which do not require it, while mathematical statisticians develop “robust” tech-
niques which would be appropriate for the heavier tailed distributions that they
believe (perhaps on skimpy or nonexistent evidence) to occur commonly in
practice.

That some real data sets with symmetric heavy tails do exist, cannot be denied.
One excellent example is a set of 684 residuals based on observations of transits
of Mercury which Simon Newcomb presented in 1882 [15, see also 24]. But,
while many isolated examples of both heavy and light tails could be cited, the
frequency with which heavy tails occur,, the actual heaviness of the tails of real
data, and the seriousness of their impact upon the performance of statistical
procedures, do not seem to have received adequate systematic study. No such
systematic study will be attempted here, but it is nonetheless interesting to con-
sider the question of just how much the uncensored Data Sets 1-24 deviate from
normality, according to some common measures.

Table 3 presents the values of the sample coefficients of skewness and kurtosis,
defined by (8,)t = p/pts? and B, = p,/p)?, where p, = n7 3, (X; — X)* is the
sample kth moment. The values of Hogg’s measure of tail weight Q (see Section
3 and [11] for its definition) are also given; the value of the correspondingly
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defined population value g(.05)/g(.5), with g(a) = f(F~*(a))/a, is 2.58 for normal
distributions, with larger values representing heavier tails.

While the values given in Table 3 do show some evidence of heavy tails or
skewness in some of the data sets, they can hardly be taken as indicative of the
disasterously heavy (even Cauchy-like) tails envisaged by the more pessimistic
of the modern mathematical statisticians. (See, for example, the emphasis upon
the Cauchy and similar distributions in [2].) Among the small sample data sets,
the most extreme values are those of set 9((5,)} = —2.82, 8, = 11.00) which
are due in part to a single low value (—44 in Table 5), a value that Newcomb
incidentally gave no weight to in his own analysis. Without this value, (8,) =
1.44, B, = 6.40. The most extreme values among large sets occur in set 23,
where they can be seen to be due to the combination of Data Sets 9-11, with
means 22, 29, 28 and standard deviations 18, 5, 5. A plausible explanation for
this shift in mean and decrease in variance after set 9 is that Newcomb was
becoming more familiar with his apparatus. It could be argued then that this
time trend in variance which accounts for the high kurtosis in the combined

sample is not appropriately modelled as a random sample from a heavy-tailed
distribution.

7_ Data Sets

B/

Normal

7— tsdf
/]%7—77] %7\,7-.__.—,—‘

‘

>12 >28
Aﬁ Cauchy
A7 2 A v r v A V7Y,
2 4 6 8 10 12 0 8 16 24
1a, Kurtosis 1b. | Skewness|

Fic. 1. Empirical frequency distributions of the sample coefficient of kurtosis and of the
absolute value of the sample coefficient of skewness from Data Sets 1-20, and from 100
pseudorandom samples of size 20 from the normal distribution, Student’s ¢ distribution
(5df), and the Cauchy distribution.
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It would of course not be accurate to treat Data Sets 1-20 as a “random
sample” of small sets of real data, but the behavior of the sample statistics (3,)*
and $, in random samples of size 20 provides a useful reference with which to
compare the values of Table 3. Figure 1 presents histograms of the values of
|(B,)}| and B, from sets 1-20, and values obtained by generating 100 independent
pseudo-random samples of size 20 from each of the following distributions:
(1) Normal (0, 1), (2) Student’s ¢ with 5 df, (3) Cauchy (¢ with 1 df).

Table 3 and Figure 1 suggest that the data sets considered tend to have slightly
heavier tails than the normal, but that a view of the world through Cauchy-
colored glasses may be overly-pessimistic. Probability plots (not presented here)
show no remarkable abnormalities. Outliers are present in small quantities, but
a small amount of trimming (no more than 109,) may be the best way of dealing
with them.

7. Conclusions. While the present study may be the first evaluation of modern
robust estimators to rely on real data, the small number of data sets employed
and the narrow range of fields they are selected from requires that any con-
clusions be only tentative. Nevertheless, these conclusions are in sufficient
accord with common sense and statistical tradition, that we feel they can be
embraced with at least a moderate degree of confidence.

We have found that real data do exhibit behavior somewhat different from
that of the simulated data used in most robustness studies, and that this affects
the consequent recommendations for choice of an estimator and assessments of
the relative performances of estimators. The data sets examined do exhibit a
slight tendency toward more extreme values than one would expect from normal
samples, but a very small amount of trimming seems to be the best way to deal
with this. The 109, trimmed mean (the smallest nonzero trimming percentage
included in the study) emerges as the recommended estimator; the mean itself
does rather well. The more drastic modern remedies for feared gross errors re-
commended in [2] lead here to an unnecessary loss of efficiency.

In a sense, this study is a vindication of a vague procedure recommended by
Legendre in his original publication of the method of least squares in 1805, where
he recommended the application of least squares after rejecting those observa-
tions whose errors “are found to be such that one judges them too large to be
admissible.” (See [24].) Edgeworth reached a similar conclusion in 1887, but
put it more colorfully: “The Method of Least Squares is seen to be our best
course when we have thrown overboard a certain portion of our data—a sort
of sacrifice which has often to be made by those who sail upon the stormy seas
of Probability.” [8, page 269].
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APPENDIX

The data sets employed in this investigation were drawn from sources which
are not accessible to many readers, and sometimes appeared in formats that are
not easily adaptable to this type of analysis. In order to provide full documen-
tation for the paper, and for those readers who wish to perform alternative
analyses (or test alternative estimators), we present both the data sets and brief
descriptions of the experiments which produced them. The data are presented
in the original time sequence, and where large data sets have been broken up
or rearranged, this is explained in the descriptions. Thus a reader wishing to
view Short’s data as a two-way table, treat Michelson’s data as a time series, or
analyze Cavendish’s in terms of reciprocals (as determinations of G), may do so.

A. Short’s determinations of the parallax of the sun. By the early years of the
18th century, astronomers had fairly well determined the relative dimensions
of the solar system, the relative distances between planetary orbits and between
the planets and the sun. However, they lacked precise information on the absolute
dimensions of the solar system, and were eager to determine even one such dis-
tance in miles, in particular the mean distance from the earth to the sun, from
which all others could be found. Actually, the quantity that 18th century as-
tronomers chose to pursue was the parallax of the sun, the angle subtended by
the earth’s radius, as if viewed and measured from the surface of the sun. From
this angle and available knowledge of the physical dimensions of the earth, the
mean distance from earth to sun (or astronomical unit) could be easily determined.

The astronomer Edmund Halley (1656-1742) is generally credited with having
been the first to suggest that the parallax of the sun could be determined by
observing a “transit of Venus,” the apparent passage of the planet Venus across
the face of the sun, as viewed from earth. If observers were dispatched to all
corners of the globe from which this transit would be visible, and they carefully
recorded their positions and the elapsed time of the transit (on the order of 5.5
hours), then each pair of observers would furnish one determination of the
parallax of the sun. '

Unfortunately for the implementation of Halley’s plan, transits of Venus are
quite rare, owing to the 3°36’ inclination between the orbits of Venus and Earth.
The first recorded transit of Venus occurred on 1639 and was observed only in
England; the next transits were due in 1761 and 1769, with later transits due
in 1874, 1882, 2004 and 2012. By 1761, interest in the forthcoming transit was
high, and observations were made at the Cape of Good Hope, and in Calcutta,
Rome, Stockholm and most other European observatories. A good account of
the transits of 1761 and 1769 can be found in Woolf [28]; and excellent discussion
of the data generated by these transits is given by Newcomb [17].
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The data we analyzed are from a contemporary analysis of the 1761 transit
by James Short. Short[23] presented several different calculations of the parallax
of the sun based on different sets of pairs of observations, data presented in
Table 4.

The numbers are based on pairs of observations of the transit, and thus are
usually not independent. Data sets 1, 2, 3, 7, 8 are each based on comparisons
of observations at a single observatory with a long list of others. Datasets4,5,6
come from a pairwise comparison of 7 observing stations with 9 others. Some
readers may wish to analyze this as a 9 x 7 two-way classification; this format
can be recovered by breaking the sets after each seventh number.

Data Set 21 consists of 1, 2, 3 together, and was analyzed by Short in a “robust”
manner: he took the mean of all n = 53 determinations (8.61), then rejected
all results differing from 8.61 by more than 1.00 and obtained the mean of the
remainder (8.55), then rejected all results differing from 8.61 by more than .50
and obtained the mean of the remainder (8.57); finally he took the mean of 8.61,
8.55, 8.57 to obtain the sun’s parallax as 8.58. He applied a similar analysis to
Data Set 22 (consisting of 4, 5, 6 together) and obtained 8.55 again and similarly
analyzed Data Sets 7 and 8 separately to obtain 8.56 and 8.57. We shall adopt
as our “true value” that given by Woolf [28, page 197], namely 8.798. In a
private communication, Robert R. Newton informs me that recent radar deter-
minations would lead to a value of 8.794, but this slight difference would not
have a significant effect upon the comparisons.

B. Cavendish’s determinations of the mean density of the earth. Newton’s law
of gravitation states that the force of the attraction (f) between two particles of
matter is given by the formula f = Gmm’|[r*, where m and m’ are their respective
masses, r the distance between their centers of gravity, and G is the gravitational
constant, independent of the kind of matter or intervening medium. From the
late eighteenth through the nineteenth centuries, a large number of experiments
were performed in order to determine G. These experiments were usually de-
signed to determine the earth’s attraction of masses, and described as experiments
to determine the mean density of the earth: If the earth is supposed spherical
with radius R and g is the acceleration toward the earth due to gravity, then
Newton’s law becomes GA = 3g/(4xR), where A is the mean density (g/ccm) of
the earth. Since g and R could be supposed known, determination of A could
be viewed as equivalent to determination of G. A large number of these experi-
ments are described in [3], [20], and [21].

Of all the early experiments, that of Cavendish [7], performed in 1798 using a
torsion balance devised earlier by Michell, is generally considered the best. The
completeness of his description of his experiments and the excellence of his meth-
ods are often described as an ideal example of scientific experimentation. Caven-
dish concluded his memoir by presenting 29 determinations of the mean density
of the earth; these are presented in order in Table 8. A word of explanation of



ROBUST ESTIMATORS 1073

our handling of these data is in order. After the sixth of these determina-
tions, Cavendish changed his experimental apparatus by replacing a suspension
wire by one that was stiffer. In his analysis of these determinations (which
amounts to little more than taking means), Cavendish considered this change
as potentially important, and we have followed him in this respect: Data Set
19 consists of all 29 determinations, while Data Set 18 consists of only those
last 23 made with the stiffer wire (these 23 measurements are also presented by
Brownlee ([6], page 223). To further complicate matters, Cavendish erred in
taking the mean of all 29 by treating the value 4.88 as if it were in fact 5.88.
This was first pointed out by Baily in 1843 [3], and was overlooked by Laplace
in an early statistical analysis of these data [12]. As robust methods are supposed
to be able to cope with gross errors, we have also analyzed the data (as Data
Set 20) with all 29 determinations and 5.88 replacing 4.88. Cavendish presented
the value 5.48 as the mean of the 29 (as well as of the 23) determinations. As
corrected by Baily, this figure becomes 5.448; we shall follow the most recent
(1974) Encyclopedia Britannica and take the “true value” as 5.517 (Macropedia,
“Earth, Mechanical Properties of,” 6 page 37). In a private communication,
R. R. Newton has suggested an alternative value of 5.513 as more appropriate
to Cavendish’s experiment, but this slight change would have negligible effect.

C. Michelson’s and Newcomb’s measurements of the velocity of light. Verifica-
tion of the fact that light travels at a finite velocity, and is not transmitted in-
stantaneously as early scientists (including Kepler and Descartes) had thought,
is generally credited to Ole Romer, who in 1676 made comparative measurements
of the times of eclipses of Jupiter’s satellites from two different relative positions
of Earth and Jupiter. But another two centuries passed before the experiments
of Michelson and Newcomb in 1879-1882 provided what are considered the first
accurate determinations of the velocity of light in vacuum.

In 1849 and 1850, the French physicists Fizeau and Foucault had separately
devised methods of measuring the velocity of light. Foucault’s method, as refined
and improved by Newcomb and Michelson, was the source of the more accurate
subsequent determinations. Foucault’s method (see [18]) consists in essence of
passing light from a source off a rapidly rotating mirror to a distant fixed mirror,
and back to the rotating mirror. The velocity of light is then determined by
measuring the distances involved, the speed of the rotating mirror and the angular
displacement of the received image from its source.

We have included, as Data Sets 9-17, 23, 24, the results of three of the best
of the early experiments made with Foucault’s method. In 1879, A. A. Michelson
proposed modifications to a plan of Simon Newcomb’s and made 100 determina-
tions of the velocity of light in air (given in Table 6, from [13]), working over
a distance of 600 meters. Over the succeeding three years (1880-1882), Simon
Newcomb carried out a more extensive experiment that improved on Michelson’s
in a number of respects. Newcomb’s 1882 series of measurements is presented
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TABLE 4
Short’s 1763 determinations of the parallax of the sun (in seconds of a degree), based on the
1761 transit of Venus. From [23], pages 310, 316, 325. Data Sets 1-3 together
constitute Data Set 21 (n = 53), Data Sets 4-6 together constitute Data Set
22 (n = 63). The corresponding ‘‘true value’ is 8.798

Data Sets

l(n=18) 2(n=17) 3n=18) 4(n=21) 5n=21) 6(n=21) 7T(n=21) 8(m=21)

8.50 8.65 8.50 8.70 8.43 8.63 8.54 8.54
8.50 8.35 8.80 9.66 9.09 10.16 8.56 8.58
7.33 8.71 8.40 8.50 8.50 8.50 8.54 8.54
8.64 8.31 8.82 8.65 8.44 8.31 8.74 8.94
9.27 8.36 9.02 10.33 9.71 10.80 8.91 9.24
9.06 8.58 10.57 8.07 8.07 7.50 8.40 8.30
9.25 7.80 9.11 8.50 8.36 8.12 8.40 8.33
9.09 7.71 8.66 8.60 8.60 8.42 8.57 8.59
8.50 8.30 8.34 9.61 9.11 9.20 8.69 8.81
8.06 9.71 8.60 8.50 8.66 8.16 8.55 8.56
8.43 8.50 7.99 8.35 8.58 8.36 8.51 8.50
8.44 8.28 8.58 10.15 9.54 9.77 8.57 8.58
8.14 9.87 8.34 7.77 8.34 7.52 8.58 8.58
7.68 8.86 9.64 8.23 8.55 7.96 8.63 8.68
10.34 5.76 8.34 7.92 9.03 7.83 8.56 8.57
8.07 8.44 8.55 8.42 10.04 8.62 8.41 8.33
8.36 8.23 9.54 7.75 9.04 7.54 8.64 8.62
9.71 9.07 8.23 8.71 8.28 8.43 8.37

8.90 10.48 9.32 8.28 8.03

7.35 8.31 6.96 8.70 8.85

7.68 8.67 7.47 8.60 8.74

TABLE 5

Newcomb’s Third Series of Measurements of the passage time of light, made July 24, 1882 to
Sept. 5, 1882 ( from [16], pages 187-191). The given values x 10-3 4 24.8 are Newcomb’s
measurements, reading down the columns, recorded in millionths of a second.

The entire table constitutes Data Set 23 (n = 66).

The corresponding ‘‘true value’’ is 33.02

Data Set 9 (n = 20) Data Set 10 (n = 20) Data Set 11 (n = 26)
28 —44 29 30 24 28 37 32 36 27 26 28 29
26 27 2 23 20 25 25 36 23 31 32 24 27
33 16 24 29 36 21 28 26 27 27 32 25 28
24 40 21 31 32 28 26 30 27 26 24 32 29
34 -2 25 19 36 29 30 22 28 33 39 25 16

23
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TABLE 6
Michelson’s determinations of the velocity of light in air, made June 5, 1879—July 2, 1879
(from [13], page 135-138). The given values +299000 are Michelson’s determinations
in km/sec. The entire table constitutes Data Set 24 (n = 100).
The corresponding ‘‘true value’ is 734.5

Data Set Data Set Data Set Data Set Data Set
12 (n = 20) 13 (n = 20) 14 (n = 20) 15 (n = 20) 16 (n = 20)
850 960 880 890 890
740 940 880 810 840
900 960 880 810 780
1070 940 860 820 810
930 880 720 800 760
850 800 720 770 810
950 850 620 760 790
980 880 860 740 810
980 900 970 750 820
880 840 950 760 850
1000 830 880 910 870
980 790 910 920 870
930 810 850 890 810
650 880 870 860 740
760 880 840 880 810
810 830 840 720 940
1000 800 850 840 950
1000 790 840 850 800
960 760 840 850 810
960 800 840 780 870
TABLE 7

Michelson’s supplementary determinations of the velocity of light in
air, made Oct. 12—Nov. 14, 1882 ( from [14], page 243). The
given values +299000 are Michelson’s determinations in
km/sec, reading down columns. The corresponding
“true value” is 710.5

Data Set 17 (n = 23)

883 711 578 696 851
816 611 796 573 809
778 599 774 748 723
796 1051 ,820 748

682 781 772 797
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TABLE 8

Cavendish’s 1798 determinations of the density of the earth (relative to that of water).
From [6], page 520. The entire table constitutes Data Set 19 (n = 29). Data Set
20 (n = 29) consists of this table with the third value (4.88) replaced by 5.88.

Data Set 18 (n = 23) consists of the last 23 measurements (i.e., omitting

5.50 through 5.55). The corresponding ‘‘true value’ is 5.517

Data Set 19 (n = 29)

5.50 5.55 5.57 5.34 5.42 5.30
5.61 5.36 5.53 5.79 5.47 5.75
4.88 5.29 5.62 5.10 5.63 5.68
5.07 5.58 5.29 5.27 5.34 5.85
5.26 5.65 5.44 5.39 5.46

TABLE 9

The realized values of the relative error e;; (4.2) and the average error s; (4.1) Sfor eleven

estimates and twenty-four data sets

= £
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A = 2 @ &6 2 2 8 =z < & = 8
1 .80 1.44 1.09 .46 97 1.02 1.14 .97 .99 1.03 1.07 .207
2 1.05 1.10 .93 1.15 .93 .95 .96 .93 .98 .99 1.02 .399
3 .29 1.77 1.08 1.67 .56 .87 1.08 .64 1.00 1.03 1.00 .095
4 .73 .94 1.16 .32 .97 1.06 1.14 1.04 1.07 1.41 1.15 319
5 92 1.76 .92 2.92 .19 .61 1.09 .18 .45 1.04 .92 .078
6 .77 1.07 1.18 .42 .98 1.06 1.11 .99 1.05 1.28 1.09 .455
7 99 1.00 .98 1.00 1.01 1.00 .98 1.01 1.01 1.02 .99 .238
8 96 .98 .95 .92 1.00 1.01 1.00 1.0l 1.11 1.04 1.0l 222
9 1.34 .9 .9 1.81 .90 .8 .87 .90 .83 .77 .88 8.40
10 .98 1.10 1.03 .90 .98 .99 1.06 .97 1.00 1.00 .98 4.56
11 97 1.12 1.01 .89 .99 .99 1.04 .99 1.00 .99 1.00 5.36
12 .94 1.10 1.02 .81 1.00 1.03 1.06 .99 1.00 1.02 1.04 186.3
13 1.02 .93 .93 1.09 .99 .98 .95 1.01 1.01 1.00 1.09 119.2
14 .92 1.00 1.03 .82 .98 1.03 1.02 1.03 1.09 1.09 1.00 120.3
Is 1.01 .95 .9 1.03 1.00 1.00 .99 1.01 1.0l 1.0l 1.03 85.1
16 1.06 .82 1.0l 1.14 1.01 1.00 .97 1.01 1.00 .98 1.00 91.9
17 95 1.32 1.04 .76 .91 1.00-1.14 1.00 .88 .90 1.08 48.0
18 .88 1.50 1.09 .57 1.02 1.13 1.19 .8 .92 .97 .88 .038
19 1.09 .90 .95 1.24 .93 94 94 .98 .99 .93 1.09 .063
20 .93 1.27 1.10 .83 .99 1.08 1.04 .90 .95 .96 .93 .037
21 .82 1.34 .83 .50 .8 .96 1.14 .94 1.16 1.18 1.25 222
22 72 1.26 1.00 .24 .96 1.05 1.20 1.04 1.11 1.29 1.12 .236
23 1.15 1.01 .96 1.32 .95 .95 .97 .95 .8 .91 .97 5.93
24 1.0 .99 .99 1.04 1.00 1.00 .98 1.00 1.00 1.00 .99 117.1
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in Table 5 (from [16]), and is based on observations of light passed over a distance
of 3721 meters and back, from Fort Myer on the west bank of the Potomac to
a fixed mirror at the base of the Washington monument. The final series presented
(inTable7 from[14]) consists of supplementary measurements made by Michelson
after the completion of Newcomb’s experiment.

In all cases every attempt has been made to handle the data in the form it
was dealt with by the original investigator. Michelson preferred to reduce his
measurements to velocities in air, and to then combine these velocities to obtain
a final determination by an unweighted or weighted mean. Newcomb preferred
to reduce his measurements to times, combine the times through a weighted
mean, then incorporate the known distance with this result to produce a final
determination of the velocity of light in air. In all cases, the measurements
actually given are derived from sets of often widely disparate numbers of ob-
servations, a circumstance that one might expect would produce a mixture of
standard deviations of the sort modern robust methods are designed to deal with.

The “true values” have been taken to be 33.02 for Newcomb’s data, 734.5
for Michelson’s 1879 data, and 710.5 for Michelson’s 1882 data. These were
arrived at by taking the “true” speed of light in vacuum to be 299, 792.5 km/sec.
as presented in [22], and incorporating the investigator’s own corrections to
adjust this figure to a velocity in air or, in Newcomb’s case, a “true” time
(i.e., the measured time which, when converted to a velocity and corrected as
Newcomb did in [16] to obtain a velocity for light in vacuum, would yield 299,
792.5).
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DISCUSSION
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This paper is a welcome contribution to the literature on robust estimation.
It illustrates quite convincingly that there is no practical difference between the
class of good robust estimators and the arithmetic mean when these are applied
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to “clean” sets of data. What is impressive about the results is that, with but
few exceptions, the choice of estimator does not matter for these sets of data.
Most of the entries in Table 9 are embarrassingly close to 1.0!! The measures
of spread in Table 1 are very large compared with the differences in the entries,

Thus satisfied that much does not matter, we are free to concentrate on what
does. It is unfortunate that the analysis here obscures the few important dif-
ferences that do exist. The measure of relative error used does not reflect useful
information about absolute errors. Thus for example, in Table 9, the median
appears to deteriorate when moving from Data Set 9 to Data Set 10 although it
gives a more accurate estimate in the latter case. Furthermore, the last column
of Table 9 suggests that the differences in the estimators are much more important
for Data Set 9 than for Data Set 10 (where the differences just do not matter).
The analysis takes no account of this.

Now Professor Stigler is an expert on matters historical. He argues convinc-
ingly for the use of “old” data on “known” constants to compare estimators.
However, he also implies that “modern” data are comparable in ather respects
such as kurtosis. It has been my experience all too frequently to find computer
summaries of my data yield reasonable medians but unprintable means, to say
nothing of variances and higher moments. Often data are collected with instru-
ments and the quantities of data collected are large. Such data typically contain
gross disturbances as, for example [1], when a telescope measuring background
infrared radiation while tumbling through near-space points for a moment
toward Earth. Such disturbances are well described by Cauchy-like distributions
(although these will never be seen through Cauchy-coloured glasses).

In simple, one-parameter models, such disturbances may be easily identified.
But the purpose of much of data analysis is rarely to ascertain any absolute
quantity (as was the purpose of the experiments described in the paper) but to
discover relations between variables, to build and assess models. In these more
complex situations, the disturbances may only be detected after first fitting the
data with a procedure insensitive to such gross errors. Thus robust fitting pro-
cedures are required for more complex models. The family of M-estimates
readily extends to linear and nonlinear models. These procedures operate the
way Legendre rather than Edgeworth suggest. The other procedures studied
here are not as useful in these situations.

Professor Stigler suggests that the use of these M-estimates results in an un-
necessary loss of efficiency. I note that he does not comment on the statistical
significance of this apparent loss. And Professor Stigler is a statistician.

This paper confirms that these procedures may be safely applied to clean sets
of data, for in these cases even an expert cannot establish the difference. But
for severely contaminated data the story is very different.
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GEORGE A. BARNARD
University of Waterloo

The main point that I take from Stigler’s excellent paper is that we statisticians
have been neglecting the empirical basis of our science. In the nineteenth century
there was a great deal of discussion as to whether errors of observation could
be taken to be normally distributed, and by the end of the century men like
Edgeworth and Newcomb were able to give a rather heavily qualified yes; they
both began investigating other than normal distributions. The biometric school,
under the leadership of Galton and Karl Pearson, continued through the turn
of the century to study the forms of distributions occurring in nature. But in
the 1920’s it was, perhaps, the elegance and generality of Fisher’s results based
on the normal distribution which led many statisticians to play down the pos-
sibility of departures from normality—when Egon Pearson raised the question
of nonnormality in relation to the innovations of R. A. Fisher, the latter, with
understandable but unfortunate supersensitivity, interpreted the question as an
attack. At the same time, and characteristically, Fisher set himself, and en-
couraged others, to work, for example, on densities whose logarithm is quartic
rather than quadratic; but he soon saw that the computational problems involved
were beyond the capacity of the facilities then existing. Thus in the 1930’s and
1940’s, the prevailing view was, that provided gross departures from normality
were avoided, for example, by logarithmic or square root transformations, it
was lack of independence and inequality of variance that were more to be feared.
Nonparametric procedures failed to win general acceptance because, among
other things, while removing assumptions about distributional form, they leaned
heavily on independence and identity of distribution.

The revival of Bayesian approaches enabled Box and Tiao (loc. cit. supra) to
carry through a pioneering analysis of the true effect of assumptions about dis-
tributional form on a classical set of (Darwin’s) data; and with the help of
Fraser’s (1976) necessary analysis, or my own pivotal inference (1977), it is now
possible for non-Bayesians to match Box and Tiao’s work in its essentials. Thus
we can all deal, without undue difficulty, with nonnormality and lack of in-
dependence—so long as we know what the nonnormal and nonindependent joint
distributions are. But it is this empirical information which is lacking.

I agree with Stigler’s suggestion, that'it is likely that the errors in the cases
he has taken were more nearly normally distributed than has been supposed by
most recent workers, though the lack of independence, for instance, exhibited
by Michelson’s data is remarkable. The fact that shrewd and skeptical nonstat-
isticians with practical responsibilities, such as Sir George Airy, were persuaded
to accept the normality doctrine is evidence in favour of this idea. But it is
easy to think of reasons why typical distributional forms of errors, or of varia-
bility should have changed between then and now.

We urgently need, therefore, to collect information on lack of independence
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and on distributional form. Fortunately, this should not be difficult. Since
most data processing is now done on computers, all we need do is to form the
habit of computing 3rd and 4th moments, proportions of outliers, and, say, first
order autocorrelations, as routine, and to file the results along with a note about
the type of data involved. We could then, working together, hope soon to reach
a situation where we could say: “As these data are of such and such a kind, a
reasonable range of distributional forms, and dependencies, is this.” We could
go on, either with “The sample now to hand is robust, in the sense that the
resulting range of inferential statements is very narrow” or “The sample now to
hand is sensitive to the plausible range of distributional forms, so that further
information on this form should, if possible, be collected.”

I would therefore urge, if I may, the setting up of a Committee for the Study
of Sample Configurations, to propose standard forms for the collection of infor-
mation, to act as a clearinghouse for the information collected, and perhaps to
suggest ways in which the resulting information can best be classified.

It seems to me that it is only in this way that the problems which Stigler
raises can be properly dealt with. With the information on distributional form,
etc., we would not be restricted, as Stigler is in this study, to looking at an
estimate purely from the point of view of how close it comes to the true value;
we could also deal with the almost equally important question of providing a
reliable assessment of the error of our estimate.

We should not forget that when the “error” distribution represents real vari-
ability in a real population, we may well be interested in the middle part of the
population much more than in the tails. The Halothane study is a case in point.
The “heavy-tails” estimators that have been studied in recent years often will
represent these middle parts better than location estimates for the whole popu-
lation. It would not be the first time that a proposal intended to serve one
purpose turned out to serve another.

The science of cosmology seems no nearer to definitive formulation than the
science of statistics, so that E. A. Milne’s suggestion of forty odd years ago, that
the velocity of light is now less than it was, should not go unnoticed.
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G. E. P. Box
University of Wisconsin at Madison

In applying the criterion of usefulness to robust estimators, Steve Stigler is to
be congratulated for the clarity of his thought in a confusing world.
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To say that a procedure (estimator) is robust means that, not only under ideal
assumptions, but when exposed to real data, it usually does about what is expected
of it. Words italicized in the above have meaning as they relate to the real world
and hence to the domain of applied mathematics.

The vital concerns of honest pure mathematics on the one hand and honest
applied mathematics on the other are so different, that, lack of communication
and understanding between workers in two disciplines, having such similar
names, is perhaps inevitable. It is agreed that in considering the question “Given
proposition A does proposition B necessarily follow?”, pure mathematics need
not concern itself with whether proposition A has truth or meaning in the real
world or whether proposition B is of any use. When proposition A is the applied
mathematician’s tentative assumption, it does not need to represent truth or
practical reality either. Assumptions which are grossly discordant with fact (for
example, that certain particles have no mass) frequently produce useful physical
laws. Furthermore, the degree of departure from the ideal is not a unique de-
terminant of performance, for the same assumptions that lead to practically useful
results for one problem (for example, standard Normal assumptions leading to
analysis of variance for comparison of means) can by the same route lead to
much less useful results in another (for example, Bartlett’s test for equality of
variances). The ultimate justification of the assumptions and methods of applied
mathematics is their ability to yield results useful in practice. While one counter-
example disproves a logical proposition, the existence of functions for which
some useful method of, say, numerical integration or function optimization does
not work is, of course, inevitable; so is the existence of distribution functions for
which certain estimators do not work. The only question of interest is how
often such functions occur and what are warnings of their probable occurrence.

Testing estimators with extreme distributions like the Cauchy implies an
argument of the minimax type and is no more convincing there than it is in
other contexts. Indeed it calls to mind the following from the mathematician
C. L. Dodgson.

“I was wondering what the mouse-trap was for,” said
Alice. “It isn’t very likely there would be any mice on
the horse’s back.”

“Not very likely, perhaps," said the Knight; “but, if they
do come, I don’t choose to have them running all about.”

I hope this paper marks a renewal of interest in how statistical procedures work
in the circumstances of the real world which implies an explicit discussion of
what these circumstances really are. I think this may lead to a realization that
emphasis on nonnormality of the marginal distributions has been rather overdone
and that considerably more attention should be paid to the assumption of inde-
pendence (or distribution symmetry).

Whether we recognize it or not, as applied mathematicians we are motivated
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in our researches by “prior distribution of reality”” which implies how often func-
tions of this or that type are likely to occur. If we try to operate independently
of this prior (as the pure mathematician in us might like to do) we get into
trouble. This is evidenced in other contexts by the properties of Stein’s estimators
and by “distribution free” tests.

Sometimes it helps to argue backwards. By asking what will endow with
virtue the estimators chosen by the experts we might deduce their subconscious
distribution of distributions. After Winsorizing out the nightmares and suitable
polishing, this prior might then be used to solve the problem using Bayes theorem.

D. R. Cox
Imperial College, London

I have read Dr. Stigler’s paper with much pleasure. He raises some important
general issues. One is the need for more empirical study, presumably as an
incidental to other work, of the shape of distributions. (In a study I made some
years ago of various kinds of routine laboratory tests in textiles, distributions
with negative kurtosis occurred about as often as those with positive kurtosis).

On the more general issue of the role of robust procedures, the “traditional”
approach is, I suppose, a combination of preliminary inspection of the data to-
gether with study at the end of the analysis of whether there are aspects of the
data and assumptions reconsideration of which might change the qualitative
conclusions. This approach seems to have a great deal to commend it, especially
when it allows simple methods to be used on relatively complex problems. It
may often be inapplicable to the analysis of large bodies of data and here the
case for automatically robust methods is much stronger; whether recent work
is right to concentrate strongly on robustness to longtailed contamination rather
than, for example, robustness to correlations among errors, is not so clear.

Epwin L. Crow
National Center for Atmospheric Research

Professor Stigler’s study is an interesting and valuable contribution to the field
of robust estimation. However, the title may suggest more generality than is
stated in the body of the paper, in pariicular in the three requirements for in-
clusion of data sets and in Figure 1. Thus the study is necessarily limited to
fairly precise physical measurements. Figure 1 shows “that the data sets con-
sidered tend to have slightly heavier tails than the normal” and that the skewness
tends to differ only moderately from that of normal samples. One must be very
careful, then, not to generalize the conclusions to all real data.

The good performance of the mean and the poor performance of the median
would seem to be associated with the fact that the data sets of the study differ
only moderately from normal samples.
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Even though Stigler suggests that the Princeton study [his reference 2] may
have included a greater variety of distributions than should be as judged by his
data sets, they were still limited to symmetric unimodal distributions. Real data
may exhibit great asymmetry or perhaps even multimodality. Some meteoro-
logical data, in particular precipitation data, have J-shaped distributions [2, 3].
These shapes can often be altered to approximate normality by transformation,
such as taking a root or the logarithm, but the applier of statistical methods
may get the impression that robust estimates can be used without concern for
transformation. By the time an experimenter comes to formal statistical analysis
he surely'has a rough idea of the shape and thus what transformation, if any,
to use. Alternatively, perhaps a few broad classes of distributions should be
specified, such as bell-shaped, J-shaped, and U-shaped, and methods robust within
these classes can be recommended. It may not matter a great deal whether
Michelson’s and Newcomb’s data (end of Section 2) are analyzed as times or
velocities, but one should surely consider whether the reciprocal should be taken
before applying even robust estimates.

Neyman and Scott [3] have distinguished between ‘outlier-resistant” and
“outlier-prone” families of distributions and pointed out that “elimination of a
sample member [in a domain of study in which substantial samples of observa-
tions can be fitted only by some outlier-prone distribution], merely because its
value deviates considerably from those of the others, cannot be justified.” They
state two theorems: “The family of Gamma [respectively lognormal] distribu-
tions is outlier-prone completely.” Thus in footnote to Stigler’s conclusions,
there are cases of real data in which outliers should not be rejected either ex-
plicitly or implicitly by the choice of estimator.

Crow and Siddiqui [1] independently proposed a linear combination of the
median and two other symmetric order statistics (similar to the Edgeworth
estimator) to estimate the mean and determined the optimum (MVUE) for the
rectangular, normal, double exponential, and Cauchy families and all combina-
tions thereof for sample sizes 5, 9, 17 and co.

Although the median shows up poorly as an estimator in these data sets, it
might have been considered in the measures of performance in both (4.1) and
(4.3) to reduce the effect of outlying estimator measures and outlying data sets.
In both cases it suffers the slight disadvantage of discreteness relative to the
means used in (4.1) and (4.3). Howevet, it is doubtful that this change would
have much effect on the results of the study. More generally, for a summary
measure of the sampling distribution of an estimator, what advantage other than
possible ease of calculating does a (mean-)unbiased estimator have over a median-
unbiased estimator?
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CHURCHILL EISENHART
National Bureau of Standards

When I began reading a pre-publication copy of this paper, I looked forward
with keen interest to seeing how the respective “robust estimators” compared
with each other in each instance, and how they compared with the “mean”
adopted by the original experimenter as his “best value”—that is, to seeing
whether the original experimenters would have been led to much the same, or
quite different, conclusions had their data-analysis tool kits included these “robust
estimators.” I was doomed to disappointment: Nowhere does the author tabulate
the values of the individual “robust estimators” for the respective data sets an-
alyzed, nor does he ever give the “mean” or “best value” adopted by the original
experimenter. Instead he simply gives a table (Table 9) of “the realized values
of the relative error” of each of the eleven estimators considered, for each of
the twenty-four data sets considered.

As Stigler points out in the parenthetical remark following equation (4.3),
“the actual errors 0,; — 0, of the respective estimators O (I=1,2,...,11),
relative to the “true value” ¢, adopted for that set “can be easily recovered from
Table 9.” The “true value” @ ; in each case being given explicitly, the observed
values of the estimators 6, can be recovered also. In this manner I ascertained
the values of the nine estimators other than the mean and median—which I
evaluated directly—for Data Sets 23 (Table 5), 24 (Table 6) and 17 (Table 7).
The results obtained for Data Set 23 are shown in the accompanying figure,
together with the basic sixty-six time-of-passage values in frequency distribution
form, and the value of the “mean” that Newcomb used.

It should be noted that the values of Newcomb’s “mean” and all of the esti-
mators considered, except the outmean, lie in the central narrow interval (26.2,
27.9) indicated at the left of the figure, whereas the “true value”, 33.02, that
Stigler adopted for these data (indicated by the arrow in the figure) is quite
distant and corresponds to about the 88th percentile of the data. A similar situa-
tion prevails in the case of Data Set 24, for which Michelson’s “mean,” 852,
and all of the estimators considered by Stigler, except the outmean, lie in a
central narrow interval (849, 852.4), whereas the “true value” Stigler adopts,
734.5, lies in the lower left ““tail,”” between the 5th and 8th percentiles of the
data. Likewise, in the case of Data Set 17, all of the estimators considered,
except the median and the outmean and Michelson’s “mean,” 771, lie in the
interval (754, 765), whereas the “true value” Stigler adopts, 710.5, lies at about
the 32nd percentile of the data. “True values” such as these that lie ““out in the
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wings” are clearly unsuitable for judging the relative merits of a group of esti-
mators that are “arguing” over which value in a central “core” of a set of data
“best” summarizes the “evidence” of the set as a whole.

The “true values” that Stigler adopted for these three data sets were all derived
by “working backwards” from a 1965 “best” value for the velocity of light in a
vacuum, 299, 792.5 km/sec, ‘which agrees to the number of significant figures
given with the value officially adopted in 1973 by the Committee on Data for
Science and Technology (CODATA) of the International Council of Scientific
Unions. The reason for the unsuitability of the “true values” thus derived for
the objectives of the present paper is that Michelson’s 1879 and 1882 determina-
tions of the velocity of light (Data Set 24 [and Sets 12-16], and Data Set 17,
respectively), and velocity of light values derived from Newcomb’s 1882 time-
of-passage measurements (Data Set 23 [and Sets 9-11]) are all affected by enor-
mous positive systematic errors, as were all velocity-of-light determinations prior

Data Set 23
Newcomb’s Time-of-Passage Data (r psec)
(Stigler’s Table 5)

109 £-24800 Gsec Freq. Cum. Freq.
—44 X 1 Mean 1 26.212
2 X 2 Median 1 27
16 XX 4 Edgeworth 1273
17
18 [Outmean 1 25.2]
19 X S
20 X 6 1095 Trim 0 27.4
21 X X 8
22 X X 10 159 Trim 1 27.4
23 X X X 13
24 X X X X X 18 25% Trim 1 27.3
25 X X X X X 23
26 X X X X X 28 Huber P15 1 27.4
[27 XX X X X X 34
28 X X X X X X X 41 Andrews AMT 1 27.9
29 X X X X X 46 .
30 X X X 49 Tukey Biweight 1 27.6
31 X X S1
32 XX X X X 56 Hogg Tl 1 27.3
—33 X X 58
34 X 59 NOTE: Mean and Median determined
35 directly; all others, by inversion of
36 X X X X 63 Stigler’s Table 9, Data Set 23.
37 X 64
38
39 X 65

40 X 66 Newcomb’s ‘“mean’’: 27.4
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to 1906; see the figure and table on page 66 of the August 1955 issue of the
Scientific American. Furthermore, since actual causes and precise nature of these
systematic errors are not known today, it is impossible to bring the Michelson
and Newcomb determinations “into line” with modern values, or alternatively
to “work backwards” from a currently accepted value of the velocity of light
to derive trustworthy determinations of the “true values”(?) that their respective
data sets were striving to indicate. This inability to “work backwards” from
current “best” values to trustworthy “true values” for historic data sets will, I
fear, always be with us, and will render dubious efforts to compare the accuracies
of alternative estimators such as Stigler has attempted in this paper. (Even when
an attempt is made to duplicate an experiment as exactly as possible at another
time or place, it is usually found that the results of the first fail to predict ac-
curately the results of the second; and in the case of experiments that differ in
procedure, the disagreement is usually more pronounced.)

Consequently, I feel that Table 3 and Figure 1 comprise the solid message of
this paper. As Stigler says in the final paragraph of Section 6: “[They] suggest
that the data sets considered tend to have slightly heavier tails than the normal,
but that a view of the world through Cauchy-colored glasses may be overly-
pessimistic”” and that “a small amount of trimming (no more than 109;) may be
the best way of dealing with them.” I hope this section of his paper will en-
courage others to prepare similar presentations of the characteristics of run-of-
the-mill real-life data that they encounter in various fields of science, and explicit
comparisons of the behavior of selected estimators, as I have done, to guide us
all making wise choices between traditional and new-fangled estimators.

Davip C. HOAGLIN
Harvard University

Professor Stigler has made a thought-provoking attack on the problems sur-
rounding two questions: “How should one compare estimators in terms of
robustness?” and “What is the connection between the situations used in simu-
lation studies and situations faced in the real world?” Still, in both of these
areas it seems to me that serious questions remain.

First, when a data set involves a shift or a bias, it is not at all clear whether
that bias should be charged against the performance of any estimator. To do so
implies that the estimator should be able to see beyond the data to the “true”
value of the physical quantity, or equivalently the estimator must introduce a
bias of its own to compensate for the bias in the data. Using only data on a
physical quantity which is now accurately known and whose definition is un-
changed is intended to eliminate or reduce this difficulty, but allowing for novel
experimental apparatus opens the question all over again. Stigler discusses bias
at length in Section 5, but it would still be informative to see the results of some
tentative attempts to quantify and remove the biases. (Table 3 is a beginning.)
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Second, it may be desirable to base the relative-error performance measure
e,; on a more “‘robust” summary than s; (as in (4.2) and (4.1)). Ase,; is defined,
the constraint }}iL, e,; = 11 is forced, and a disastrous error by one estimator
on a particular data set will make the performance of the other estimators appear
more nearly similar. There may be evidence of this in Data Sets 4 and 9 (see
Table 9). Of course, it is possible to object that the need to robustize s; has not
been demonstrated, but the situation is not the same as in the data sets on which
the study is based. The 11 estimators deliberately represent considerable variety,
and the outmean (as mentioned in Section 3) is essentially a planned outlier.

Third, the data used for this study is certainly real, but one must still ask
whether these data sets are in any sense broadly representative of the sort of
behavior one might generally have expected at the times when the underlying
experiments were carried out, let alone at the present and in the immediate
future (for which the conclusions would likely have the greatest impact). The
three requirements in Section 2 clearly narrow the “real world” to the physical
sciences, and anyone planning to act on the conclusions must keep this restric-
tion firmly in mind. The scarcity of sets of real data which meet the three
requirements suggests that simulation studies are likely to continue as the primary
method of assessing robustness. It should be possible to build on the results of
the Princeton robustness study and simulate other aspects of real data besides
gross errors and longer-tailed contamination. Any such simulation study would
do well to emulate the careful documentation which Professor Stigler has pro-
vided for the real data and his treatment of it. Tables 4 through 8 reproduce
all the data, and.Table 9 makes it possible (with modest effort) to reconstruct
the 4, ; and try other performance measures or other analyses.

Finally, even if we set aside the question of how well these particular data
sets represent ‘“‘the real world,” the heavy weight given to only four or five data
sources is cause for concern. The 20 data sets are far from independent, with
the overlap of Data Sets 18, 19 and 20 (Table 8) as the most extreme example.
Even after warning the reader of this (in Section 3), Stigler analyzes the results
(in Tables 1 and 9) as if they were independent. There may have been no feasible
alternative, but it is difficult to know how the reader should adjust his inter-
pretations of results and conclusions to allow for the lack of independence.

On balance, the emphasis on closer contact with real data is welcome, and
more efforts to bridge the gaps betweén all kinds of real data and simulation
studies are needed.

RoBERT V. HoGG
University of Iowa

Not only would I like to congratulate the author for such an interesting article,
but also the editor for the decision to publish it because it is quite different from
most of the articles appearing in the Annals of Statistics. But such a decision
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seems consistent with the intent of the recent officers and council of IMS to
broaden the statistical coverage of the Institute.

As Stigler so carefully points out, Andrews, Tukey, and Hogg suggested their
statistics before they were informed of the nature of the study. It seems that
each of us had on his “Cauchy-colored” glasses and tried too hard to protect
against outliers. As most of the data that Stigler examined was more like that
arising from distributions which are close to the normal, such protectio'n was
really not required. In only two samples, namely 9 and 23, was there an ad-
vantage in using the descending M-estimators suggested by Andrews and Tukey.
Note that in those samples the measures of skewness and kurtosis were (—2.82,
11.00) and (—4.49, 29.40), respectively; this, of course, illustrates that these
descending M-estimators can be extremely useful with data with heavy tails.

On first inspection, I thought that these results would discourage the use of
adaptive estimators in practical situations due to the rather poor performance
of 7,. But upon closer investigation (plotting dot diagrams, etc.), I came to
realize that adaptive estimators based upon a measure of skewness (possibly along
with a measure of kurtosis) were really better than ones based upon a measure
of kurtosis alone. While I have a more complicated statistic that illustrates this
point, for simplicity I suggest here the statistic

Tz = szs if I(ﬁl)%l < 1 s
=X, il 1B <2,
= Y-zs if 2 = I(‘Bl)%l .

Clearly, with these data, this is a better statistic than any of the other 11 statistics;
its relative error in small samples is 0.796 as compared to the 0.916 of the 109
trimmed mean.

I recognize that I have cheated in selecting this statistic T, because not only
do I now know the nature of the study but have actually seen the analysis.
Nevertheless, the huge improvement provided by T, does suggest that adaptive
estimators could be beneficial in the future.

In the last year, I have been extremely impressed with certain analyses of
other real data using Huber’s M-estimators or Andrews’ descending M-estimators
(or a combination of them, say, using Huber’s on the first iterations and Andrews’
on the last 2 or 3 iterations). These schemes, in regression situations, provide a
most useful way of spotting outliers, if they exist, because outliers will have
small or zero weights after several iterations. However, I also believe that if
the statistics of Huber and Andrews are good, then adaptive ones would be better.
For example, let the k of the Huber statistic decrease as measures of skewness
and kurtosis (not necessarily (8,)! and 8,) increase; that is, for illustration, use
Huber’s P20, P15 and P12, respectively, as those measures increase. Users of
the M-estimators actually seem to do this in practice anyway by changing the
values 1.5 and 2.1 of the respective statistics of Huber and Andrews to suit the
problems at hand; T am simply suggesting that we formalize that procedure.
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Finally, I have two other suggestions, neither of which will probably receive
much favor because statisticians are skeptical of placing too much weight on the
extreme values (although recall the outmean was extremely good in many of
these samples) or of using asymmetrical estimators. The first is, in cases of small
skewness and kurtosis, use an “out-Huber,” like that associated with

¢(#) = u — dmin [1.0, max (—1.0, u)], 0<d<1;
for example, if d = 1, then’

o) =u+10, u< —1.0,
=0, —-1.0=u<1.0,
=u—10, 1.0<u.

Of course, the corresponding M-estimators place more weight on the extreme
order statistics. The second is, in skewed situations, use an M-estimator asso-
ciated with an asymmetric ¢(x). For a simple example, if

py=—-1, u<O0,
=3, 0<u,

then the associated M-estimator would be the 75th percentile of the sample.
Seemingly, this would be highly desirable in many instances (including regression
situations), and I am surprised that more statisticians have not wanted to estimate
various percentile regression curves.

I have really enjoyed studying Stigler’s article; it’s one that challenges your
imagination. And since it contained real data, I did do some data analysis
(something that I never would have done with Monte Carlo values), and that
effort was most instructive. I am certain others will find the article as stimulating
as I did.

PETER J. HUBER
Swiss Federal Institute of Technology

This paper throws a very interesting sidelight on some issues of robust estima-
tion. At least for me, the results were not unexpected. Though, I would like
to interpret them in a slightly different way.

In my experience with real data, “good” samples from the physical sciences
seem to suggest trimming rates between 19, and 109, i.e., a trimmed mean
with a suitably adjusted trimming rate in this range should be an almost efficient
estimate [1, page 1057]. It is not surprising therefore that the 109, trimmed
mean performed well; possibly, a 59, trimmed mean might have been even better
on the average.

In my view the main purpose of robust procedures is to “prevent the worst,”
i.e., to prevent a catastrophe due to an occasional bad sample. Therefore, I
am not entirely happy with Stigler’s method of combining and interpreting the



ROBUST ESTIMATORS 1091

data: this should not be done in a robust way by combining ranks (4.5), and
even the average absolute error (4.3) may be too lenient with regard to occasional
poor performances of some estimators. One should also, and perhaps primarily,
put emphasis on performance in worst cases. To check this, I determined, in
each column of Table 9, the largest value of e,; and ranked the estimators accord-
ing to these values. Since the extremal value might be a freak, the ranking was
repeated also with the 2nd and 3rd largest ones. The results were as follows:

Estimators ranked according to largest absolute errors.

largest e,; 2nd largest e, 3rd largest e,
109, 1.02 109, 1.01 109, 1.01
P15 1.04 P15 1.04 P15 1.03
159 1.13 159 1.08 159, 1.06
AMT 1.16 AMT 1.11 Mean 1.09
Edgew. 1.18 Hogg 1.15 Edgew. 1.10
259, 1.20 Mean 1.15 AMT 1.11
Hogg 1.25 Edgew. 1.16 Hogg 1.12
Mean 1.34 259, 1.19 259% 1.14
Biweight 1.41 Biweight  1.29 Biweight  1.28
Median 1.77 Median 1.76 Median 1.50
Outmean 2.92 Outmean 1.81 Outmean 1.67

Of course, I was elated to find that the intersection of Stigler’s choice of
estimates and of the collection I had recommended in [1, page 1063f.], namely
the 109, and 159 trimmed mean and P15, carried gold, silver and bronze in
my analysis! (I swear this happened in the first attempt.)

It seems to me that Stigler’s samples contain fewer gross clerical errors (copying
errors, misclassifications, etc.) than average data sets, in particular fewer than
those one tends to meet in the life and social sciences. The worst real data I
have seen so far, a batch of some 50 ancient astronomical observations, contained
about 15 (or 309,) gross errors, but, of course, this set would not meet Stigler’s
stringent selection criteria [2].

The Princeton study may have given an unintended and undue prominence
to heavy, Cauchy-like tails and to matching estimators. It is good that this paper
helps to correct this bias, but I hope the pendulum will not swing too far: heavy-
tailed real data does exist also!

REFERENCES
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JouN W. PrRATT
Harvard University

Stigler’s paper [2] is certainly fascinating and provocative. I hope the reac-
tions provoked will include serious thought and discussion about the real purposes
of “robust estimation” and of studies of robustness. The emphasis in applications,
I believe, will be on parameters of comparison (differences, other contrasts, re-
gression slopes etc.), on complex situations with data scanty in relation to the
complexity, and on good efficiency for a mix of anticipated and unanticipated
possible error behaviors. The implications for these concerns of studies of re-
peated measurements of absolute physical constants and simulated simple random
samples from symmetric distributions are not at all immediate, though such
studies may be the best way to begin.

Two possible attitudes in these and other one-sample location problems are:
(a) A specific physical quantity is to be estimated, with no substitutes allowed.
(b) It doesn’t matter what an estimator estimates, as long as it is a location
parameter. The appropriate attitude varies with the real situation at hand, and
may lie anywhere between these, or elsewhere altogether. Stigler’s attitude here
is (a), which is appropriate for the situations he considers but not for choosing
“representative’” situations to study. Yet the way he introduces requirement (2)
in Section 2 implies that (a) is appropriate in almost all practical situations.

Most work in the field goes to the other extreme, at least implicitly. I would
argue that the spirit in which the “robust” estimators Stigler studies are put
forward and studied elsewhere is close to (b). In the absence of symmetry, they
are (consistent) estimators of different parameters (and mostly complicated ones).
It is rare that symmetry is guaranteed not merely under a null hypothesis (where
randomization sometimes guarantees it) but also under alternatives. Yet typical
robustness studies compare the estimators exclusively in terms of variability,
without concern for which location parameter they estimate, and are thus so
incomplete as to be almost meaningless except from a point of view near (b).
This includes the high-powered blockbuster [1]. (Incidentally, its results are
described on page 1 as “comprehensive, not exhaustive.” On page 226, Tukey
says that asymmetric situations are an important job for the future, but “we
were not able to agree, either between or within individuals, as to the criteria
to be used.”) 4

Even if a point of view close to (b) is usually appropriate, is it enough to look
at the variability of estimators? Unfortunately, other concerns may have com-
parable importance in most situations, when the problem is examined carefully.
Consider even the simple example of matched pairs, treatment and control.
(Similar comments would apply to more complex situations, regression and be-
yond, where we particularly hope for improved robustness in the future.) Typi-
cally, the treatment effect, if there is one, is different in different pairs, and the
treatment-control differences are not symmetrically distributed. The sensitivity
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of a “robust estimator of location” applied to these differences depends not only
on its variability but also on the size of the corresponding location parameter
for the particular asymmetric alternative at hand. The mean may be a more
variable statistic than the median, but the population mean may also be larger
than the population median. The latter aspect will even dominate some sensi-
tivity comparisons for large samples and a fixed alternative. Neither dominates
in the situation envisaged by Pitman’s asymptotic relative efficiency, which is
the product of two factors, the ratio of the asymptotic variances and the square
of the derivative of one location parameter with respect to the other for alterna-
tives approaching the null hypothesis.

Thus, when attitude (b) is appropriate, one can define away any bias, but a
related aspect of the problem remains. The bias in Stigler’s situations is the
counterpart and he is right to include it. Still, the effect of bias in his situations
may not be representative of the corresponding effects in more usual situations.
I will elaborate briefly on this and other limitations of his study, despite his
recognition of them and his Section 5.

The number of fully distinct experiments Stigler considers is small—5 by a
generous count. Thus the empirical comparisons are really based on a nonsample
of size 5. In at least 3, the measurements fall predominantly to one side of the
true value. In Data Sets 1-8 (1761 transit of Venus), which I count as one
experiment since they apparently have a large component of bias in common,
the true value is exceeded by only 40 out of 158 measurements and thus appears
to be near the upper quartile of the measurement distribution (between the 67th
and 81st percentile with confidence 95%, if the measurements are independently
identically distributed). In the experiments to measure the velocity of light,
which I count as three since they apparently have very different biases, the true
value is exceeded by & = 129, #5 = 959 and 1% = 749 of the measurements.
Even excluding the latter, and the fifth experiment (Cavendish), there are three
experiments, accounting for 20 of the 24 data sets, which are so lopsided that
any method of comparing the errors of estimators will inevitably reflect almost
exclusively their differing biases in these particular experiments.

Stigler’s use of absolute error emphasizes bias even more than squared error
would. If an estimator is inconsistent, then it falls on one side of the true value
with a probability which typically approaches 1 exponentially fast as n — co.
Hence, asymptotically, absolute error = absolute bias + an exponentially small
contribution due to variability. By contrast, mean-square-error = bias-squared -+
a contribution (the variance) of order 1/n due to variability. The contribution
due to variability approaches 0 in either case, but much faster for absolute error.
In Stigler’s examples, indeed, with two exceptions mentioned after (4.3), in each
data set, all estimates fall on the same side of the true value, whence e;;
0,; —0 )@.; — 8;), with algebraic error in place of absolute error.

In short, Stigler’s comparisons reflect bias almost exclusively (however much
or little they are diluted by it; cf. Section 5). He has a nonsample of only 5
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biases. At least 3 of these are so large that it is hard to view the problem as a
statistical one of robust estimation at all. Their effects may be quite different
from the corresponding effects in more usual situations.

Nevertheless, Stigler has moved bravely and strongly, from simulation to re-
ality, and beyond symmetry, which assumes away an important aspect of the
problem. It is easier to find fault, both with Stigler and with simulation under
symmetry, than to do better.

So much for what history can contribute to modern statistical thought. What
could modern statistics have contributed to the original scientists’ analyses? We
now have clear concepts of sampling variance and interval estimation, accom-
panied by highly developed methodology. Suspect values can now be handled
more systematically and with more understanding of the consequences. (Never-
theless, neither blind trimming nor sophisticated Huberizing should eliminate
investigation of their background or sensitivity analysis of their effects.) The
choice of sample size can now be analyzed more fully perhaps (completing a
frequentist analysis Bayesianly if necessary. Under mean squared error, the
value of reducing the variance is the same whether the bias is large or small,
so another criterion might be preferred.) In hindsight, Short’s standard error
of the mean (s/nt) is only 289, of the absolute bias, Newcomb’s 209;, Michelson’s
7% (in Table 6) and Cavendish’s 60-1239, for the three versions of the data
Stigler gives (Data Sets 18-20). The smallness of these percentages does not in
itself suggest bad judgment beforehand about sample size. It does point again
to the central difficulty: how best to make inferences in the face of significant
uncertainty about both the shape and the bias of the distribution sampled from.
Estimators differ in both bias and variability. The bias of a particular estimator
can be encompassed formally in inference (Bayesianly), but we are not yet ready
practically to choose a best estimator or to analyze several simultaneously.
Neither robustness nor Bayesianism provides a magic cure. If we could consider
all estimators the same as far as bias is concerned, then minimizing variability
would be the whole game after all. It is unreasonable to do so, however:
Bayesianly, if the mean squared bias of three linearly dependent estimators is
the same (e.g., mean, outmean, and 259, trimmed mean), then the bias must
be known. Modern statistics still cannot meet all the challenges posed by these
data.
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Roy E. WELSCH
Massachussetts Institute of Technology

Professor Stigler has made an important contribution to statistics by focusing
attention on the need to evaluate new statistical procedures on both real and
synthetic data. We can now hope that others will help to develop a larger col-
lection of real data (including multivariate examples) that satisfy Stigler’s condi-
tions (page 1057).

Certainly the data in this paper give more support to the arguments that, in
practice, the assumption of a Gaussian error distribution is suspect, and that we
should not slavishly adhere to the conclusions derived from such an assumption.

However, having opened the door to a real world that is non-Gaussian, how
are we to proceed? Stigler states his point of view on page 1070:

“The data sets examined do exhibit a slight tendency
toward more extreme values than one would expect from
normal samples, but a very small amount of trimming seems
to be the best way to deal with this.”

The imp_licit, if not explicit, assumption here is that the goal of research on
robust methods is to find an estimator to replace the mean. Stigler finds that
his sets of real data are somewhat non-Gaussian, so he suggests replacing the
mean with the 1094 trimmed mean (or perhaps the Huber P15 which has a better
breakdown bound [3]).

I do not feel that our goal should be to replace the mean (least-squares) with
some new estimate. Rather, I feel that the theory of robust estimation is a way
to provide a coherent family of logical alternatives to least-squares.

These alternatives should be used to diagnose the sensitivity (stability) of our
results to moderate (extreme in some of the cases studied in [1]) departures from
our assumptions (such as the Gaussian error model). It will still be up to the
statistician to decide which alternatives represent good analyses of the data.
(Relles and Rogers [7] have conducted an interesting experiment in this regard.)
The emphasis here is on analysis—to replace the mean by a trimmed mean and
proceed blindly as we often have with least-squares is to turn us again into data
processors rather than data analysts [8].

It is revealing to take a closer look at one type of robust estimate—the M-
estimates. If we start with j (often other starts are used but the ideas are similar),
then an M-estimator examines y, — y, compares this to some measure of the
spread of {y; — }7_, and decides how much weight should be given to the ith
data point in the final estimate (or next iteration). If |y, — y| is very large, it
may be given no weight at all.

Now in the location case with least-squares start we have

}’i—)-”"}—)_)—’(i):ﬁ—‘ém

where (i) denotes the fact that the ith data point has been removed from the
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computation. While robust estimation has emphasized the residual, y, — 7, I
prefer to emphasize the change in the least-squares estimate of 8, § — f§,;,, caused
by deleting a data point. Deletion is clearly a type of perturbation of one of
the inputs to a statistical analysis, and our hope might be that small changes in
input (in this case the data) should lead to small changes in output (in this case
the coefficient estimates). This viewpoint is especially useful in regression where,
as a number of researchers have discovered [2, 4,5, 6], looking at just the re-
siduals, y; — p, is much less useful than examining various functions of § — §,;,
and the projection matrix, X(X7X)"1X7.

A famlly of robust procedures gives us a quick way to scan the output changes,
B — B, and compute new estimates by downweighting some of the data. If
the robust estimate differs markedly from least-squares (or whatever the con-
ventional wisdom is), we should find out why—a detailed analysis of the § — §,,,
may be called for and no current robust procedure can be used to automatically
replace such an analysis.

Now that our eyes have been opened to robust, diagnostic, and other alter-
native procedures, we cannot allow them to be blinded by looking only at a
109 trimmed mean or any other single estimation procedure.
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REPLY TO DISCUSSANTS

I am grateful to the discussants for their thoughtful and stimulating comments.
I agree with much of what has been said, and since the main points of difference
have already been addressed in the paper itself, I shall aim for brevity here.

The comments of Professors Barnard, Box, Cox, Hogg, and Welsch really
require no reply, as we are in nearly total agreement! The advancement of
statistical methods to the present state has depended critically upon the interac-
tion of mathematics with real data, and we cannot but benefit if more attention
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is given to the characteristics of the real world than has been done in recent
decades. Barnard’s suggestion of a formal study of sample configurations seems
to be a good one. I wonder if a modest start might be made by asking the com-
piler of the computer at a large research center (such as Bell Labs, the National
Bureau of Standards or the University of Wisconsin) to spy on the data sets it
processes in standard statistical program packages, and to record sample sizes
and measures of skewness and kurtosis. Such data might be hard to interpret,
and some well-meaning civil liberties organization might protest the invasion
of the kurtosis’s privacy, but at least it would be a start. On the other hand,
more studies in the present vein will also be beneficial, and, for example, allow
us to judge if the performance of Hogg’s T, is only an artifact of post data selec-
tion, or if his term “out-Huber” will find a home in the lexicon of statistics as
other than a slogan for recalcitrant partisans of nonrobust statistical methods.

One principal focus of the remaining discussants is the subject of bias, already
discussed at some length in Section 5 of the paper. Dr. Eisenhart, and Professors
Hoaglin and Pratt all have cogent comments on this topic. Of the three, I feel
that Pratt’s views come closest to my own; his observations should be of great
assistance in helping careful readers appreciate the limitations as well as the
strengths of the present study. Ifrankly think Eisenhart may be a bit too sanguine
about the absence of large bias in modern data, a feeling that I think is implicit
in his dissatisfaction with my “true values.” He is correct (and the reference
he gives to Scientific American illustrates this nicely) that systematic errors have
decreased since 1906. But so have measurement errors, and I am not at all
convinced that relative bias is smaller now than in 1880. For example, a major
attempt to measure the velocity of light by Michelson, Pease and Pearson, com-
pleted in 1933 and reported on in 1935, made nearly 2900 determinations of the
velocity of light. Their systematic error was considerably less than that of early
attempts (see Scientific American), but the mean determination was still 1.7 stand-
ard deviations of a single determination below the “true value.” (These data
are reproduced in my reference [22].) On the other hand, I would recommend
the parenthetical remark at the end of Eisenhart’s penultimate paragraph to
those who, like Pratt, wonder if the biases found here could also be expected in
comparative experiments.

To further understand the effect of bias on performance, and to relieve the
drought of theorems in this paper, I offer the following result. Let d be an
estimator of # with symmetric distribution F((x — y)/s), where ¢ = 6 + Bis
the point of symmetry, B the bias, o a scale parameter. Let L(é — ) be the
loss function, and let r(a) = EL(0 — @) = EL(¢Z + B) be the risk function,
viewed as a function of ¢, where Z has distribution F.

THEOREM. If L is convex, then r(c) is a nondecreasing function of a > 0.

Proor. Consider r(¢) = EL(cZ + B) as a function of ¢ for all real ¢. The
convexity of L implies r(c) is convex, and the symmetry of F implies r(s) is an
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even function (r(—o) = EL(—0¢Z + B) = EL(6(—Z) + B) = r(s)), so r(s) is a
nondecreasing function on the positive half-line. []

The implication I would draw from this is that if two estimators have sym-
metric distributions that differ only by a scale parameter (as may be approximately
true, if we look at their asymptotic distributions) and they have the same bias,
then the bias will not reverse the order of preference. The better estimator for
zero bias will be better regardless of B, although the margin of preference may
change. It is easy to show that this result may fail for nonconvex L, such as
L(x) = I,z In fact, if L(—x) = L(x) is nondecreasing in |x| and f(x) = F'(x),
integration-by-parts gives

r'(o) = o (¢ [¢((w — B)[o) + ¢((w + B)/o)] dL(w),
with @(x) = xf(x), which if F is N(0, 1) will only be positive for all L(x) if
|B| < 0. Of course, if the original measurements have asymmetrical distribu-
tions, different estimators usually have different biases and the above theorem
is irrelevant, but this is a major point of my Section 5 and Pratt’s comments.

The second major focus of the comments of Professors Andrews, Hoaglin,
Huber and Dr. Crow is the question of whether these data adequately reflect
anticipated applications, for example, in the social sciences. I have little to add
to my previous comments on this, other than to reiterate that I would welcome
evidence on this point. Individuals’ recollections and the isolated examples they
produce can be highly selective, and I doubt that disasters and unprintable means
occur in potential applications for these procedures with anything approaching
the frequency they do in Andrews’ memory. I do welcome Crow’s reminder
that often a transformation is necessary before one should even contemplate
using one of these procedures.

While I prefer the measures of average performance I presented to the more
pessimistic measure Huber gives, I am heartened that the results are not much
different, with the notable exception of the outmean. In my comparisons the
unreliability of the outmean was only indicated by the large values of SE(i) and
SR(i). Andrews also criticizes the measure of relative error I have used, stating
that it “does not reflect useful information about absolute errors.” My view is
that if the analysis of estimators’ performances is to be meaningful, the absolute
errors are irrelevant. Even though Data Sets 9 and 10 were gathered under
superficially similar circumstances, it is clear that the actual circumstances may
have been quite different. What matters, I feel, is the use the estimators made
of the information at hand, and that this can only be judged by measuring errors
on scales relative to the individual data sets. Those who, like Andrews, might
prefer an index that does not weight Data Set 9 equally with the more biased
set 10, may be more comfortable with indices such as Huber’s.

The open-mindedness displayed, and the variety of interpretations and pro-
posals for new work made by my distinguished discussants are most reassuring
for the future of work on robust estimation.



