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GENERAL DISTRIBUTION THEORY OF THE CONCOMITANTS
OF ORDER STATISTICS'

By S. S. Yanc
Massachusetts Institute of Technology

Let (X:, Yi) (i = 1,2, -+, n) be n independent rv’s from some bivariate
distribution. If X,., denotes the rth ordered X-variate, then the Y-variate
Yir:n] paired with X,., is termed the concomitant of the rth order statis-
tics. The exact and asymptotic distribution theory of Y(,:] and of its rank
are studied. The results obtained are applied to a prediction problem in a
Round Robin tournament.

1. Introduction. Let (X,,Y,) (i =1, 2, ---, n) be nindependent random vari-
ables from some bivariate distribution. If we arrange the X-variates in ascend-
ing order as

le = sz £--- = X%:n’

then the Y-variates paired with these order statistics are denoted by
Y[l:'n]’ Y[Z:n]’ MR Y['n,:'rb] ’

and termed the concomitants of the order statistics. These concomitants are of
interest in selection and prediction problems based on the ranks of the X’s. For
example, when k (< n) individuals having the highest X-scores are selected, we
may wish to know the behavior of the corresponding Y-scores.

Under the assumption that X, and Y, are linearly related apart from an inde-
pendent error term, the small-sample theory of concomitants has been studied
extensively by O’Connell (1974). The asymptotic distribution theory of the
concomitants, in the case when the paired variates (X,, Y;) have a bivariate
normal distribution, has been investigated by David and Galambos (1974). Their
results depend heavily on the assumption of linearity between X, and Y,. In
this paper, the general distribution theory of the concomitants and of their ranks
is studied when the (X;, Y,) are from an arbitrary absolutely continuous bivariate
distribution. The results obtained are applied to a prediction problem in a
Round Robin tournament.

2. Distribution of the concomitants. For convenience, the following notation
concerning the distributions of random variables will be adopted throughout
this paper.

Fy(w)—cdf of a random variable W .

Jfw(w)—pdf of a random variable W .
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f(y| x)—conditional pdf of Y, given X, =x.
Sepeeorgen(X1 + - -5 x,)—joint pdf of the k ordered X-variates X,
X, .., X (k=1) with 1<rn<rn<..-<r<n.

T9in? Tin

Let (X,,Y;) (i=1,2, .-, n) be n independent random variables having a
common bivariate cdf F(x, y) and pdf f(x, y). It is also assumed that f(x, y) is
continuous although this assumption is needed only in proving the asymptotic
results in Sections 2 and 3. Since (X, Y)(i=1,2, ..., n)areindependent and
identically distributed random variables, the conditional pdf of Y, given

Xy = xis fy (y]X,., = x) = f(y|x). Hence
fX'r:wY[r:ln](x’ y) = f(y l x)frm(x) ’ ) a'nd
2.1 Frirm() = $20 (7 | X)f (%) dx -

More generally, for 1 <r, <r,< ... < r, < n, we have

(2-2) fy[ﬁ:%]"”’y[rk:n](yl’ ey yk)
= o_ooo Sikw oo s’iﬁw f:lﬂyi I xi)f"p“','l‘k:%(xl’ BIRIEIN x”) dxl e dxk .

Likewise we can also show that, for r < s,

(2:3) Fronttrm(6)) = V2a SV | Of s ialts X) dt .
By (2.2) and (2.3), we can easily show the following:

E(Yy,..) = E[E(Y,| X, = X,.,)];
(2.4)  Var(Yy,.,) = E[Var (Y,| X, = X,,,)] + Var [E(Y,|X, = X,.,)] ;
COV (Yiromps Vi) = COV[E(Y; | X, = X,.), E(Y, | X, = X,.)] (r # 9) 3
Cov (Xyps Yi,.01) = Cov [X,.,, E(Y, | X, = X,.,)] .
The asymptotic distribution of the concomitants can also be easily obtained.
For convenience, instead of working with variables X, ..., X, we shall work
with uniform variables F (X)), - -+, Fx(X,). Thus, without loss of generality,

at this point and throughout the next section, the X’s are assumed to be uni-
formly distributed on [0, 1].

THEOREM 2.1. Let 1 <1, <r, < --- <r, < n be sequences of integers such
that, asn— co, r,/n— 2, with0 < 2, < 1 (i=1,2, .-, k). Then

limn—m Pr (Y['rlm] é Yo o0 Y[rk:'n,] é yk) = Hi‘c:l Pr (Yi é szXi = li) .
Proof. Supposer,/n— 4, (i=1,2, ---,k)asn— co with0 < 2, < 1. Then

X, -, X, .,)’ converges in probability to (4, ---,4,)’ as n— oco. Since

ryimo C°
Y2 Pr(Y; £ y:|X; = x,) is a bounded continuous function of (x,, - - -, x,), it
follows from (2.2) that

lim,_, Pr (Y[rlm] =)o Y[rkm] s=y) =1 Pr (Y, Sy Xo=2) .

3. Distribution of the rank of the concomitants. Let R, denote the rank
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of Y,..;- Let
Ix)=1 if x=0,

=0 if x < 0.
Then
(3’1) R[rm] = ZZ‘=1 I(Y[rm] - 1,) .
The distribution of Ry,.,; and the expected value of Ry, are obtained by David,
O’Connell and Yang (1976). For completeness and easier reference, we shall
state the results here.
Pr (R[rm] = S)
=n 232 GEDC)G
(3'2) Y,;éY,,,X,;éX”,i=l,2,~--,k;
Y, <Y, X, >X,i=k+1,--,5—1;
Y,> YV, X, < Xpi=s 5= 14 —k—1);]
Y, >Y, X, >X,,i=s+@—k—1),---,n—1

X Pr

Note that (3.2) continues to hold if (X, Yl),) .+, (X,, Y,) form a set of exchange-
able pairs of random variables. This fact will be used in Section 4.
We shall obtain the asymptotic distribution of R, by first determining the
asymptotic moments of Ry,.,;/n. From (3.1), as in David and Galambos (1974),
Rf_cr:n] = [Z?:l I(Y[r:'n.] - Yz)]k
= Z* ](Y[r:n] - Yzl) e ](Y[rm] - Yik) + O(nk—l) ’
where 37* denotes the summation over all (i;, - - -, i,) with distinct components
and Y;, # Yy, forl=1, .-+, k. Therefore,

R \¥]_ 1
(3’3) E[(%) ] = ”76' Z* Pr (Yzl é [r:n]® Yi2 é Y[r:n]’ ] Yik é- Y[rm])

+o0 (i) .
n
Since (X, Y,) (i=1,2, - .-, n) are i.i.d. random vectors, we may write

SHFPr (Y £ Yy Yoy < Yioowr 05 Yoy S Vi)
= Do Dligtenig#l Pr(Y, =7, Y, =< Y .- Y, =Y,
rank (X)) = r)
—nn—1).. - (n—kPr(Y, <Y, Y, <Y, -, ¥, <Y,
(3.4) rank (X,) = 1)
=nn—1)---(n—kPr(Y, <Y, Y, <Y, .-, Y, <Y,
(r — DX/s < X,, (1 — NX/s > X,)
= 1) (=B T (P < X, Y, S Y,,
i=1,.-- X, >X,Y, < Y,i=1+ 1, .-, k;
and exactly r — 1 —1 of X, .-+, X, ; are < X,).
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Combining (3.3) and (3.4), we have
R .. \* —1.--(n—k+1
E[( ['n.'r]> :| _nn ) nk(” + 1) S o (8) §%0 {52 [F (x> )T

n
(3-3) X [Fy(y) — F(x N5 | %) dy}foorn-slx) dx
+o0 (i) .
n
Asn, r— oo withr/n— 2and 0 < 2 < 1, for anyfixedkand 0 < I <k, X, yns

converges in probability to 4. Clearly, for | < k the inner integral in (3.5) is a
bounded continuous function of x. Hence

. Ry \
i [ (557)
(3.6) = T () §2 [FQ )IF () — FG ) f(y1x = D dy
= 2 [F Iy | x = A) dy -
(3.6) leads immediately to the following theorem.

THEOREM 3.1. Let {r} be a sequence of integers such that, as n— oo, r/n— 2
with0 < 2 < 1. Then for 0 < a < 1,

(3.7) lim, ., Pr (R, < na) = Pr (Y < Fy7%(@)| X = 7).

PrOOF. Since the limit obtained in (3.6) is the kth moment of a random vari-
able F, (W), where W is the conditional random variable Y | X = 2, the bound-
ness of F,(W) implies that its moments uniquely determine its distribution.
Equation (3.7) now follows from (3.6).

Theorem 3.1 leads to the following theorem.

TueoreM 3.2. If {r} and {s} are two sequences of integers such that r[n and s[n
converge to 2, and 2, respectively as n — oo, with 0 < 2, < 2, < 1, then for 0 <
a < 1 and any choice i (1 £ i < n),

(3.8) lim, ., Pr (rank (Y;) < na|r < rank (X;) < 5)

= ! S Pr(Y S F@) X = 2)di
PROOF.
Pr (rank (Y;) < na|r < rank (X;) < 5)
3.9) = n+ i :_, Pr (rank (X;)=j) Pr (rank (Y;)<na | rank (X;)=))
s—r
n , 1
ey Ity Pr (Ry;.) < na) .
Now, if we let s/n — 2, and r/n — 2, as n — oo, then by (3.7), for large n,
(3.10) s Pr (Ryjm < 18) — ~ 5o, Pr (Y < F,Y(a)| X = L)_l. :
n n/ n
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Recognizing that the right-hand side of (3.10) is a Riemann sum to the integral
{3 Pr(Y < Fy,7Y(a)| X = 2)da,
and letting n — oo, (3.9) and (3.10) yield (3.8). This completes the proof.

4. Application to a prediction problem in a Round Robin tournament. Sup-
pose we have a Round Robin tournament among g teams, A4,, A,, - - -, A4, with
the tournament to be replicated n times. In each tournament, every team A,
(i=1,2, ..., q) plays every other team once, making a total of 1g(¢ — 1)n
matches. It is also assumed that ties are forbidden.

Let d;;, be a characteristic random variable corresponding to the outcome of
the match between A4; and 4; in the ath replication. ‘That is,

0450 =1 if A4,— A; Lji=1,2,--,q;i %7,
=0 if A4;— A4, Lji=1,2,---,q;i#£7],

where 4; — A; denotes 4, defeating 4,. We assume that there is no replication
effect, and that all ng(g — 1) matches are independent. The probability z,; of
A; defeating A; is Pr (9, = 1) = n,; and of 4, being defeated by A4; is
Pr(;;a = 0) = 1 — n;; = ;. The total scores a, of team A, after n replications
is given by a;, = }ir_,a,, = Xi%_, ;4:0;;.» Where a,, denotes the score of 4, in
the ath replication.

Suppose further that the g teams A4,, 4,, ---, 4 > are of similar caliber. We
are interested in the following problem: If after the first m (m < n) replications
of the tournament, team 4, has rank 7, then what is the probability that it will
have rank s after n replications? In other words, we wish to find, using obvious
notation,

ija

4.1 Pr (rank (}37_, a,,) = s|rank (3™, a,,) = 1)
forl1 <i,r,s<q.
Since the g teams are of similar caliber, z,; = { (i,j = 1,2, -+, g;i # ),

and for each a (@ = 1,2, - ), (@ @y -+ -, a,,) form a set of exchangeable
variates (cf. Trawinski and David (1963)). Further, clearly for fixed i (i = 1,
2,---,9)a, (e =1,2, ..., n)are n independent binomial B, ¢ — 1) variates,
E(a,) = §(q9 — 1), Var (a,,) = (¢ — 1), and the common correlation between
a;, and a;, (i # j)is —1)(¢ — 1). Letfori=1,2,...,¢,

U= 2o 2(a — 39 — 1)/(m(g — 1)},

Vi= Zlazms1 20, — 3(q — 1))/(m(q — 1))t.
Then, clearly, (U,, U,, - - -, U)and (V,, V,, ---, V,) are two independent sets of
exchangeable random variables. Also let
4.2) =U, + V;, i=1,2,...,9.
Then (4.1) can be written as

Pr (rank (T;) = s|rank (U,) = r) .
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By (3.2), and the exchangeability of (T}, U)), - - -, (T,, U,) we now have
Pr (rank (T) = s|rank (U)) = r) = g T4z (DCF)550) -

U,+VvV,sU0,+V, U, sU,i=1,..--,k;

U+V, 22U, +V,U>U,i=k+1,..-,5—1;

U+V,>U,+V,U <sU,i=s---s—1+4+@F—k—=1);
LWu+V,>U,+V,U,>U,i=s4+@r—k—1), ---,9—1

= q 235 (GDCNGIE) P (s, k) - (say) -

It follows from the independence of replications and the multivariate central
limit theorem that as m,n — oo and m/n - 2(0 < A < 1), (U, +-+, Uy, V,yy + -,
V,), converges in distribution to (X, ---, X/, Z/, - --, Z,/)’ which has a multi-
variate

(43) Pr

Sl -

2q 1 p*

L o* 1/
distribution, where p* = —1/(¢ — 1) and = = (1 — 2)/4. Furthermore, since
the X, are equicorrelated normal variates, X,/ may be generated as follows (e.g.,
Gupta (1963)):

Xi':(—P*)*Xo+(l —p*)iXi’ i=12, RN

where X, X,, - -+, X, arei.i.d. N(0, 1) variates, X, is also N(0, 1), and E(X; X;) =
—(—p*)t/(1 — p*)t. Likewise, Z/ may be written as follows:

Z! = t((—p*NZ, + (1 — P*RZ;) , i=12..-,¢9.
Hence as m, n — oo with m/n — 2 (0 < 4 < 1), we have
Y, SY, X, S X,i=1, -, k;
Y. SY, X, >X,i=k+1,..-,5—1;
Y, >Y, X, < X,i=5 --,5s— 14+ —k—1);
Y, >Y, X, >X,i=s+(r—k—1),..-,9—1

lim, ,,_.. P,*(s, k) = Pr

7, Mm—>00

where Y, = X, + t*Z,. Clearly, the (X;, Y,) are independent and have a bivari-
ate normal distribution with correlation 2¢. Hence the limiting values of (4.1)
as m, n — oo with m/n — 2 (0 < 2 < 1) is given by (3.2) with n = g and F(x, y),
f(x, y) being respectively the cdf and pdf of bivariate normal variates (X;, ;).
Therefore, Tables 1 and 2 constructed in David, O’Connell and Yang (1976)
can be used here. For example, for 2 = 0.5 and ¢ = 9, from the column for
p = 0.7 of Table 1, we have, for sufficiently large m and n with m/n = 0.5,

Pr (rank (37, a;,) = 9|rank (3™, a;,) = 9) ~ 0.4404 .
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The case when one of the team is superior and the others continue to be equal
is also considered. Supposed team A, is the superior team, then

T,=1 (>3%) j=12--,9-1,
Ty =% j=1,2, g —1ii%].

L)

In this case, only the problem of predicting the rank of the superior team A4, is
studied. The development is similar to that of the null case considered above.
Interested readers are referred to Yang (1976). However, for illustration, the
approximate values of P, = Pr (rank (};%_, a,,) = q|rank (};r_, a,,) = q) for
g = 3(2)9, n =10, m/n = 0.5 and = = 0.5(0.05)0.8 are included here. The
following are the computed P, values: *

0.5 0.55 0.60 0.65 0.70 0.75 0.80

0.644 0.760 0.854 0.923 0.967 0.989 0.997

0.539 0.710 0.847 0.935 0.980 0.996 0.999

0.483 0.694 0.858 0.952 0.989 0.998 0.999
0.446 0.690 0.873 '0.966 0.995 0.999 0.999

T~ Tia T A IR\

It is interesting to note that P, is a decreasing function of g for = = 0.5, 0.55
and increasing function of ¢ for = = 0.65(0.05)0.8.

Acknowledgment. The author wishes to thank Professor Herbert A. David for
bringing this area of research to his attention and for many valuable suggestions.
Thanks are also due to the referee for many helpful comments.

REFERENCES

[1] Davip, H. A. and GaLAMBoOs, J. (1974). The asymptotic theory of concomitants of order
statistics. J. Appl. Probability 11 762-770.

[2] Davip, H. A., O’CoNNELL, M. J. and YANG, S. S. (1977). Distribution and expected value
of the rank of a concomitant of an order statistics. Ann. Math. Statist. 5 216-223.

[3] Gurta, S. S. (1963). Probability integrals of multivariate normal and multivariate z. Ann.
Math. Statist. 34 792-828.

[4] O’ConNNELL, M. J. (1974). Theory and applications of concomitants of order statistics. Ph.
D. dissertation, Iowa State Univ., Microfilm No. 75-10496.

[5] Trawinski, B. J. and Davip, H. A. (1963). Selection of the best treatment in a paired-
comparison experiment. Ann. Math. Statist. 34 75-91.

[6] YANG, S. S. (1976). Concomitants of order statistics. Ph. D. dissertation, Iowa State Univ.

DEPARTMENT OF MATHEMATICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139



