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SECOND ORDER APPROXIMATIONS FOR SEQUENTIAL
POINT AND INTERVAL ESTIMATION!

BY MicHAEL WOODROOFE
The University of Michigan

Several stopping times which arise from problems of sequential esti-
mation may be written in the form ¢, = inf {n = m: S, < en2L(n)} where
Su, n 2 1, are the partial sums of i.i.d. positive random variables, o > 1,
L(n) is a convergent sequence, and c is a positive parameter which is often
allowed to approach zero. In this paper we find the asymptotic distri-
bution of the excess R, = ct,* — S, as ¢ — 0 and use it to obtain sharp
estimates for E{t;}. We then apply our results to obtain second order
approximations to the expected sample size and risk of some sequential
procedures for estimation.

1. Introduction. Several stopping times which arise from problems in se-
quential point and interval estimation may be written in the form

(1.1) " t,=inf{n > m:S, < cn°L(n)},

where S,, n > 1, are the partial sums of i.i.d. positive random variables X,
Xy ++oy L(n) is a convergent sequence, « > 1, m > 1, and c is a positive pa-
rameter (which is often allowed to approach zero). In particular, the stopping
times for the sequential procedures proposed by Robbins (1959), Chow and
Robbins (1965), Starr (1966a, 1966b), Starr and Woodroofe (1972), and Ghosh
et al. (1976) are all of this form.

The analyses of these and related sequential procedures often use the inequality

c(t, — 1)°L@, — 1) £ S, < ct,*L(t,) »

which is valid on 7, > m, to estimate the risk function and/or expected sample
size (see, in particular, [10], [14] and [15]). In this paper we will find the
asymptotic distribution of the difference

(1.2) R, =ct L(t) — S,

as ¢ — 0, under some modest conditions on L and the distribution of X;. This
asymptotic distribution is then used to refine some of the approximations
mentioned above.

In Section 2 we find and study the asymptotic distribution of R, and use it
to compute E{t,} up to terms which are o(1) as ¢ — 0. In Sections 3 and 4 we
apply the results of Section 2 to some specific problems in sequential point
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and interval estimation. Here is one of the applications. Let Y,,Y,, --. be
independent normally distributed random variables with unknown mean ¢ and
unknown variance ¢>. We suppose that we may observe as many of Y., Y,, - -
as we please,Athat at some time we must stop observing the process and rePort
an estimate # of ¢, and that if we stop at time n and report the estimate § we
incur the loss L, = A(é — 0)* + n. If ¢® were known, it would be optimal
(best invariant) to take n, = 0 A observations and to estimate # by Y., in which
case our expected loss is E{L, } = 2n,. For the case of unknown ¢’, Robbins
(1959) proposed the following sequential procedure: let

N=inf{n =z m:n > 6,44},

where m > 2 and ¢,’ denotes the unbiased sample variance, take N observations
and estimate 6 by ¥,. We show that if m > 4, then

(1.3) E[N}=ny+ 067 — § 4 o(1) and E{L,} = 2n, + % + o(1)
as A — oo, where v is a constant whose computation is discussed in Section 2.
The terms of order n, in (1.3) were known, as was the fact that E{N — n)} and

E{L,} — 2n, are bounded. However, the evaluation of the O(1) terms is (to the
best of our knowledge) new. :

2. Preliminaries. In this section X}, X,, - - - will denote i.i.d. positive random
variables. We suppose that the mean ;1 = E{X,} and the variance > = E{X?} —
¢* are both finite and positive. We suppose also that X, has a density f which
is continuous a.e. and that some power of the characteristic function of X, is
integrable. Finally, we suppose that L is a positive continuous function on
[0, o) for which

2.1 L(x) =14 Lyx* 4 o(x7Y)
as x — oo, where —oo < L, < oo. These are standing assumptions.
Let § = 1/(« — 1) and 2 = pfc~#; it is known that 2~'%, — 1 w.p. 1 and that
Stk =2t — 2}

is asymptotically normal with mean 0 and variance g*z’u~* as ¢ — 0 (see, for
example, [2]). Our second order approximations require this result and the
asymptotic distribution of R,. In fact, we give the asymptotic joint distribution
of R, and ¢ *.

THEOREM 2.1. R, and t * are asymptotically independent as ¢ — 0. The asymp-
totic distribution of t,* is normal with mean 0 and variance *z*p=*; and the asymp-
totic distribution H of R, has density h = H', where

(2-2) h(y) = Bp~'P{S; < japr — y, forall j = 1}, y>0.

The proof of Theorem 2.1 is similar to that of Theorem 4.3 of [18]. Alterna-
tively, the asymptotic distribution of R, may be deduced from Theorem 1 of
Lai and Siegmund (1975). We omit the details.
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It is possible to derive a useful expression for the characteristic function A of
H. Let X/ = X, — ay and let F, and ¢, denote the distribution function and
characteristic function of X/, respectively. Also let S,’ = X + .- + X,/,

n>1, and
M = max{S, : k = 1}.

We use a result of Spitzer (1960) which asserts that the characteristic function
of M+ = max {M, 0} is

w(t) = exp{Dr_ 07t 7 (e — 1) dF **(x)}, teR,
where * denotes convolution. (See also Feller (1966), page 576.)

THEOREM 2.2. The characteristic function and mean of H are given by

(2.3) A1) = (L) 190 — 1w £ 0
1t
(2.4) v = Eﬁ_ [(@ — 1 + o] — ¥, n—E(S, — nag)*}.
y7 ,

Proor. Let G denote the distribution function of M- = max {—M, 0}. Then
h(y) = Bu~[1 — G(y)] for y > 0, so that

HA(t) = <l_ﬁ?) Ef{et™ — 1}, t+0,

by an integration by parts. Since M = X, 4 M,*, where M, is independent of
X, and has the same distribution as M, we find
Efe'™ — 1) = E[e™ — e~} = [g,(—1) — 1w(—1).
This establishes (2.3), and (2.4) then follows by differentiation.
ExampLE. If X, has the gamma distribution, say
f(x) = T'(a)~b°x*—teb=, x>0,

where @ > 0 and b > 0, then it is possible to relate v to the incomplete gamma

function
G(a; x) = {gy*tevdy, x>0.

Let us write v (a, b) for vin (2.4). Then v,(a, b) = b~'y,(a, 1). Moreover, when
b=1, g =a, r* = a, and

E{(S, — nap)*} = I'(na)~Y{(naa)**e-"** — na(a — 1)G(na; naa)} .

TABLE 2.1
Values of ve(a, 1)
ala 2.0 2.5 3.0 4.0
.5 .410 .520 .634 .864
1.0 .147 .963 1.187 1.647

2.9 1.343 1.777 2.229 3.163
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Thus, v,(a, 1) may be computed to any desired degree of accuracy from tables
of the incomplete gamma function. We include some typical values.

We will now develop an asymptotic expression for Eft,}. We need some
auxiliary results on uniform integrability.

LemMa 2.1. If E{X"} < oo, where r = 2, then (2-'t,)"*~V and R, are domi-
nated.

ProoF. On {t,>m}, we have ct,*~' < Be(t,— 1)*~'L(t,— 1) < Bsup {n~'S,: n>1}
for all ¢ > O for some constant B. The first assertion now follows from the fact
that n=1S,, is a backward martingale and the maximal inequality (Doob (1953),
pages 317-318). The second assertion then follows from R, < ct,*L(t,) —
c(t, — 1)*L(t, — 1) < Bet,*~* on {t, > m} for some (possibly new) constant B and
all ¢ > 0.

LEMMA 2.2. Suppose that E{X,"} < oo, where r = 2. Then for y = 2,
Plt, > dy) <y o(1o¥),
where o(2~¥") is uniform in y.

Proor. Let k be the greatest integer in dy. Then ¢, > 1y implies that S, —
kp = ck*L(k) — kp. It is easily seen that ck*L(k) — kp = Lkp[y*—* — 1] for
¥ = 2 and c sufficiently small. Thus, letting S,* = (S, — ky)/ck?, we have

e

Plt, > 2y} £ P{S,* = jpr—ki[y=—* — 1]} < B(kt - y*Y)~" § 4, S P,

where A, denotes the event that |S,*| > Lur~%?#[2*-! — 1]. The lemma now
follows from the uniform integrability of |S,*|, which may be deduced from
Theorem 2 of [17].

Let F denote the distribution function of X;. In our next results we will
impose the condition

(2.5) F(x) < Bx*, forall x>0,

for some B > 0 and a > 0. Of course, if (2.5) holds for all sufficiently small
x, then it holds for all x with a possibly new B but the same a.

LemMMA 2.3. Suppose that E{X,"} < oo, where r = 2, and that (2.5) holds. Then
for 0 < 49, y < 1, we have P{t, < 64} = O(c™*) + O(A~"""*) as ¢ — 0.

THEOREM 2.3. Suppose that E{X,"} < oo, where r = 2, and that (2.5) holds. If
(2.6) 0 < s <min{r, 12a — 1)r} and ma > 18s,
then [t *|° are uniformly integrable.

The proofs of Lemma 2.3 and Theorem 2.3 are technical. They will be given
in Section 5.

THEOREM 2.4. Suppose that (2.5) holds and that E{X,"} < oo for some r > 2.
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If rCa — 1) > 4 and ma > 3, then
Eft) = A+ fuv — pL, — pafept + o(1)
as ¢ — 0, where v is as in (2.4).
Proor. By Wald’s lemma and some simple algebra, we have
(2.7) prE{t)} = cE{t,"L(t,) — R} = cE{t,"} + pL, — v + o(1) .

Here we also use Theorem 2.2 and Lemma 2.1 to estimate E{R,} and Lemma
2.1 to estimate E{ct,*~'}. Subtracting x4 from both sides of (2.7) and expanding
t,% in a Taylor series about 4%, we now find that

pEjt, — 2} = cE{t,* — 2} + pLo — v + o(1)
= apE{t, — 2} + ja(a — D)eE{2 (1, — 2"} + pLy — v + o(1),
where [, — 2| < |t, — 2. Let W = cp=a,5~%(t, — 2)* = (4,4-Y)*—% . Then W
converges in distribution to (8%*¢~%y,? and
Eft, — 2} = Bu~'v — BL, — aE(W} + o(l),

so it will suffice to show that lim E{W} = fr,n~%.

Suppose first that « > 2 and let 4 be the event that 7, < 24. Then
lim E{W1,} = p*z*p~* by Theorem 2.3, since 2,4-! is bounded on A4 and #,** is
uniformly integrable. Moreover, on A’ we have W < 2'-“¢,%, so that

SA’ W dpP é A S(tc>21) (Z_Itc)a ap 4

which tends to zero as ¢ — 0 by Lemma 2.2.
For the case & < 2, we show that (4, - 2-%)*-? is bounded. Let A be the event
that 7, > 4. Then (4, - A-})*~? < 4*-= on 4; and on 4',

0=1t"— 2 = al*Y(t, — 2) + ta(a — 1)A*7(t, — A)?
> —ad® 4 fa(a — 1)A,%72- 22,
or (4, - 271)** < 88. That lim E{W} = f%*u~? now follows from the uniform
integrability of ¢,*2.
3. Sequential point estimation.
3.1. The normal case. LetY,, Y,, --- be i.i.d. normally distributed random
p-vectors with unknown mean 6 € R? and unknown, nonsingular covariance

matrix X. We suppose that we may observe as many of Y, Y,, ... as we please
and that if we stop with Y, then we incur the loss

L, = AT, — 6] +n,

where denotes the Euclidean norm and A4 > 0. It is easily seen that
E{L,} = An='tr (£) 4+ n is minimized by letting n = n, = (4 tr (£))* in which
case E{L,} = 2n,. For the case of unknown X Robbins (1959) suggested the
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following sequential procedure. Let
(3.1 S, = ( ) Y (Y, — T)Y, — T, n=2,

and

n—1

N=inf{n = m:n> k,(Atr (Z,))},
where m > 2 is the initial sample size and k, — 1 as n — oo.
The random variable N may be written in the form 7, 4 1, where ¢, is as in
(1.1). To see this, let

(3.2) W= {N Y, — k), k=1,

(k(k + 1)t
so that W, W,, ... are independent random variables which are normally dis-
tributed with mean 0 and covariance matrix X, and observe that (n — 1)2, =
WWwWy + ... + W, W,_ forn=2. LetX, =|W,]?for k> 1. Then
(n — l)tr(Z,‘) =X+ -+ X,,=8,,, say.

Thus, letting ¢ = 1/4 and L(n) = (n + 1)¥r’k%,,, we find that N =1, + 1,
where t, = inf{n = m — 1: S, < cn®L(n)}. We observe that the distribution of
X, satisfies the standing assumptions of Section 2. It also satisfies (2.5) with
a = 4p. This is clear if p = 1. For the general case, let C be an orthogonal
matrix for which CXC’ is diagonal and let Z = CW,. Then X, = ||Z|]’ =
ZP+ - + Z2, sothat P{X, < x} < ]2, P{Z < x}. Relation (2.5) follows
easily.

In the following, denote the mean and variance of X, by

¢ = tr (Z) and 2 = 21tr (22) .

THEOREM 3.1. Suppose that k, =1 + An~' - o(n")as n—oco. If m > 1+
p~l, then

(3.3) E{N}=ny+ A + Lp~ — 3p~2* + o(1)
as A — oo, where v is as in (2.4). Moreover, if m > 1 4 2p~', then, as A — oo,
3.4) E{Ly} = 2n, + %p~** + 0(1) .

Proor. (3.3) is an immediate consequence of Theorem 2.4. Indeed, since X;
has moments of all orders, the relevant condition is Jp(m — 1) > g = 1, and
this is equivalent to m > 1 + p~%.

To establish (3.4) we use the fact that Nand N J.*(Y — 0) are independent (see
[13], page 1175). It follows that

E{Ly} = E{AN-'tr (£) + N} = 2n, + E{N-YN — n,)*} .
A simple application of Lemma 2.2 and Theorem 2.3 (with s = 2) then yields

lim E{N-Y(N — ny)’} = 7°/44* as A — oo, to complete the proof.
Equation (3.4) asserts that the asymptotic regret of the sequential procedure
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with respect to the optimal procedure for the case of known X is z%/44°. It is
interesting that this regret is always less than or equal to 4, and less than § for
pz2.

3.2. The gamma case. Now let Y, Y,, --- be i.i.d random variables with
common density

fuy) = T@ () y=rexp { =2}, y>0,

where ¢ > 0 is unknown and a > 0 is known. Again, we suppose that we may
observe as many of Y, Y,, --. as we please, and that if we stop with Y, then
we incur the loss L, = A|¥, — 6> + n, where 4 > 0. As above, it is easily
seen that E{L,} = A#*/an + nis minimized by letting n = n, = §(4a~?)} in which
case the resulting risk is E{L,} = 2n,. Of course, n, is unknown. Starr and
Woodroofe (1972) proposed the sequential procedure

N=inf{n=m:n> ¥, (4a)}.

It is easily seen that N is of the form 7, with X; = Y,/0,i = 1, ¢ = 1/ny, &« = 2,
and L = 1. The mean and variance of X; are ¢ = 1 and z* = 1/a, respectively.

Theorem 3.2, below, provides a partial answer to a question raised in [16],
pages 1152-1153. There a Monte Carlo study of E{N} and E{L,} was conducted
and a few negative values of R = E{L,} — 2n, were found. This raised the
possibility that E{L,} < 2n, for some values of n,. Theorem 3.2 shows that, in
fact, E{L,} > 2n, for all sufficiently large values of n,.

THEOREM 3.2. If ma > 1, then

(3.5) E{N} =ny+v—a'+o(1l)
as ny — oo, where v is as in (2.4). Moreover, if ma > 2, then as ny— oo,
(3.6) E{Ly} = 2ny + 3a7' + o(1) .

PrROOF. Again, (3.5) is an immediate consequence of Theorem 2.4. The
proof of (3.6), however, is more difficult than that of (3.4), since N and
(N(Yy — 0))} are no longer independent.

In the proof of (3.6) we will write ¢ for N, and we recall that ¢ is of the form

Letting S, = X, + --- + X,,, we find

A(Y, — 0)* = a(S, — 1)* + a[c~%~2 — 1](S, — 1)*.
By Theorem 1 of [4], E{(S, — t)’} = a'E{t}. Thus, E{L} = 2E{t} + E{v,},
where v, = a[c~%~* — 1](S, — £)’. Observe that
v, = a(l — NS, — 1)* + ac7*(1 — XS, — t)* = I + I, say.

t,.

c

We estimate 7 and II separately. By definition of ¢, we have ¢z — t = S, —
t + R,, so that

(I =) = (1 4 e)t7'(t — ct?)
=+ ey [(t = S,) — R] = —2¢(S, — t) + O,(c)
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as ¢ — 0. Thus, the asymptotic distribution of /I is that of 4aZ*, where Z
has the normal distribution with mean 0 and variance a-'. Moreover, it can
be shown that I7 is uniformly integrable (see below), and it follows that
lim E{II} = 12a~".

To estimate I, we write (1 — ¢*?) = 2¢(t — ct®) + (1 — ct)® and ¢t — ct? =
(t — S,) — R,. Thus,

I = —2ca(S, — t)* — 2ca(S, — t)’R, + a(S, — t))(1 —ct)) = —L, — I, + I,
say. The terms I, and /, may be estimated as above. The results are that

lim E{I,} = 2v and lim E{L,} = 3a~' as ¢ — 0. To estimate /;, we use Theorem
8 of [4], which asserts that

2caE{(S, — 1)’} = 4a~'cE{t} + 6¢E{t(S, — 1)}
= 6CE{t(S, — 1)} + 4a~* + o(1).
Finally,
ct(S, — t) = ct¥(ct — 1) — cIR,
=@t—cH+e—cHet—1)—caR, =1,+ L, — I,
say. E{I,} is given by (3.5) and E{l;} —v by Theorems 2.1 and 2.2 and

Lemma 2.1. The estimation of I, is similar to that of /1. The result is that
lim E{I,,} = 2a-'. Collecting terms, we find that

E{v,} = 5a=* — 2v + o(1),
from which (3.6) follows.
It remains to demonstrate the uniform integrability of the terms 77, I,, I,, and
I,. We give the details only for 77, since the treatment of the others is similar.

Let A be the event that 2t < n.. On A4, S, — t < ct* — t is negative, so that
(S, — 1)* < . It follows that

§. dP < ac—P{t < iny},

which tends to zero as ¢ — 0 by Lemma 2.3. On A4’, we have

II < 8a(ct® — 1)*(1 — c*?)® 4 8aR (1 — c?)?

< 8ac*(1 + ct)’t** + 8acR}*(1 + ct)t,** = II, + II,, say.

By Lemma 2.1, all powers of ¢t and R, are uniformly integrable; and by Theo-
rem 2.3, |t*|* is uniformly integrable for some s > 4. Thus, by Holder’s
inequality, E{/I,’} = O(c?) and E{II,"} = O(1) for some ¢ < 1. The uniform
integrability of I7 follows (see Loéve (1963), page 184).

4. Fixed width confidence intervals. Let Y,, Y,, - - - be independent random
variables which are normally distributed with unknown mean ¢ and variance
g > 0. We desire a confidence interval for ¢ of fixed width 2d, where d > 0.
Let 7 be the nominal confidence coefficient and z = ®~*((1 + 7)/2). If ¢® were

known, then we could simply take n > n, = z%*/d* observations and use I, =
(Y, —d, Y, + d). For the case of unknown ¢?, we consider the following
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sequential procedure: let z, — z as n — oo, let

4.1) N=inf{n =2 m:n > z,,/}/d*,

where m > 2 and é, is as in (3.1), and use I, = (Yy, — d, ¥y + d). As in
Section 3.1, it is easy to see that N =1¢, + 1, where t, = inf{n=>m — 1: S, <
cn’L(n)}. Here ¢ = 1/ny, L(n) = (n + 1)z*/nzi,,, and X, = W, ?/o® have the chi-
square distribution on one degree of freedom. Also as in Section 3.1, it can be
shown that

(4.2) P{6 € I,} = E{¢(z’n,'N)},
where ¢(x) = 2@(xt) — 1. Finally, it is easy to see that the distribution of N

depends only on n,, so that (4.2) depends only on n,.
It is known that P{f e I,} - r as n,— co. We now supplement this infor-

mation by proving

THEOREM 4.1. Suppose that m = 4 and that z, = z{1 + An~' 4 o(n"Y)} as n —
oco. Then

(4.3) E[N}=n,+ v+ 20 — 2 + 0o(1)
as ny— co. Moreover, if m = 7, then as ny— o
4.4) Pl el,} =1 + n{22P'(P)v + 28 — 2] + Z¢"(2%)} + o(n,Y) .

Proor. Equation (4.3) is an immediate consequence of Theorem 2.4. To
prove (4.4), we expand ¢ in a Taylor series about z2, and find

Ploe Iy} — r = n 2% () E{N — no} + $n,"'2E{J"" (W )n," (N — n,)?},
where |22 — W| < 2%n,~'N — 1|. Let Z = ¢"/(W)n," (N — n,)*. Then the asymp-
totic distribution of Z is 2¢”(z%)y,>. Let A be the event that 2N > n,; then

lim E{ZI,} = 2¢"'(z) by Theorem 2.3. Moreover, there is a constant B for
which ¢"(w) < Bw~# for all w > 0, so that

Vo ZdP < 23§, (N-'n)! dP

which tends to zero as ¢ — 0 by Lemma 2.3. The theorem follows.

As a corollary, we see that P{f ¢ I,} > r for all sufficiently large values of
n, if
(4.5) v+ 20 > 2 — 2(2))P(P) =2 + (1 + 2.

It is possible to phrase (4.4) in a different manner. Let N be defined by (4.1)
and consider the procedure which takes N 4 k observations where k is a fixed
positive integer. Simons (1968) showed that there exists an integer k for which
P{6el,,} > r for all n,. Our techniques will show that (if the hypotheses of
Theorem 4.1 are satisfied, then) P{f € I,,,} is given by the right side of (4.4),
but with the term 2A of (4.4) replaced by 2A + k. Inparticular, P{f € I,,,,} >
y for all sufficiently large values of n, if v + 2A 4 k exceeds the right side
of (4.5).
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If z, is the (1 + 7)th fractile of the z-distribution on n degrees of freedom,
then z, = z{1 + A,n~* 4 o(n~%)} with Ay = (1 + 2%)/4. Moreover, from Table
2.1 we find v = .82, so that v + 2A, < 2 + (1 + z?). Thus, for this choice
of z,, we have P{0 e I,} < r for all sufficiently large values of n,, However,
we have P{0 e I,,,} > r for all large n, if

(4.6) v+ k> 2.

It is interesting that the condition (4.6) does not involve 7.

Starr (1966a) evaluated some exact coverage probabilities for a related pro-
cedure which allows stopping only after an odd number of observations. His
computations indicate that (4.6) is not sufficient to make P{f € I,} > r for all
n,; but his computations were done with m < 5.

'5. Uniform integrability. In this section we prove Lemma 2.3 and Theorem
2.3. We use the standing assumptions of Section 2 without comment.

LemMA 5.1. Suppose that (2.5) holds. Then P{t, < A"} = O(c™*) as ¢ — 0 for
any y < 1. Here a is as in (2.5).

Proor. Let F, denote the distribution function of §,. Then (2.5) and a
simple induction yield

F(x) £ T + ka)='Bf . x*e, x>0,k=1,

where B, = BI'(1 + a) with a and B as in (2.5). It follows easily that P{t, =

k} < P{S, < ck*L(k)} = O(c**) for every k = 1. In particular, P{t, < n} =
O(c™) for every integer n. Now

(5.1) Pln<t, <A} £ Nackerr T(1 + ka)~'B[ck*L(k)]**
and by Stirling’s formula
(5.2) Il + ka)'Bkt < ((2rk)~')iBka— ke . k(a—Dke

Since the right side of (5.2) does not exceed B)*-c~* for n < k < A7 and n
sufficiently large with B, = 2B,a%"u", it follows that the right side of (5.1) is
of order ¢"**-7 as ¢ — 0. The lemma follows.

We will now prove Lemma 2.3, which asserts that if (2.5) holds and if
E{X"} < oo with r = 2, then P{t, < 64} = O(c™*) 4 O(2~"7%) as ¢ — 0 for all
0 <4, r< 1. By Lemma 5.1, it will suffice to show that P{A7 < 7, < 94} =
o) for all 0 < d, y < 1. For A7 < k < 04, we have ck*L(k) — kp <
kp{o—*L(k) — 1}, which is < —kpe for some ¢ > 0 for ¢ sufficiently small. It
follows that

P <1, < 04} < P{|X, — p| = ep, for some k = 27},

which is O(2~"7/%) by the martingale inequality.

We will now prove Theorem 2.3, which asserts that if E{X,"} < co with r =
2, if s < min{r, 1r(2a — 1)}, and if (2.5) holds with ma > Bs/2, then |¢*|° is
uniformly integrable. By Lemmas 2.2 and 2.3, it will suffice to show that there
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is a function J for which y*-%J(y) is integrable over (0, co) and P{|z,*| > y, 64 <
t, < 22} < J(y) for all sufficiently large y and sufficiently small ¢. Let

H() = supeay P {550 > 1, y>0.

Then it follows from Markov’s inequality that y*~'H(y) is integrable over (0, co).
We will also need the easily verified inequality

P{min,, S, — kp < —y} < BP{S, — npp < —y}, y>0,

where B! = inf,,, P{S, — kpu < O}.

Let a=f < 0 < 1, let A(x) = cx* — px for x > 0, and let n, be the greatest
integer in 2 — y(4):. Observe that 4 is convex and that #'(62) = p(«d*~! — 1) =
¢, say, is independent of c. Now ¢, > 64 and ,* < —y imply that §, — kp <
h(k) + ck*[L(k) — 1] for some k, 62 < k < n,. For c sufficiently small this
implies that S, — kp < h(n,) + 2p|L,| for some k < n,. Now

h(ny) = h(n) — k(2) < K (n)(n, — 2) = —yneth'(62) .

Thus,

Plt, = 03, 1, < —y} < BP[S,, — mopt < —eynit + 2ulLy}
< BH(sy — 24Ly))

for large y and small ¢. A similar argument will show that
Plt, < 22, 1% >y} < H[¥(« — Dy — 2p|Lo]]
for y > 1 and c sufficiently small to complete the proof.
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