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ON THEORY AND APPLICATIONS OF BIB DESIGNS
WITH REPEATED BLOCKS'

By W. Foopy AND A. HEDAYAT
University of Illinois at Chicago

Consider BIB designs with parameters v, b, r, k and 2. Define the sup-
port of a BIB design to be the set of its distinct blocks and let the cardinality
of the support be b*. If 4* < b then the design is said to be a BIB design
with repeated blocks. Some potential applications of such designs to ex-
perimental design and controlled sampling are given. Some necessary and
sufficient conditions for the existence of these designs and some algorithms
for their constructions are provided. Bounds on 5* have been obtained. A
necessary and sufficient condition under which a set of blocks can be the
support of a BIB design are found. A table of BIB designs with 22 < b* <
56 for v = 8 and k = 3 is included.

1. Introduction and summary. From the point of view of application, there
is no reason to exclude the possibility that a BIB design would contain repeated
blocks. Indeed, the statistical optimality of BIB designs is unaffected by the
presence of repeated blocks.

Following the standard notation we consider BIB designs with parameters
v, b, r, k and 2. We define the support of a BIB design to be the set of its dis-
tinct blocks and we denote the cardinality of the support by 6*. The question
of whether, for a given v, b and k, there exists a BIB design with repeated
blocks has interested researchers in the area of experimental design. As van
Lint (1973) has pointed out, many of the BIB designs constructed by Hanani
(1961) have repeated blocks. Parker (1963) and Seiden (1963) proved that there
is no BIB design with repeated blocks with parameters, v = 2x 42, b = 4x 4 2,
k = x + 1. Thecase x even was settled by Parker and x odd by Seiden. Stanton
and Sprott (1964) showed, among other results, that if s blocks of a BIB design
are identical, then b > sv — (s — 2). Mann (1969) sharpened this result and
showed that b > sv. Note that the result of Parker and Seiden follows immedi-
ately from either of the above inequalities. Ho and Mendelsohn (1974) gave a
generalization of the Mann inequality for t-design. More recently van Lint and
Ryser (1972) and van Lint (1973, 1974) systematically studied the problem of
the construction of BIB designs with repeated blocks. Their basic interest was
in constructing a BIB design with repeated blocks with parameters v, b, r, k, 4
such that b, r, and 2 are relatively prime.

Wynn (1975) constructed a BIB design withv = 8,5 = 56,k = 3and b* = 24
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and discussed an application of such designs in sampling. From the point of
view of applications it is desirable to have techniques for producing BIB designs
with various support sizes for a given v and k. We have studied the problem
of BIB designs with repeated blocks from the later point of view. In Section 3
we outline some potential applications of such designs. In Section 4 we prove
some necessary and sufficient conditions for the existence of these designs and
provide algorithms for their constructions. In particular, we show that the
combinatorial problem of searching for BIB designs with repeated blocks is
equivalent to the algebraic problem of finding solutions to a set of homogeneous
linear equations. Using this equivalence we have produced a table of designs
based on v = 8 and k = 3 with 22 < b* < 56. In Section 5 we give bounds
for the size of the support of BIB designs. In Section 6 we reformulate some
of our results in the terminology of linear programming. In Section 7 we
present some conditions under which a set of blocks can be the support of a
BIB design.

2. Definitions and notation. Let V' = {1, 2, ..., v} and let vZk be the set of
all distinct subsets of size k based on V. Denote the cardinality of vZk by vCk.
For convenience we shall order the elements of vZk lexicographically. A bal-
anced incomplete block design, d, with parameters v, b, r, k and 4, written BIB
(v, b, r, k, 2), is a collection of b elements of vZk, referred to as blocks, with
the properties that:

(i) each element of V occurs in exactly r blocks,
and
(ii) each pair of distinct elements of V" appears together in exactly 4 blocks.

We emphasize that this definition does not require that the blocks of a BIB
design be distinct elements of vXk. As discussed in Section 3, it may at times
be to the experimenter’s advantage to implement a BIB (v, b, r, k, 2) with less
than b distinct blocks. In this paper we investigate BIB designs from the point
of view of reducing the number of distinct blocks. To formalize this concept,
we introduce the following definition.

DEerINITION 2.1. The support of a BIB design, d, is the collection of distinct
blocks in d, denoted by d*. The number of elements in d* is denoted by b*
and called the support size of d.

We will denote a BIB (v, b, r, k, A) with support size b* by BIB (v, b, r, k, 1| b*).
Any incomplete block design may be specified by the number of times that
each element of vZk is repeated in that design. We write f; for the frequency
of the ith element of vZk in the design. Thus, we identify an incomplete block
design, d, with vZk and the frequency vector F; = (fu1, fusr ** 5 faoew)- 1t 18
clear that b = f;, + fuu + - -+ + fi,cr and that b* is the number of nonzero
entries in the vector F,. The BIB design, d, is said to be a uniform BIB design
if the nonzero components of F, are all identical. A BIB design with b = b* =
vCk is denoted by d(v, k) and referred to as the trivial BIB design based on v
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and k. A BIB design with b < vCk is said to be a reduced BIB design. In some
context we will not demand that a BIB design based on v and k contains a par-
ticular number of blocks. In those cases we will simply say that d is a BIB (v, k)
or a BIB (v, k| b*) if we wish to specify the support size.

3. Applications of BIB designs with repeated blocks.

A. In finite population sampling. A sampling design with k observations on a
population V¥ of size v is a probability measure on vZk. The support of a sam-
pling design is the set of elements vZk which have positive measure. A sampling
design is said to be uniform if the probability measure is uniform on the support
of the design. Denote by II, and II,; the sum of the probabilities associated
with those elements of the support of the sampling design which contain {i}
and {i, j}, respectively. A simple random sample, SRS (v, k), is a uniform
sampling design whose support is vZk. For the SRS (v, k), II, = k/v and
II;; = k(k — 1)jv(v — 1).

The usual linear unbiased estimator of the mean of a characteristic of the
population based on the SRS (v, k) is the sample mean, whose variance is
a*lk(1 — k/v), where ¢*is the variance of the population. A question of interest
is whether it is possible to construct other sampling designs whose sample means
are unbiased estimates of the population mean and also have variances ¢’/k(1 —
k/v). In particular, we might require that these other designs (1) be nonuni-
form; or (2) have supports whose cardinalities are smaller than vCk.

Such sampling designs have practical applications. For example, it may be
that some samples (i.e., some elements of vXk) may be more expensive or diffi-
cult to collect due to geographic dispersion or to some other factors. Asanother
example, we may wish to guarantee that the selected sample contains at least a
certain number of elements of some particular subsets of the population. In
either example we would like to have low or possibly zero probability of select-
ing the less preferred samples, and to have higher probability of selecting the
more preferred samples. For actual examples of applications of such sampling
designs, see, for example, Goodman and Kish (1950) and Avadhani and
Sukhatme (1973).

Chakrabarti (1963) discussed the use of reduced BIB designs to produce sam-
pling designs. Wynn (1975) noticed that to find a sampling design with reduced
support one can use nonreduced BIB designs with repeated blocks. If 4 is a BIB
(v, b, r, k, | b*), then we can associate with d a sampling design by assigning
to the Ith element of vZk probability measure f;/b. It is easy to check that II,
and IL;; for this design will be the same as for the SRS (v, k), and that the sam-
ple mean will be an unbiased estimator of the population mean and that the
variance will be the same as in SRS (v, k).

B. In design of experiments. It is well known that BIB designs are optimal
for a number of criteria under the usual homoscedastic linear additive model
for observations. This optimality holds whether or not the BIB designs contain
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repeated blocks. But in some cases it may well be to the experimenter’s advan-
tage to implement a BIB design with repeated blocks. For a variety of reasons
the experimenter may not wish to run certain treatment combinations. One
situation in which certain combinations of three or more treatments must be
avoided is when it is physically impossible to run those combinations in the same
block. In some other cases certain combinations of three or more treatments
may produce observations which no longer conform to the homoscedastic linear
additive model. If we are only interested in estimating treatment effects, we
should use a BIB design in which no block contains any combinations which
give rise to observations which violate the model.

Suppose the experimenter wishes to implement a BIB design, but he also wishes
to avoid certain treatment combinations. He can search among the nonisomor-
phic uniform BIB designs to see if there are any which do not contain those
combinations. If necessary, he can relabel his treatments. There are cases where
one cannot avoid a set of combinations using uniform BIB designs, but can do
so by using designs with repeated blocks. In fact, one must always search among
the BIB designs with repeated blocks when there does not exist a reduced BIB
design for the specified v and k.

4. Construction of BIB designs with reduced support. In this section we will
provide algorithms for the construction of BIB designs based on v and k with
support size less than vCk.

Label the elements of vX2 from 1 to vC2. Let p,; = 1 if the ith element of
vX2 is contained in the jth element of vZk, and let p,; = O otherwise. By the
pair inclusion vector associated with the jth element of vXk, we mean P; =

(P1j> Pai> * 5 Poca,g)' - Let
P = [Pppz’ ""Pka]'

LemMMA 4.1. The frequency vector F determines a BIB design if and only if
PF =11

where 1 is a positive integer.

The proof follows from the fact that };; f;p,; is the number of times the ith
pair appears in the design.

The problem of constructing BIB designs based on v, k and 4 is precisely the
problem of finding all nonnegative integer solutions, F, to the equation PF = 1.
We use this fact in many of the results which follow. This last result and several
others in this section and in Section 5 could be phrased in the language of
mathematical programming. We will briefly outline in Section 6 how this might
be done.

Given a set of frequency vectors of BIB designs based on v and k, it is natural
to inquire how these vectors might lead us to new BIB designs. We record here
for reference some facts of this nature. In what follows, we say of the vectors
F! = (i % -+, fi&), i = 1,2, that F, < F, if and only if f;® < f;® for
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all j and £, < f;® for some i. Let # be the set of frequency vectors of all
BIB designs based on v and k.

PROPOSITION 4.1. Suppose F, F, and F, are elements of 5 .

(i) If c is a positive integer, then cF is in & .

(i) If g is a common divisor of the entries of F, then g='F is in & .

(iii) F, + F,isin .

(iv) If F, < F,, then F, — F, isin F. _

Proor. (i) and (iii) are immediate from Lemma 4.1. (ii) and (iv) also follow
from this lemma after observing that P(9g~*F) and P(F, — F,) are both vectors

of nonnegative integers. .
Note that (ii) and (iv) can be used to construct from BIB designs new designs

with smaller numbers of blocks, and that (iv) can be used to reduce support
size. It follows from (ii) that if there is no BIB design with b < vCk, then there

is no uniform design with b* < vCk.

If d is a BIB (v, k), it is natural to ask whether the support, d*, of this design
properly contains the support of another design, d,. Theorem 4.1 below shows
that the combinatorial problem of searching for such a design is equivalent to
the algebraic problem of finding solutions to a set of homogeneous linear equa-
tions. If d is a BIB (v, k | b*), then we denote by P,. the matrix whose columns
are the pair inclusion vectors associated with the blocks of d*.

THEOREM 4.1. Givend, a BIB (v, b, r, k, 1| b*), there exists d,, a BIB (v, k)
such that d* properly contains d,* if and only if there exists a nonzero vector h such
that P,.h = 0.

Proor. Let F,. be the b* X 1 vector whose components consist of the non-
zero entries of F,. Thus

Pd*Fd*: PFd: 11 .
If P,. is not of full column rank, then there exists a nonzero vector 4, each of
whose entries are rational, such that P.A = 0. Let
‘ m = min {—fu/h;: h, < 0}
where f;., is the ith component of F,. Letg, = fou, + mh, i = 1,2, ..., b*.
Let ¢ be the smallest positive integer such that f,., = tg, is an integer for all
i=1, ..., b*. Define
Fdl* = (_fd*l’ . ""fd*b*) = I(Fd; + mh) .

We claim that F, . is the frequency vector of a new BIB design, d,, where Fai
is the frequency in d, of the ith block of the old design, d. To prove this claim,
first notice that f,.,, > 0, i =1, .-, b*. Further

Pd*Fdl* = tPF, + thd*h =l.

Since P, and Fdl* have only integer entries, ¢4 is an integer; thus, by Lemma
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4.1, Fdl, is the frequency vector of a BIB design. Also, there is at least one i
such that m = —f,,/h;, and for this i, fdi* = 0. Therefore, d* properly contains
d*.

Suppose now there exists d;, a BIB (v, by, r,, k, 4, | b,*) such that d* properly
contains d,*. Let f,., be the number of times that the ith block in d* occurs in
d,. Let

h; = Sori — 11/(izﬁm) > h = (hv cees by

Then P,.h = 0.

In the proof of the above theorem, we have actually provided an algorithm
for the construction of BIB designs. The designs listegl in Table 1 were obtained
by a computer program implementing this algorithm.

In the following three propositions we present some techniques for producing
BIB designs whose support is contained within a given design. These proposi-
tions may be thought of as special cases of Theorem 4.1.

PROPOSITION 4.2. Suppose d; is a BIB (v', b, r;, k, ;| b,*), i = 1, 2, based on
the same set of v' treatments, and suppose d,* N dy* = @. If v > ', then there
exists a BIB (v, b, r, k, 2| b*) with

d = e(vCk) and b* = vCk — b*,
where e = A,/gcd(4,, 4,).

ProoF (by construction). Take e copies of the trivial design, d(v, k). Add an
additional e, = 4,/gcd(4,, 4,) copies of d, and remove all e copies of d;. We have
removed el, copies of each pair occurring in d;, and increased the number of
times each pair in d, occurs by e,4,. But d, and d, contain precisely the same
pairs, and

8122 = lez/gcd(ll, Zz) = eZl .

That the values of b and b* are as claimed is clear from the construction.

ExAMPLE 4.1. Letv =8 and k = 3 and v’ = 7. Let

124 561 356 723

g: 235 62 g g 467 134
346 713 571 245
457 612

In this case 2, = 4, = 1 and e = ¢, = 1. Thus by replacing d, in d(8, 3) by an
additional copy of d,, we obtain a BIB (8, 56, 21, 3, 6]49).

COROLLARY 4.1. Suppose d, is a BIB (v', by, ry, k, A,| by), v < v. Then there
exists a BIB (v, b, r, k, | b*) with b* = vCk — b,.

Proor. Let d, be all of the blocks of d(v’, k) which are not contained in d,.
Then apply Proposition 4.2 to d, and d,.
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ExaMPpLE 4.1 (continued). Let d, be the set of all blocks based on v’ = 7 and
k = 3 which are not contained in d; = d,. We can then apply Proposition 4.2
to d, and d,.

A BIB is still obtained if, in Proposition 4.2, d,* n d,* = @; but the support
size will not be reduced to the same extent, as the following proposition shows.

ProrosiTION 4.3. Suppose d; is a BIB (v, b;, r,, k, 2,|1b,*), i =5, 6, based on
the same set of v' < v treatments. If |d;* N dg*| = t, then there exists a BIB (v,
b, r, k, 2| b*) with b* = vCk — (b,* — 1) and b = e(vCk) where e = A/gcd(Zs, 4)-

The proof is analogous to that of Proposition 4.2.

ExAMPLE 4.1 (continued). Let d, = d, and let

124 435 562
d, = 467 715
273 316

Here |d;* N dg*| = 1 and thus by adding one additional copy of 4, to d(8, 3) and
deleting one copy of d; we obtain a BIB (8, 56, 21, 3, 6|50). Note that the block
{1, 2, 4} appears only once in the new design.

One may generalize the method of Proposition 4.3 by allowing the BIB designs,
d, and d;, to be based on a smaller block size, k' < k, aslongasv — v’ = k — K'.
Let V” be the set of v’ treatments upon which d; and d; are based, and let V" =
V — V'. Fix some subset, 4, of k — k’ treatments from }”’. Then augment
each block of d; and d, by 4. Let 7/ and d; be these two sets of augmented
blocks. Then by a construction exactly like that in the proof of Proposition
4.2, we obtain a BIB (v, b, r, k, 2| b*) with b* = vCk — (b* — ), where ¢ =
|d* n dg*|. We could repeat this process for each distinct subset 4 of k — k’
treatments from V. Thus we have:

PROPOSITION 4.4. Suppose d; is a BIB (v', b,, 1, k', 2,|b,*), i = 5, 6, based on
the same set of v' < v treatments, with |d* N dg*| =t. If v — v = k — k', then
there exists a BIB (v, b, r, k, 2| b,*), where b,* =vCk —n(b*—t),n=1,2, ...,
v—0Chi» and b = e(vCk), e = Ag/gcd(4s, 45)-

EXAMPLE 4.1 (continued). Let v = 8, k = 4. We can augment d; and d; to
produce

8124 8561 8124 8715

,. 8235 8672, 8467 8316

© ' 8346 8713 °7 8273 8562
8457 8435

Note that 4 and d,’ are not BIB designs. Now by adding one additional copy
of d; to d(8, 4) and removing d,’, we obtain a BIB (8, 70, 35, 4, 15| 64).

In the above propositions, one set of blocks based on a BIB design was re-
placed by another. But, in fact, it is not necessary that these sets be based on
BIB designs.
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ExAMPLE 4.1 (continued).

d.: 156 235 d.: 135 256
i st .
134 246 146 234

Add one copy of d, to d(8, 3) and delete one copy of 4, to produce a BIB (8,
56, 21, 3, 6| 52).

5. Bounds on the support size of a BIB design. The literature of BIB designs
contains lower bounds on the total number of blocks in a BIB (u, b, r, k, 4).
One such result is the well-known Fisher’s inequality: & > v. In this section
some bounds on the number of distinct blocks in a BIB design are given.

Let b},, be the smallest support size for BIB designs based on a given v and k.
We bound 4%, in the following proposition. Here for each real number x, let
{x} denote the smallest integer greater than or equal to x.

PROPOSITION 5.1. For all BIB designs based on v and k,

{i{”“l}}gb:mgvcz.
k (k—1

Before proving this proposition, we introduce the following. For ¢ < k let
W,, be the vCt X vCk matrix whose rows are indexed by the elements of vXt
and whose columns are indexed by the elements of vZk. The entry at a given
row and column is 1 if the row index is a subset of the column index and O
otherwise. For example, the matrix P introduced at the beginning of Section 4
is W,.

LemMA 5.1. Ift <k andt + k < v then Wy, has full rank.
Proor. First, we claim that
(5.1) WuWi = iz Gt Wi W, .

The (m, n)-entry on the left-hand side of (5.1) is the inner product of the mth
and nth rows of W,; that is, it is the number of k-subsets containing simul-
taneously the mth and nth t-subset. This number will be (v — (2t — a))C(k —
(2t — a)) if the intersection of these two t-subsets contains « elements.

To compute the corresponding entry on the right-hand side of (5.1), notice
the (m, n)-entry of W}, W, is the number of i-subsets contained simultaneously
in the mth and nth ¢-subsets; that is aCi, since there are a elements in the inter-
section of these two r-subsets. So, the corresponding entry on the right-hand
side is

2ai=0 G Lattd)(§) -
That the expressions given for the entries on the two sides are equal is a well-
known combinatorial identity. Thus, the claim is proven.

Wi, W, is nonnegative definite fori = 0,1, ---,¢. Wheni=1¢ W W, =L
Thus, W, W, is positive definite. Therefore, W,, has full rank.
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Proor of ProrosiTioN 5.1. Let r(P) denote the rank of the matrix P and
suppose r(P) > bk;,; that is, suppose there exists d, a BIB design for v and k
with b* = bk, > r(P). Now since the number of columns of P,, is b* and since
r(Pg) < r(P), it follows that P,, is not full rank. Thus, by Theorem 4.1, there
exists d,, a BIB design for v and k such that b,* < b* = b¥,,, a contradiction.
Therefore bk;, < r(P). But r(P) = vC2, by Lemma 5.1.

To establish the lower bound, note that in a BIB design each pair of elements
of V appears at least once. Let n be the smallest number of blocks needed to
cover the vC2 pairs of V. Observe that in order to cover all pairs, each element
of ¥ must appear in at least {(v — 1)/(k — 1)} distinct blocks. So, the average
number of distinct blocks in which each element appears, nk/v, must be at least
{(v = D/(k — 1)}. Thus b}, = {(v/k){(v — 1)/(k — D}}.

REMARK. A result analogous to b%;, < vC2 in the context of sampling was
given by Wynn (1977). Also, the argument used to establish the lower bound
has been used by those investigating the problems of minimal covering. [See,
for example, Kalbfleisch and Stanton (1968).]

COROLLARY 5.1. b%,, = b/A.

Proor. In a BIB (v, b, 1, k, 2), (v/k) = (b/2)(v — 1)/(k — 1). So {(v/k){(v —
itk — 1)} 2 b/2.

ProrosiTION 5.2. Suppose a BIB (v, b, r, k, 2| b*) has frequency vector (f,, - - -,
focr)- Then

() b=zof,,i=1,..-,vCk; and

(il) b* =wvorb* = v + 2.

PRrOOF. (i) is a result of Mann (1969).

Let f = max{f;:i=1,...,vCk}. Then

[ = (0 f)lbx = bjb*.
Thus (ii) follows from (i) and Theorem 3.2 of van Lint and Ryser (1972).

6. Mathematical programming approach. Some of the results so far presented
can be rephrased in the language of mathematical programming. For each fixed
value of 1, Lemma 4.1 says that each feasible integer solution of the system
6.1) PF =11

F=0
corresponds to the frequency vector of a BIB (v, b, r, k, 4). The set of all ration-
al feasible solutions to this system corresponds to the set of frequency vectors of
BIB (v, k) designs, after appropriate scaling as in the proof of Theorem 4.1.

Now there is always at least one rational feasible solution to (6.1), namely
the solution corresponding to the frequency vector of d(v, k). Proposition 5.1
then follows from the well-known fact that whenever there is a feasible solution
to a system, then there is a basic feasible solution.
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All feasible solutions are convex combinations of the basic feasible solutions,
so the classification of all BIB (v, k) reduces to finding all basic feasible solutions,
to (6.1); that is, to finding all of the vertices of the polytope defined by (6.1).
When applying designs with repeated blocks in practice, we are not, of course,
interested in finding all solutions to (6.1). Rather, we seek a solution which
excludes, or at least minimizes the occurrence of certain blocks. We may find
such a design by introducing an objective function which assigns positive cost
to the blocks which we wish to avoid and zero cost to the other blocks. The
standard linear programming algorithms for minimizing this objective function
will then produce the desired design. If we are limited to a certain number of
blocks, as is generally the case in nonsampling situations, we then have the
integer programming problem of minimizing the objective function over the
feasible integer solutions to (6.1).

7. Characterization of the support of a BIB design. Given a set & of distinct
blocks from vZk, it would be desirable to know whether there exists a BIB design
with & as its support. This section contains several criteria for determining
whether & is the support of a BIB design.

For each pair, @, in vX2, let 4, be the number of blocks containing a. To
avoid trivialities we assume throughout this section that the 2, = 1 for all « in
v22; that is, & is a covering of vX2.

LeEMMA 7.1. Suppose S, is a block in & and a, B are two pairs contained in S,
with 2, = 1. If &7 is the support of a BIB design, then A, = 1.

Proor. Let F = (f;, - -, f,cx) be the frequency vector of a BIB design with
support &, Suppose 4, > 1. Then there exists S; # §; in . such that 3 is
contained in §;. Thus f; = 0. Then the g-entry of the vector PF is at least as
large as f; + f; > f;, but the a-entry is f;, contradicting Lemma 4.1.

ExampLE 7.1. Let S consist of

123 145 167 178
246 257 258 347.
356 348 168

Although &7 covers all pairs for v = 8 and k = 3, it cannot be the support of a
BIB design. Let a = (6, 8) and 8 = (1, 6). Then 2, = 1 and 2, = 2, but both
are contained in 168.

CoRrROLLARY 7.1. If S is the support of a BIB design, then the number of pairs
that are contained exactly once in & is divisible by kC2.

Proor. Each block of .&” which contains a pair appearing only once in &
contains exactly kC2 such pairs, by Lemma 7.1, and hence the result.

In attempting to construct a BIB design with minimum support, it would seem
natural to start with a minimal covering of the pairs. The following proposition
shows when this strategy will succeed.



942 W. FOODY AND A. HEDAYAT

PRrOPOSITION 7.1. If Sis a minimal covering of the pairs of elements of V, then
S is the support of a BIB design if and only if & is itself a BIB design.

Proor. If &is a BIB design it is its own support. To show the converse,
suppose & is not a BIB design. Then there exists a pair « such that 1, > 1.
Now « is contained in some block S of &, Now there is a pair 8in S such that
4, = 1; for, if not, we could remove the block S and ~{S} would still be a
covering. So, by Lemma 7.1, .5”is not the support of a BIB design.

Given a set of distinct blocks, .&, we associate with each block S € & a vector.

T(S, ) = (Ruys Aags -+ 5 &

ako3)

where «a; is the jth pair contained in S. We say that the block S is pair balanced
in Sif T(S, &)= (c, ¢, ---,0).

PROPOSITION 7.2. If every block in the pair covering & is pair balanced, then &
is the support of a BIB design.

Proor (by construction). Collect all blocks of & with the same T vector.
This partitions .&” into classes ], ., -‘-~, &, to that every block in a given
class, &, has the same T' = (n,, - - -, n;), say. To produce a BIB design with R
as its support, take [/n, copies of each block in S i=1,2,...,¢t, where [ is
the least common multiple of n,, i = 1,2, - - -, £.

Notice that each pair of vX2 appears in exactly one class, . Moreover,
each pair which appears in &, appears exactly n, times. Thus, the above pro-
cedure guarantees that every pair will appear exactly / times in the design.

ExAMPLE 7.2. Letv = 7 and k = 3. Let S be:

124 346 672 435
156 235 647 S572.
137 457 263

It can be checked that & is a covering and that each of its blocks is pair bal-
anced in &, Indeed, each block in the first column has 7' = (1, 1, 1) and each
of the remaining blocks has T = (2, 2, 2). Therefore, by taking 2 copies of the
blocks in the first column and one copy of the remaining blocks, we obtain a
BIB (7, 14, 6, 3, 2| 11).

8. BIB designs with v = 8 and k = 3. Using the relations rv = bk and
A(w — 1) = r(k — 1) which hold in any BIB (v, b, r, k, ), we can easily verify
that there is no reduced BIB design based on v = 8 and k = 3. Indeed, v =8
and k = 3 are the smallest v and k with 2 < k < v/2 for which there is no
reduced BIB. We were thus interested in finding the possible support sizes in
this case.

In Section 4, we gave several examples of BIB (8, 56, 21, 3, 6| 6*) with b* < 56.
In Table 1 of this section we list some of the designs produced by a computer
program implementing the algorithm described in the proof of Theorem 4.1.
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48 49 50 51 52 53 54 55
56 56 56 112 56 112 112 112

TABLE 1

BIB designs withv =8 and k = 3,
support sizes 22 to 55

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56

b*
b
123
124
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2 2 2 2

4 2 2
2
4 4 2
1 1 1
11—
- — 2 2
3 03 —
- 1 —
11 2 1 1
- — 2 — 1
1 2 — 2
3 3 4 2 3
2 2 2 2 3 1
— 2
3 —
- 3

3

1

1
127 2 2 2

3

5

1

5

1

3
234 4 4 4
237 2 2 2

125
126
128
134
135
136
137
138
145
146
147
148
156
157
158
167
168
178
235
236
238



944

2

2 2

4 4

2

257 2
258
267
268
278

W. FOODY AND A. HEDAYAT

345

346

347 2
348
356
357
358
367
368
378
456

2
3

2
3

4 2

4

1

4 4 2

457
458
467

468

478

2

567 4 4 2

568

578
678

4 4 2

Note. For each support size the number of blocks, b, is a minimum.
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In Table 1 each column specifies a BIB design. The first two entries give the
support size and the number of blocks in the design. The remaining entries in
each column form the frequency vector of the design. Note that there is a design
listed with each support size from 22 to 55. For b* equal to 51, 53, 54, and 55
it can be shown by a counting argument that there is no BIB (8, 3) with b < 112;
that is with 1 < 12.

Acknowledgment. The reformulation in the terminology of linear program-
ming is due to a helpful suggestion of a referee. We also thank R. M. Wilson
for assistance with the proof of Lemma 5.1.
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